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APPLICATIONS OF THE THEORY OF SUMMA­
BILITY TO DEVELOPMENTS IN ORTHOG­

ONAL FUNCTIONS. 

BY PROFESSOR CHARLES N. MOORE. 

(Read at the Chicago Symposium of the American Mathematical Society-
April 12, 1918.) 

THE very considerable body of literature which may be de­
scribed by the above title belongs almost entirely to the pres­
ent century. Its extent is only roughly indicated by the bib­
liography at the end of the paper, which makes no pretensions 
to being complete. The type of series considered here consti­
tutes one of the three most important classes of series to which 
the theory of summability has been applied, the other two be­
ing power series and Dirichlet's series. A noteworthy feature 
of the applications with which we shall be concerned is found 
in their usefulness in an important branch of applied mathe­
matics, namely the theory of the flow of heat and electricity. 

§1. The Summability of Fourier's Series. 
The first writer to deal with the topic of this section was 

Fejér. In his fundamental paper of 1903 [5]* he established 
among other results the summability (CI) of the Fourier 
development of an arbitrary function satisfying very wide 
conditions, at all points where the function is continuous or has 
a finite jump. We shall give a proof of this theorem, under 
somewhat modified conditions, which is substantially the same 
as Fejér's proof. 

The Fourier development of f(x) may be written in the 
form 

(1) , - WW + - £ ƒ(*) cos n(6 - x)de, 

it being assumed that f(x) is periodic of period 2TT. We have 
for the sum of the first n terms of (1) 

/ON / N 1 r2 '+ arrm c o s ( n - IK* - *) - CQS^(g - *) m 
(2) *n(x)=-Ja M 2iT^oiW^W) dd' 

* The numbers in brackets refer to the bibliographical list at the end of 
the paper. 
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Hence for the arithmetic mean of the first n sums, we have 

n($ - x) 

(3) ^ ) * f+a
m

Sm 2 de. 
^ ' n 2nir Ja

 J . 0 6 — x 

If now we set t = |(0 — a;) and then take a = x — T, we 
obtain 

(4) nr-^./"^^* sin2 2 
W2 , „ . „.. . „, „ . , . sin27?J 

sin2 2 (ft. 

We are now ready for the proof of Fejér's theorem. We 
begin by establishing two lemmas. 

LEMMA 1. For any positive integer n, we haw 

1 r'Hitfnt ± 

(5) — I "^TT dt = f. 
If we set 

(6) <xn(2t) = | + eos 22 + cos 4* + • • - + cos 2{n - V)t 

cos 2(7i — 1)2 — cos 2n£ 

we have 

ms 2,(20 <n(20 + <r2(20 + • 
x 71 71 

But from (6) 

2 (1 -

• • + VnW) 

- cos 2t) 

1 sin2 7i£ 
2TI sin2/ 

2 f*'2 

<7n(2t)dt= J ( » = 1,2,3, •••)• 

From this relationship and (7) the identity (5) readily follows. 
LEMMA 2. If <p(t) is integrable (Lebesgue) in the interval 

(0 ^ x ^ c ^ J^7r) and furthermore lim <p(2) = 0, 2A671 
*->o 

.. 1 C /Nsm27i*7 

hm — <p(f)-.~Y7 dt = 0. 
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Given an arbitrary positive e, we chose S < e and such that 

(8) \<p(t)\<e (0£t£8). 

Then, ô being fixed, we choose m so large that 

(9) _Jj_£k(0|a<! in^m). 
From (8), (5), and (9) we obtain 

I I r , N sin2 nt 7 I . 1 r8, , x . sin2 nt 7 

\nTj0
 w sm2t \ — nwj0 ' ' sin2 £ 

, sin2 nt , e rnl2 sin2 ni 
. o , (ft 

o sin"51 

, 1 r, , N, sin2 ^ 7 e f 
^ Js ' Sin2 £ 717T J 0 

+^4?- sr
|^ ) |^< e {n=m)' 

which proves our lemma. 
F E J E R ' S THEOREM.* If the function f (X) is periodic of period 

2T and is integrable (Lebesgue) over any interval of length 2ir, 
the series (1) will be summable (CI) to the value 3^{/(ci;+ 0) 
+ ƒ (x — 0)} at every point for which this limit exists. 

