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KINEMATICS IN A COMPLEX PLANE AND SOME 
GEOMETRIC APPLICATIONS * 

BY ARNOLD EMCH 

1. Introduction. From an elementary standpoint one is apt 
to consider geometry in a complex plane as an accessory of 
heuristic value for function theory. In a more advanced sense 
one recognizes the fundamental importance and intrinsic value 
of the geometric problem of partition of the complex plane by 
circular arcs in connection with the properties and classifica­
tion of certain linear substitution groups, with the correspond­
ing automorphic functions, and, in particular, with the theory 
of algebraic curves and their Riemann surfaces and uniformiza-
tion. But even in a more elementary sense, the complex 
plane is the natural medium for the solution of certain spe­
cific geometric problems. As an example may be mentioned 
the " geometry of the polynomial," involving the theory of 
stelloid and circular curves and their focal properties.f 

Also a number of problems in geometric kinematics may be 
solved conveniently in a complex plane, as has been shown by 
Koenigs,J Study,§ and others. In the present paper I shall 
show by further examples of this kind the simplicity and ele­
gance of the complex treatment. 

2. Similar Triangles. As can easily be verified, a necessary 
and sufficient condition for the equi-sensed similitude of two 
triangles Ziz2zs, zi'z^zs is the vanishing of the determinant 
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* Presented to the Society, Feb. 25, 1922. 
t See Emch, On a certain generation of rational circular and isotropic 

curves, this BULLETIN, vol. 25, pp. 397-404 (1919), and also On plane 
algebraic curves with a given system of foci, same volume, pp. 157-161. 

X Leçons de Cinématique: Les imaginaires dans la cinématique du plan, 
pp. 324-332 (1897). 

§ Vorlesungen über ausgewâhlte Gegenstânde der Geometrie. Erstes Heft: 
Ebene analytische Kurven und zu ihnen gehörige Abbildungen, pp. 1-18 
(1911). 
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Denoting by z the conjugate of 2, two triangles 2i2223, Zi%%' 
are similar with the sense inverted when 
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For an equilateral triangle ziz2Zs we simply have to set up the 
condition that the triangle 222321 in the same order be similar 
to the triangle 2i2223; i.e., 

Zl Z2 1 
z2 zs 1 
23 zi 1 

This reduces to 

(3) Zi2 + 22
2 + Z3

2 — Z2Z3 ~ 232i — 2i22 = 0 

as a necessary and sufficient condition that the triangle 212223 
be equilateral. 

3. The Group of Movements in a Plane. The linear trans­
formation 
(4) 2' = az+b 

may be considered as a movement (including uniform dilata­
tion) of the 2-plane into a new position indicated by 2' and 
referred to the same system of coordinates (original z-plane). 
Putting a = rieiai, b = r2e

ia2, 2 = reid
y (4) becomes 

(5) 2' = nrei(d+a^ + r2e
ia*, 

and it is seen at once that the movement is equivalent to 
the effect of the succession of substitutions 

(a) Si(similitude): 21 = r^z; 
(b) S2(rotatiori) : 22 = Zi-eiai; 
(c) S%(translatiori)\ z3 = z' = z2 + r2e

ia2. 
The totality of all movements (4) forms a continuous projec­
tive four-parameter group and contains (a), (b), (c) as sub­
groups. The invariant points in the movement from the 2-
to the 2'-plane are 2 = 6/(1 — a) and .2 = 00. 

When 2 describes a figure in the original plane, 2' describes 
a similar figure in the displaced plane with the coefficient of 
dilatation equal to r±. In particular, when 2 describes either 
a straight line or a circle, 2' will describe a straight line or a 
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circle. Moreover, since 

dz' = a- dz, and | dz' \ = ri*\dz\, 

the ratio of the velocities of z and z' is constant. Thus when 
z describes a straight line with uniform velocity, zf will describe 
a straight line with uniform velocity. When z describes a 
circle, zf describes a circle with the same angular velocity, 
i.e., z and z' describe their respective circles in the same time. 

