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REPORT ON T H E THEORY OF THE GEOMETRY 
OF NUMBERS.* 

BY PKOFESSOR H. F. BLICHFELDT. 

(Read at the Chicago Symposium of the American Mathematical Society, 
March 28, 1919.) 

1. Introduction.—There arises in theory of numbers an 
important class of problems of a kind best illustrated by an 
example : Consider the quadratic form ƒ = ax2 + 2bxy + cy2, 
ac — b2 > 0. Let the numerical value of the determinant 
D = ac — b2 be given, but not the coefficients a, b, c individ­
ually; also let it be specified that the variables x, y must be 
integers (positive or negative or zero). Under these condi­
tions, what can be predicted as to the least absolute value of ƒ, 
other than ƒ = 0? Designating this value by [ ƒ ], we have f 
[ƒ ] Û 2/ V3£^, the extreme limit being reached by the form 
x2 + xy + y2. 

Isolated problems of like nature were studied by prominent 
mathematicians during the past century. Hermite discovered 
a superior limit to the least value [ƒ ] of a positive definite 
quadratic form in n variables in terms of n and the numerical 
value of the determinant D:[f] <; {^-Di^B1^ (Journal fur 
Mathematik, volume 40, 1850, page 263); this was the first 
important result of a general nature. 

In the matter of references we shall use the abbreviations: 
Mi, M2, M3, M4 designate respectively the following books by 

Minkowski: "Diophantische Approximationen," Leipzig, 
1907; "Geometrie der Zahlen," Leipzig, 1896-1910; 
"Gesammelte Abhandlungen," volumes 1 and 2, Leipzig, 
1911. 

Bi refers to "A new principle in the geometry of numbers" by 
the author, Transactions American Mathematical Society, 
1914, pages 227-235; B 2 to a paper read before this Society, 
San Francisco Section, April 6, 1918 (see this BULLETIN, 
1918, page 418). 
* An exposition of the theory of the geometry of numbers is to appear 

in the Annals of Mathematics during the fall and winter of the present year. 
For this reason the report here given of the lecture at the Chicago Sympo­
sium is very brief. Proofs have been omitted, and only a few illustrative 
examples are included. The fundamental theorems are, however, stated 
practically in full (§3). 

t See Bi, p. 233, for references. 



450 THEORY OF GEOMETRY OF NUMBERS. [ J u l y , 

2. Minkowski's "nowhere concave" surfaces (M2, pages 
1-76).—It remained for Minkowski to discover a theorem 
bearing on the least values of a very general class of functions, 
by means of an elegant geometrical interpretation of this 
minimum. He defines a real function <p of n real finite 
variables Xi, •••, xn having the following properties (A), 
(B), (C): 

(A) <p(xi, • • -, xn) = a definite positive number unless 

*(0, . - . , 0 ) = 0; 

<p(txi, • • ',txn) — t(p(xly • • -, xn) for any positive number 2; 

(B) <p(xx + yu • • -, xn + yn) ^ <p(xu • • -,Xn) + <p(yu • • -,yn); 

( C ) <p(— Xlf • - , — Xn) = <P(X1} . . ., Xn). 

The following functions (1) and (2) may serve as illustra­
tions. We have taken n = 2, x± = x, x2 — y. 

(1) <p = ^Jax2 + 2bxy + cy2, ac — b2 > 0; 

(2) <p = \x\ when \x\^\y\;<p=\y\ when \x\ £\y\. 

The corresponding curves <p = k are respectively an ellipse 
and a square. 

I t may be proved that 
(a) <p is continuous in the variables Xi, • • -, xn', 
(b) the variables satisfying the inequality <p ^ k, for a given 

finite positive k, do not exceed in absolute value a 
certain finite number depending on k and <p; 

(c) the surface cp — k has the origin (0, . . . , 0) as a center of 
symmetry and is nowhere convex as seen from this 
center; 

{d) for a given positive k, the points (xi, . . ., xn) are separated 
into three distinct sets: inner points, points on the 
surface, outer points, according as the following condi­
tions are satisfied: <p < k, <p = k, <p > k; 

(e) the outer and inner volumes of <p = k have one and the 
same value, namely the integral fdxidx2 • • • dxn ex­
tended to all the inner points. 

I t follows that only a finite number of lattice points, (i. e., 
points whose coordinates are integers (positive or negative 
or zero), will be inner points or points on the surface <p = k, 
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and that the surface will lie in the interior of a cube (n-
dimensional) of finite edge. If k is taken small enough, all 
lattice points other than the origin will be outer points. 

3. General theorems. For a surface as thus defined, Min­
kowski proved the following theorems I, I ' , I I I : 

THEOREM I (M2, page 76). If the volume of <p = k is ^ 2n, 
then at least one lattice point other than (0, • • •, 0) will be an 
inner point or a point on the surface. 