I t is obvious that this theorem can be proved by showing 
that 

l i m r ^ ) _ H{/(a:+o)+ƒ(*_())}] = o, 

where Sn(x) is defined by (3). In view of (4) and Lemma 1, 
the expression in brackets may be written in the form 

± {f(x+2t) +f{x - It) - f(x+ 0) - f(x- 0)} -r-^dt. 
nir JQ sm t 

I t follows at once from Lemma 2 that this last expression 
approaches zero as n becomes infinite. The theorem is there­
fore proved.f 

* FejéVs original conditions are somewhat different from ours, he having 
required that f(x) be integrable (Riemann) and become infinite at only a 
finite number of points. Thus his result and our result overlap. It is 
easy to modify our argument so as to include both results. 

t With slight changes the above argument may be used to establish 
uniform summability throughout any interval included in an interval of 
continuity of ƒ (x). 
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Since the points of discontinuity of a function having a 
Riemann integral form a set of measure zero, Fejér's theorem 
for such functions may be stated in the form: The Fourier 
development of any function having a Riemann integral is sum-
mable ((71) to the value of the function at all points except for a 
set of measure zero. But Fejer's theorem does not enable us 
to assert anything of that sort about functions having a Le-
besgue integral, since for such functions there may be no 
points where the limit Y^J{x + 0) + f(x — 0)] exists. How­
ever, Lebesgue has extended the second form of Fejer's the­
orem to functions integrable according to his definition [14], 
in a theorem which we shall now proceed to prove. We begin 
by establishing two lemmas. 

LEMMA 3. If g(t) is positive or zero in the interval (0 ^ t 
S yfa), has a Lebesgue intègre I there, and is such that 

(10) lim ̂  = lim 7 f g{t)dt = 0, 

then we shall have 
,. r'2G(t) sin kt , 

(11) lim -y-.——dt= 0. 

Given an arbitrary positive e, we choose a S such that 

(12) 0^^jl<~ (0<tSS). 

Then, ô being fixed, we choose mb such that 

(13) 
I J 8 

U/2l-r(T.) I e 

—7T- • sin kt at < g (fe ^ mi), 

which we may do in view of the Riemann-Lebesgue theorem 
with regard to the limiting values of the Fourier's constants 
of an integrable function.* 

For values of h > T/8 we have, in view of (12), 

(14) Jo — " F * <Sj„ 
r/*sinto _ 

—-—at 
z 

~47rJo 
sm^ _ e 

— du < T . 
u 4 

* Cf. Lebesgue, Leçons sur les Séries trigonométriques, p. 61. 
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Furthermore, on integrating by parts, 

(15) | —jf- sin Id at = — r cos kt -^— 

, 1 fs g(t) , , 2 f G(0 , , 
+ r I — -̂ cos Mat — T I -jj— cos Atf a£. 

But 

(16) — y cos fci—s- < f —zr- + ~ • —TT~ > 

, - « 12 fê G(0 . , I e (%i it 1 6 , 6 
(17) \llir^C0Sktdt\<^kllk¥

<k-2^+2^' 
(18) lu,-*"cosktdt\<kilh-f

dt-U• i n . , . 
, 2 f l A J g(g) , l g ( T / t ) , 1 _ ^ , _ 1 _ 

fcJ„» *8 &' ô2 "^TT ir/& i"&'27rS i"27r2 ' 

Combining (15), (16), (17) and (18), and taking into account 
(12), it is readily seen that we may choose m2 such that 

I f 
(19) 

«/ir, 
—Tg- s i n Atf at 

7T//C ^ 

< | (Jfc ^ m2). 