4. On the Movement of a Triangle in Deformation and Remain­

ing Similar to Itself. When z describes the unit-circle z = eid, 

(6) z' = neiid+ai) + r2e
ia2 

describes obviously a circle with r2e
ia2 as a center and r\ as 

a radius. Consider now the triangle formed by the origin, 
the unit-point on the real axis and the fixed point pei0. On 
the line zz' which connects the point z on the unit-circle to 
the point z', corresponding to z by (4), erect a triangle zzzz' 
similar, in the same order, to the triangle pe^, 0, 1. Then 

zz pei(i 1 ! 
eid 0 1 = 0 . 
riew+«i) + r2ei«* i i I 

From this 

- zz + ei9 - pe*<'+» + pn6* t f+ai+» + pr2^(a2+/3) = 0; 
(7) s3 = [pne**1*» - pe* + l)eid + pr2e

i(a2+^\ 

As (7) has the same form as (6) and 6 is the only variable, Zz 
clearly describes a circle with |pr i^ ( a i + ^— pe^ + 1| as a 
radius and pr2e

i(a2+fi) as a center. Obviously, z3, z', z describe 
the circles with the same angular velocities, i.e., they simul­
taneously describe the circles completely. Denote the centers 
of the circles described by z, z', z3 by ch c2, c3, so that c\ = 0, 
c2 = r2e

ia% cz = pr2^(a2+^}. Comparing this triangle with the 
original fixed triangle 0, 1, petl3, we see that 

;0. 

From this it follows that the two triangles are similar. 
Consider next a point 34 which remains always similarly 

attached to the triangle zz'zz, so that also zz% remains similar 
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to itself. But such a triangle zz'z^ arises from a definite fixed 
similar triangle 0, 1, heiv, just as zz'zz arises from 0, 1, peifi. 
Hence also z± describes a circle, and Acic2c4 ~ Azz'z^, i.e., if a 
fourth point z± remains similarly attached to the triangle zziz^, 
then s4 describes a circle whose center c4 is similarly attached 
to cic2c3. The same situation prevails for other similarly 
attached points z&, s6, * * •, and as the geometric result does not 
depend upon the orientation of the complex plane, we may 
state the following theorem. 

THEOREM 1. If a variable closed or unclosed polygon 
(z) = ZQZIZ2 ' " Zn 

of (n + 1) vertices remains similar to some arbitrary fixed polygon 
(a) = a0aia2 • • • an, 

and any two of its vertices describe two fixed circles with the same 
angular velocities, then all other vertices describe circles with the 
same angular velocities. The polygon 

(c) = C0C1C2C3 ' * ' Cn 

of the centers of these circles is similar to the fixed polygon (a). 

From this follows obviously the corollary: 
COROLLARY.* If any two vertices of a regular variable polygon 

(z) = Z1Z2 - - • zn of n vertices and center s0 describe two circles 
with the same angular velocities, then the remaining n — 2 
vertices describe circles with the same angular velocities. The 
centers Cic2c3 • • • cn of these circles form a fixed regular polygon 
(c), whose center c0 is the center of the circle described by the 
center zo of the variable polygon (z). 

5. Case of Movements on Straight Lines. I t is not difficult 
to show that the theorem of the preceding section holds, when 
two points of the polygon (z) describe straight lines with 
uniform velocities. We may restate the result. 

THEOREM 2. If any two points of a variable polygon (z), 
which remains similar to some fixed polygon (a), describe two 
straight lines with uniform velocities, then all other points of (z) 
describe straight lines with uniform velocities. 

* This contains Study's theorem on the square, loc. cit., p. 16, as a 
particular case, It is obviously not necessary to make a restriction in the 
choice of the two vertices as Study does. 
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«i + Xie1'"1 

(H + X2eia2 

a3 + X3eia3 
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In particular, when (z) is a regular polygon, its center zo also 
describes a straight line. 

We propose next to discover whether it is possible to find 
triangles with their vertices on three arbitrarily given fixed lines 
and similar to a fixed triangle 0, 1, reia. Let Xi, X2, X3 be three 
variable parameters; then the three lines may be written in 
the form 

*i = ax + \ieiai, 
Z2 = a2 +\2e

ia2, 
S3 = &3 + X3^'a3. 

For every set of values Xi, X2, X3 the three points 21, z2, s3 

form a triangle on the three lines. Similitude to the fixed 
triangle requires 

0. 

Expanding this and separating real from imaginary, we get 
an expression of the type 

Afo + A2\2 + As\s + A, + ÏCB1X1 + J52X2 + 53X3 + 54) = 0 

in which the A's and B's and X's are real. In order that this 
be satisfied for real values of the X's, there must be 

AxXi + A2\2 + ^3X3 + AA = 0, 

SiXi + £2X2 + 53X3 + B4=0, 

which shows the existence of a simply infinite set of solutions 
(Xi, X2, X3), or of such triangles. Hence we have the following 
theorem. 