THEOREM I ' (M2, page 76). If the volume of cp = 1 is 
represented by J , then there will be at least one set of integers 
h, • • -, In not all zero, such that 

0<<p(k, . . . , W ^ 2 / J 1 ' » . 

The somewhat more general geometrical theorem proved 
by the author (Bi, page 228) may be stated as follows in con-
densed form: 

THEOREM I I . A simple closed surface of volume V can be 
placed in such a position by means of a translation Xi = X\ + a\, 
- • •, %n = %n + a>n that the number of lattice points which will 
lie inside or on the surface is > V. 

This surface need not possess a center, not does it need to 
be concave towards an inner point. 

THEOREM I I I (M3, page 270). There exists a function <p' 
obtained from <p by means of a linear homogeneous transformation 
of determinant unity of the variables xlf • • •, xn, such that 

W] ^ '\1 + ¥ + 3n+ '") 
1/» 

Geometrically: if the volume of cp' = h is 

then will every lattice point except (0, • • •, 0) be an outer 
point. The author has obtained slightly better results (B 2 ) . 

4. Applications to homogeneous forms. 
THEOREM IV (Mb pages 68-79). Let J = \x + y y + \'% 

rj = ixx-\- • • •, f = vx + • • • be three linear forms in x, y, z 
having real coefficients X, • • •, vn and a determinant 
A = ( \ M V ) + 0. Then 
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(a) integers k, mu %, not all zero, may be substituted for x, y, z, 
—say f i = \li + y mi + X"fti, • • •,—such that 

l&l< ^Â],\m\< W*\, i r i l ^ VTÂT; 
(b) integers 1%, m^, n%, not all zero, may be substituted for x, y, z 

such that 

I & I + \m I + | f21 < î/elT]. 
These results follow immediately from Theorem I', the 

corresponding surface <p = 1 being a parallelopiped and an 
octahedron respectively. By a special analysis of the octa­
hedron Minkowski proved (M4, page 40) that the left-hand 
member under (b) is ^ V-y0^8-1 A | . 

From this result we derive | £2?72f2 | S ïV I A | . 
Similar results are obtained when the coefficients of £ and 77 

are conjugate imaginary (77 = £) and those of f real. Thus 
we find (BI, page 233, from Theorem III) 

I HsU* I < V ^ I A I . 
THEOREM V. Let f be a positive definite quadratic form in n 

variables and of determinant D. Then integers, not all zero, 
may be substituted for the variables such that the numerical 
value of f is 

m S i { r ( 1 + f)r>-. 
The author has obtained the limit 

a{r(1+^)F'V* 
by means of Theorem I I (BX, page 233). The exact (superior) 
limit to the lowest value [ƒ ] (i. e., the limit actually reached 
by at least one quadratic form of determinant D) has been 
determined for n = 2, 3, 4, 5 (see Bi, page 233). For any n, 
we know from Theorem I I I above that this exact limit, which 
we shall denote by 4(p/J)2/r i, cannot fall below 

I{2(1+>,+3I+ . . .)r(1+i)rV„ ; 

1 + 1/2" + 1/3" + • • • ^ ^ n/2 + 1 
(1) 2"-1 ' ' - p - 2"'2 ' 
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Hence, quadratic forms exist for which the corresponding 
values of p satisfy these inequalities. However, no such form 
has ever been constructed for large values of n. 

The problem of the closest regular (latticed) packing of 
spheres in Rn is equivalent to the problem of finding that 
positive definite quadratic form in n variables and of given 
determinant, say D = 1, whose least value, other than zero, 
is the highest possible for the given n and D (M4, page 74 ff.). 
The ratio of the space occupied by spheres packed in regular 
layers in a large cube, say, to the volume of the whole cube, 
is indeed the number p defined above. 

The author has recently proved, by an essentially different 
method, that no matter how the spheres be packed in a 
large volume V, in a "regular" fashion or not, the ratio of 
the space occupied by the spheres to the whole volume V is 

n/2 + 1 
^ 2n/2 ' 

I t may be of interest to note in passing that it follows from 
the inequalities (1) satisfied by p for certain (though unknown) 
quadratic forms, that the shot-pile packing of spheres, though 
the closest packing in space of two dimensions and presumably 
also in space of three dimensions, is very far from being the 
closest packing in space of a large number of dimensions 
(M4, page 95). 

APPLICATIONS OF THE GEOMETRY OF NUMBERS 
TO ALGEBRAIC NUMBERS. 

BY PROFESSOR L . E . DICKSON. 

(Read at the Chicago Symposium of the American Mathematical Society, 
March 28, 1919.) 

1. T H E geometry of numbers not only furnishes a concrete 
geometric image of certain fundamental theorems on algebraic 
numbers, but also provides a new and attractive method of 
proving important theorems on algebraic fields. For the 
sake of concreteness we shall restrict attention to the typical 
case of the cubic field F(6), which is composed of the numbers 