If we designate by m the greatest of the three quantities 
mx, 7T/S and ra2, we have from (13), (14) and (19) 

I r'2G(t) 

\X t~ 
l2G(t) sin to. 

,— a£ < € (fc ^ m). 

Our lemma is therefore proved. 
LEMMA 4. F/ ƒ(#) is integrable (Lebesgue) in the interval 

(a ^ x ^ 6), |/(#) — /(^o) |, where (a ^ x0 S b), is f or x = x0 

the derivative of its indefinite integral, except perhaps at a set of 
points of measure zero. 

We know from a well known theorem in the theory of Le­
besgue integrals that f(x) •— a, where a is any constant, will, 
under the conditions of our lemma, be the derivative of its 
indefinite integral for all points of (a ^ x ^ b) except perhaps 
a set of measure zero. Let this set be represented by E(a), 
and let Ei represent the set which is the sum of all the E(a) 
for all rational values of a. Then E1 will also be a set of mea­
sure zero. 
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Let xo be a value of x in a ^ x ^ b which does not belong 
to Ei, and let j8 be any irrational number. Given an arbitrary 
positive e, we can find a rational number a so near to j3 that 

(20) | |/(a!) - j8| - \f{x) - a | I ^ | a - 0 | < | , 

whence 

(21) 
1 I Cx 

<fe 

1 I f"5 

—r |/(a:) - a |cfe 
«£0 | | t/ajo 

< ! • 

Since, moreover, the second term of the left hand member of 
(21) approaches \f{x) — a \ as x approaches Xo, we may choose 
a 8 such that 

(22) lï^rlJO»-1 da; 

Combining (20), (21) and (22), we obtain 

- | / ( a » - « | 

(\x — XQ\< $). 

<l 

_i I r \f(x)-p\dx -\f(x)-0\ <e (\x — x0\< 5). 

Hence \f(x) — jS J is for X — XQ the derivative of its indefinite 
integral. Since x0 was any point not of Ei and /3 was any ir­
rational number, it follows that \f{x) — y\, where y is any 
number, is the derivative of its indefinite integral for every 
point of (a ^ x <̂  b) except a set of measure zero. Since for 
any point x0 we may choose y = f(x0), our lemma is proved. 

LEBESGUE'S THEOREM. The Fourier development of a func­
tion f (x) that is periodic of period 2T and is integrable (Lebesgue) 
over any interval of length 2ir, is summable (CI) almost every­
where to the value f (x). 

Our theorem may be proved by showing that 

(23) im r^f-/(,)]=0, lim 

where Sn(x) is defined by (3), is true almost everywhere. In 
view of (4) and Lemma 1 the expression in brackets in (23) 



264 THE THEORY OP SUMMABILITY. [March, 

may be written in the form 

1 rW 2 sin2 nf 

(24) — | [Rx + 2Q+f(x-2Q-Wt)]-^dt 

nirJo 

W2
 msin2rrf 

sin2* 

We will show that (24) approaches zero as n becomes infinite 
for all values of x for which | <px(f) | is for t = 0 the derivative 
of its indefinite integral $x(f). This latter will be the case 
for all values of x for which both \f(x + 2t) — f(x) | and 
\f(x —- 2f) — f(x) | are f or t = 0 the derivatives of their indef­
inite integrals, and in view of Lemma 4 this is true almost 
everywhere. Thus our theorem will be proved. 

We consider then a value of x for which 3>/(0) = <px(0) = 0, 
and hence we have 

(25) iimr*^i=o. 

Integrating by parts in the integral on the right hand side of 
(24), this expression takes the form 

(26) i-f^^-T'-irm.^M 
TIT L sur t Jo 7T Jo sin t sin t 

, 2 C'PQS) s i n 2 n ^ 
H -T—7 • —r-«T- (W. 