THEOREM 3. If three lines li, l2, U are given, it is always 
possible to describe them simultaneously by three points of a one-
parameter variable triangle which remains similar to a fixed 
triangle. The vertices of the triangle describe the sides hl2U 
with definite uniform velocities. 

Now choose a fourth point z± so that the variable quadrangle 
z\Z2ZsZ4, with zi, z2, zs moving on l\l2U, remains similar to a 
fixed quadrangle aia2asa±; then z± describes a straight line Z4. 
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If four lines khkh are given, and we let z\, z2, z$ describe 
h, h, h as before, then s4 describes a line k. When s4, moving 
on k, reaches the intersection z0' of k with l0, zh z2, z$ will 
have reached certain positions zi'z2zs on l\, l2, h, respectively, 
so that Zo'ziz2'zs ~ a\a2a%a±. 

THEOREM 4. It is always possible to inscribe in a given 
quadrilateral a quadrangle similar to a given quadrangle. In 
particular, it is always possible to inscribe a square in a given 
quadrangle* 

Theorem I is also true when one of the two circles determin­
ing the movement degenerates into a point circle, or when one 
degenerates into a point ciicle and the other into a straight 
line. Thus follows 

THEOREM 5. If a variable triangle ziz2z$ remains similar to 
a fixed triangle, and z$ is stationary, while z± describes a straight 
line with uniform velocity, then z2 describes another straight line 
with uniform velocity. 

As a particular case assume an isosceles right triangle 
ziz2z% with 23 = ei fixed on the axis of imaginaries and z± — X, 
the vertex of the right angle, describing the axis of reals. 
Then z2 — A = — (ei — \)i, and z2 = e + X(l + i), i.e., z2 

describes a line through the point e on the real axis and making 
an angle of 45° with the positive part of the real axis. This 
result leads to the following method. 

6. Inscribing a Square in a Quadrilateral. Let hkhh be the 
sides of a proper quadrilateral following each other in the 
positive sense. On l\ choose a trial point A\ and drop a 
perpendicular A\Q\ on l2. From Qi measure off on l2 in the 
positive sense QiA2' = AxQi. Through A2 draw a line gi 
making an angle of 45° with the positive direction of l2, and 
intersecting k in As. Then AiA$ form two opposite vertices 
of a square on l\l2h and we can easily find the other vertices 
A2, A±. Repeat the same construction, starting with a second 

* The second part of this theorem is well known. See Dr. Hebbert's 
papers, ANNALS OF MATHEMATICS (2), vol. 16, pp. 38-42; 61-71 (1914-
15), and references given there. 
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trial point Bi on lu resulting in a second square BiB^B^B^ 
with B1B2BZ on hhh. Now when a variable square moves 
with three vertices on three lines hkh, the fourth vertex 
describes a line U'. A\A<iA^A^ and BiB^B^B^ are two posi­
tions of this square, and A± and i?4 determine the line Z4'. 
Hence, the point of intersection P 4 of Z4' and £4 is a vertex of 
the inscribed square. Repeating the above construction in 
the reversed order, starting with P 4 on Z4, easily gives the 
square P^PzP^Pi inscribed in hkkh. 

This however is not the only square. A second square is 
obtained by measuring off Qi^2* = — Q1A2 in the negative 
sense, by drawing #1* through A*, making an angle of 45° 
with the negative direction of l2, and proceeding with the con­
struction as explained above. Starting again with l\ and 
choosing the order hhhh, there are again two squares whose 
vertices lie in succession on W2W3. Likewise there are two 
squares for the order likkh. The remaining three orders 
hhhh, hhhh, hhhh are cyclic substitutions of the above three 
and do not produce any new squares. 

THEOREM 6. There are, in general, six squares that may be 
inscribed in a proper quadrilateral. For each of the three non-
cyclic orders there are two squares of opposite sense. 

When there exist two inscribed squares with the same sense 
for a given order, as for hhhh, then l± coincides with Z4, and 
there exists an infinite number of solutions. 

THEOREM 7. When for a given order of a quadrilateral there 
exist two inscribed squares with the same sense, then there exist 
an infinite number of inscribed squares for the same order. 

Thus a problem of old standing is solved in a complete* 
and very simple manner by preparing the way in the complex 
field. 

UNIVERSITY OF ILLINOIS 

* Carnot in his trigonometric solution of the problem {Géométrie de 
Position, p. 374) stated the possibility of three solutions only. 