7̂T J0 sin ^ sin2 ^ 
The first term in (26) vanishes at the lower limit in view of 
(25) and at the upper limit takes on a value which approaches 
zero as n becomes infinite. From Lemma 2 and (25) the third 
term is readily seen to approach zero as n becomes infinite. 
The second term may be replaced by 

<27> I f 
7T J o 

*l2$x(t) sin 2nt 
t sint 

dt, 

since the difference between the two approaches zero as n 
becomes infinite in view of the theorem of Riemann-Lebesgue 
referred to in the proof of Lemma 3. But it follows from 
Lemma 3 that (27) approaches zero as n becomes infinite. 
Hence (26), and therefore (24), has this same property for the 
value of x we are considering. Thus, as pointed out above, 
the theorem is proved. 
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We may also use for the summation of Fourier's series the 
non-integral orders of summability introduced by Knopp, 
Marcel Riesz and Chapman. These may be defined as follows : 

Let 
im=n 

(28) sn = £ M», A w T(k+n+l) 
T(k+l)T(n+l)' 

Then if <7n
(fc) = Sn

(fc)/^n(fc) approaches a limit a as n becomes 
infinite, we say that the series Xun is summable (Ck) with 
sum <r. We may also define the sum of the series to be 

(29) lim [E (l--Y^l 

whenever that limit exists. This latter definition has been 
shown by Riesz to be entirely equivalent to the former one.* 

It was shown independently by Riesz [18] and Chapman [3] 
that the Fourier development of a function f(x) having a 
Lebesgue integral is summable (C,lc > 0) at all points at 
which lim [J^{/(# + h) + f(x — h)}] exists, to the value of 

that limit. It was shown by G. H. Hardy that the series is 
summable (0, k > 0) tof(x) almost everywhere [13]. Hardy's 
proof of his theorem is similar in method to a simplified proof 
of the Riesz-Chapman theorem given by W. H. Young [19] 
and [20]. Space is lacking to give here the details of these 
proofs. They depend on properties of the functions 

CS) - Y(p+ l) 1 1 ~ 

+ 

f 

r(p+i) r (P+IXP + 2) 

( p + l ) ( p + 2)(p+3)(p + 4) 
introduced by Young. These functions are generalizations of 
the sine and cosine, for we have obviously Co CO = cos t, Ci(f) 
= sin£. 

§2. Convergence Factors. 
Convergence factors may be defined as a set of functions of 

a parameter which, when introduced as factors of the succes-
* Cf. Comptes Rendus, June 12, 1911. 
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sive terms of a series, cause a divergent series to converge,* 
or a series which is already convergent to converge more rap­
idly throughout a given range of values of the parameter. 
In the case of all the convergence factors used in practice, it 
is further true that each factor approaches unity as the param­
eter approaches a certain value, and that the function of the 
parameter defined by the series with the convergence factors 
approaches a limit as the parameter approaches this same 
value, this limit being the value of the series for convergent 
series and a value we find it useful to ascribe to the series in 
the case of a divergent series. 

Thus we see that a set of convergence factors may be used 
to define the sum of a divergent series. This method of sum­
mation goes back to Euler, who frequently arrived at a value 
for a divergent series ^Lun by setting Hun = lim ljunx

n. A 
a - > l - 0 

simple illustration of this process is exhibited in the case of 
the series 1 — 1 + 1 — - ! + • • • . For this series we have 

1 lim 2unx
n = lim (1 — x + x2 — xz + • • •) = lim ., , — 2. 

This value agrees with the value of the series when summed 
by the mean value process. 

From one point of view, practically every method of sum­
ming divergent series may be regarded as a convergence factor 
method. Thus in the summation by first means we seek the 
limit as n becomes infinite of 

F(n) = nJ~l = no + (̂  1 - n + 1 )% 

+ (i - dh)W2 + •• * + 0 " ÜTTïK 
The expression on the right hand side may be regarded as the 
series obtained by introducing the convergence factors 

( \ \ m 

j ™ ( ^ ) = 0 ( m = n + l , n + 2 , . - 0 

* Some writers have employed the term convergence factor in the case 
of a set of factors which cause a divergent series to tend toward conver­
gence, i. e., to become summable of a lower index. 
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into the series Xun. Here both the variables of which the con­
vergence factors are functions take on only discrete values 
and we take the limit of F(ri) as n becomes infinite. But the 
principal characteristic of this type of factors lies in the fact 
that for any definite value of the parameter they are all zero 
from a certain point on. In this they differ from the type to 
which the name convergence factor has ordinarily been 
applied. 

The simplest example of the latter type is to be found in the 
set of convergence factors mentioned above as used by Euler, 
namely the set 1, x, x2, • • •. In connection with this set it is 
interesting to note that the fact we have indicated above with 
regard to the effect of their introduction into the series 1—1 
+ 1 — 1 + • • •, is not an accidental coincidence but a par­
ticular case of a general theorem due to Frobenius [8]. This 
theorem may be stated as follows: 

FROBENITJS'S THEOREM: If the series Xun is summable (CI) 
to the value S, then the series lïunx

n will converge f or 0 < x < 1, 
and the function F(x) which it defines for those values will be 
such that lim F(x) = S. 

œ-»l—0 

We shall not give the proof of this theorem, inasmuch as it 
is a special case of a more general theorem due to Bromwich 
[1]. This latter theorem includes also a number of other the­
orems about convergence factors due to various writers. In 
its most general form it applies to the introduction of conver­
gence factors into series summable (Ck), where h is any posi­
tive integer.* We shall deal only with the simplest case where 
k = 1, but for this case we will state the theorem in somewhat 
more general form than it is given by Bromwich. I t requires 
only slight changes of phraseology to fit the proof to this mod­
ified statement, and in this latter form the theorem applies 
directly to cases to which the other form is not applicable. 

BROMWICH'S THEOREM: If the series Hun is summable ((71) 
to the value S, and the set of functions, fo(a), fi(a), fi{<x), • • •, 
fniot), • *m, defined for a set of values E (a) having at least one 
limit point a0, not of the set, satisfies the conditions 

* Bromwich's theorem has been generalized to eases where h is non-in­
tegral by Chapman and Ottolenghi. Cf. [3] and Giornale di Matematichs 
di Battaglini, vol. 49 (1911). 
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(A) z»|Ay,(«)|*<z (p>*™y^™ )} 
i^p ' \K a positive constant/ 

(B) lim nfn(a) = 0 
n—>oo 

(C) l im/„(«) = l, 

then the series Hunfn(a) will converge absolutely over E (a) and 
the function F (a) which it defines there will be such that lim F (a) 

a->a0 

Since we have, using the notation (28) for the case h = 1, 

Un = Sn — Sn^i = (Sn — Sn-i) — ($w_i — Sn-2) 

= Sn— 2 $ n - l + Sn-2, 
we obtain, if we set #_2 = #_i = 0, 

m=n m=n 

(30) Z «„ƒ„(«) = £ ( & . - 2 S _ i + 8^)Ua) 

m==n—1 

= S SmA2fm(0i) + Snfn(0>) — #n_i /n+l («) * 
ra=0 

In view of the hypothesis that Hun is summable (CI) we may 
choose a positive constant C such that | S n | < (n+ \)C for 
all values of n. Then, making use of this fact and condition 
(A), we see that the summation on the right hand side of (30) 
approaches a limit over E (a) as n becomes infinite. Making 
use of the property of Sn just employed and condition (B), it 
follows that the remaining two terms on the right hand side 
of (30) approach zero as n becomes infinite. Thus the left 
hand side of (30) approaches a limit also, and we have 

(31) F (a) = £ umfm(a) = £ SmA*fm(a). 
m=0 m=0 

Applying this identity to the series 1 + 0 + 0 + 0 + • • •, we 
obtain, since in this case Sm = m + 1, 

(32) /o(o0 = £ ( m + l ) A 2 / m ( c x ) . 
m=0 

* The notation A2fn(a) is used as an abbreviation for fn(a) — 2fn+1(a) 
+ fn+2(a). 

f If the terms un are functions of a variable and 2un is uniformly sum­
mable throughout a certain interval, the limit of F (a) will be approached 
uniformly over that interval as a approaches <XQ. 
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From (31) and (32) we obtain 

(33) F(a) - Sfo(a) = £ ( - % - , - s) (m + l)A2/m(a). 
m=0 \m -f- L J 

Since 2 ^ n is summable ((71) to £, we may choose an r such that 

(34) € 
< 4K ^m - r ^ 

<i 

e being an arbitrary positive quantity and K the K of condi­
tion (A). Then, r being fixed, we may in view of condition 
(C) choose ô such that 

I m=r-l / o \ I 

(35) E ( —fh j - S ) (m + l ) A ^ ( a ) 

( | a - « o | < 6). 

From (33), (34), condition (A) and (35) we obtain 

\F(a) - Sfo(a)\< e (\a-ao\<8). 
Whence 

lim F(a) = Km Sf0(a) = 8, 

and our theorem is proved. 

§3. Applications to Problems in the Flow of Heat. 

The theorems about convergence factors are of special in­
terest in view of the fact that they have important applica­
tions in connection with certain problems in mathematical 
physics. We will illustrate this by discussing a particular 
problem in the flow of heat. 

We take the case of a finite rod of length w whose ends are 
maintained at zero temperature and whose surface is a non­
conductor. Suppose the cross section of the bar is so small 
that the temperature is sensibly constant throughout it, and 
suppose the initial temperature is given by the function ƒ(#). 
We wish to determine the temperature of any point of the bar 
at any later moment. 

Our problem reduces to the determination of a function of 
x and t, v(x, t), such that 

{a) dt"kdx2 \t>0 ) } 
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(/?) v(0, 0 = 0 = V(T, t) (t > 0), 

(7) lim v(x, t) = f(xx), 

where X\ is any point in whose neighborhood f(x) is contin­
uous. If we assume that v(x, t) may be expressed in the form 
u(x)w(t), we find as particular solutions of (a) 

(36) Ae~kaH sin ax, Be~ka2tcosax (A, B and a constants). 

The second solution does not satisfy the boundary condition 
(j8), so we reject it. The first solution satisfies (jô), but will 
satisfy (7) only in case f(x) = sin ax. If f(x) does not have 
this form, we naturally try to build up a sum of particular solu­
tions of (a) of the form of the first solution in (36), 2<4n 

e-kann s j n GnXf w n i c h w in approach fix) as t approaches + 0. 
This raises the question of the possibility of expressing f(x) 
in the form XAn sin anx. We know from the theory of con­
vergent Fourier series that an arbitrary function of x, sat­
isfying fairly wide conditions, may be expressed in a series of 
this form. But we also know that there exist continuous func­
tions of x whose Fourier development diverges at points 
everywhere dense. 

Our physical intuition tells us that there must be a solution 
of our problem corresponding to any original distribution of 
temperature that is thinkable, and therefore certainly in the 
case of an original distribution that is continuous. Fejér's 
theorem about summability (CI) of the Fourier series, com­
bined with some general theorem about convergence factors 
such as Bromwich's theorem, furnishes the mathematical dem­
onstration that the series formed by introducing convergence 
factors of the type e~knH into the sine series for f(x) is the 
desired solution. 

The proof in detail is relatively brief. We have to show that 
the series 

(37) ] £ An sin nxe~knH ( An = - I f(x) sin nxdx ) 
n=l \ T Jo J 

converges for (t > 0; 0 5Ï x ^ ir), and defines in that region 
a function v(x, t) which satisfies conditions (a), (13) and (7). 
We know from the Riemann-Lebesgue theorem referred to 
above that An approaches zero as a limit as n becomes 
infinite, and therefore the series (37) and the various derived 
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series obtained by differentiating (37) term by term with re­
gard to t or x, will converge uniformly throughout the region 
(t ^ t0 > 0, 0 ^ x ^ 7r). Thus we see that the series (37) 
defines a function v(x, t) that satisfies conditions (a) and (/3). 
I t remains to show that this function also satisfies (7). 

I t is readily seen that v(x, t) will satisfy (7) provided it ap­
proaches ƒ (a?) as a limit as t approaches + 0, uniformly through­
out any interval included in an interval in which f(x) is con­
tinuous. Since, from Fejér's theorem, ^An sin nx is uniformly 
summable throughout any interval included in an interval of 
continuity of f(x), it will follow from Bromwich's theorem that 
v(x, t) approaches ƒ(x) uniformly throughout such an interval, 
in case the convergence factors in (37) satisfy the conditions 
of that theorem. 

That conditions (B) and (C) are satisfied is easily seen. 
Turning to condition (A), we find that A2e~knH is negative 
when n ^ ^l/2kt — 2 and is positive when n ^ 'Sl/2kt. Hence 
this expression cannot change sign more than three times for 
any value of t > 0, and therefore condition (A) will be satis­
fied i we can determine a positive constant such that any se­
quence of terms chosen from XnA2e~knH is less in absolute value 
than this constant for all values of t > 0. 

We have 
n—g 

X) nA2e~knH = pe~kpH - (p - l)g-*(p+«a* 

= p[e~kpH — e~Hp+1)H] — q[e~k^+iy2t 

_ e-Hq+2)H] _|_ e-k(p+l)H _ e-k(q+l)H 

= 2kp{p+d1)te~k^^H - 2kq(q + 02)fcr*<«+».>»* 

_L p-k(p+l)H _ p-k(q+l)H (0 < 6i < 1 
^ V K 0 2 < 2 

Each of the first two terms on the right hand side is less in 
absolute value than the expression 2kye~y for some value of 
y > 0, and since this expression and also e~v remain finite for 
all values of y > 0, it follows that condition (A) is satisfied by 
the convergence factors of (37). Hence the series (37) de­
fines a function v(x, t) which satisfies condition (7), and as we 
saw previously that this same function satisfies (a) and (/?), 
it follows that our physical problem is completely solved. 

• 
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§4. Summability of Other Developments. 

The developments in orthogonal functions of one variable 
that have been most extensively studied are, aside from the 
Fourier series, the developments in Sturm-Liouville func­
tions and in Legendre's and BesseFs functions. The Sturm-
Liouville developments offer less difficulty and yield simpler 
results than the other two. This is due to the fact that the 
differential equations which define Legendre's and Bessel's 
functions have singular points in the interval in which we 
wish to develop an arbitrary function, while the differential 
equation for the Sturm-Liouville functions does not. I t is in 
the neighborhood of these singular points that the develop­
ments in terms of the former functions are more complex in 
their behavior and are more difficult to handle. 

Very complete results with regard to the summability (CI) 
of the Sturm-Liouville developments were obtained by Haar 
in his dissertation [11]. He snowed in fact that the behavior 
of the development of any function having a Lebesgue inte­
gral was the same at any point as the behavior of the cosine 
development of the same function. This result follows readily 
from the following fundamental theorem : 

HAAB'S THEOREM. If we represent by sn(x) and crn(x) the 
sums of the first n + 1 terms of the Sturm-Liouville and cosine 
developments respectively of any function f(x) having a Lebesgue 
integral, we have 

lim [sn(x) — <rn(x)] = 0 

uniformly over the interval (0 ^ x ^ 7r).* 
This theorem enables us to infer from the various results 

obtained with regard to the summability of the Fourier's 
series, corresponding results for the Sturm-Liouville develop­
ments. Thus we obtain not only the analogue of FejêYs the­
orem, as pointed out by Haar, but also the analogues of Le-
besgue's theorem, the Riesz-Chapman theorem, and Hardy's 
theorem. 

The first study of the summability of the developments in 
Legendre's functions was made in 1908 by Fejér who estab­
lished summability {H2), or what is equivalent (C2), at every 

* If the interval of definition of the Sturm-Liouville functions is taken 
as some interval (a, b) differing from the interval (0, TT), we readily reduce 
that case to the above by a change of variable in the differential equation 
and boundary conditions by means of which the functions are defined. 
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point in the interval (— 1 ^ # fS 1) at which the function is 
continuous or has a finite jump, provided the function is abso­
lutely integrable [6]. In 1911 Haar proved the summability 
((71) of the development at interior points of the interval 
(— 1 ^ # f̂  1) for the case where the function developed is 
continuous throughout the whole interval [12]. During the 
same year Chapman independently established summability 
(C,k > 1) for all points of the interval at which the function 
is continuous or has a finite jump, provided the function has 
a Lebesgue integral over the interval. He further obtained 
summability ((7, k > }/Q at the end points and ((7, k > 0) 
at interior points for the case where the function satisfies cer­
tain additional restrictions as to the possession of limited vari­
ation [4]. In 1913 Gronwall obtained summability of the 
same orders with less restriction on the function developed. 
His requirement for the case of interior points is that f(x) and 
(1 — x2)(k/2)~(1/4:)f(x) should be absolutely integrable in (—1, 1). 
For the end points he requires the absolute integrability of 
fix) and a further condition on the function in the neighbor­
hood of the end point opposite to the one for which summability 
is established. This condition, in the case of summability at 
+ 1, demands that 

ƒ + f(x')an((2n+ l)Pn(x)Pn(x'))dx', 

where Pn(x) represents the Legendrian of the nth. order and 
(rn

(k)(un) = Sn
(k)lAn

(k\ SJk) and An
w being defined by equa­

tion (28), should, for some value of ô > 0, approach zero as 
n becomes infinite [10]. 

In the case of the developments in BesseFs functions, sum­
mability ((71) at points in the interval (0 < x < 1) where the 
function developed is continuous or has a finite jump, was 
established by the writer in 1908 [15] for the case of a function 
that is finite and integrable. Summability ((71) for points of 
the same nature in (0 < x ^ 1), was established by W. B. 
Ford in his recent book on divergent series and summability 
[7] for the case of a function f(x) that becomes infinite at a 
finite number of points while 4xf(x) remains absolutely in­
tegrable. Summability ((7, k > 0) at points in the interval 
(0 < x ^ 1) at which the function is continuous or has a 
finite jump for a function f(x) such that ^Ixf(x) has a Lebesgue 
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integral, and summability (C%) for x = 0, provided f(x) has 
a Lebesgue integral, is continuous at the origin and is such that 
| (ƒ(#) ~~ / (0) ) /^ v | is less than a positive constant for some 
value of 7 > Y2 and values of x in the neighborhood of zero, 
have been established by the writer in two papers that have 
been presented to the Society but not as yet published.* 
Thus we see that here as in the case of the developments in 
Legendre's functions, we have to put more restriction on the 
function developed at the point at which the differential 
equation corresponding to the functions in terms of which we 
develop has a singular point; moreover, even then we do not 
get summability of as low an order. The analogy between 
the two cases suggests the existence of a general theoryf with 
regard to the summability of developments in orthogonal 
functions that satisfy linear differential equations with singular 
points, which will include the important features of both cases. 
As far as the writer is aware this general theory is yet to be 
developed. 

§5. The Summability of Double Series. 

All the different methods of summation used in connection 
with simple series can be readily generalized so as to furnish 
methods for summing double series. We shall discuss here 
only the extension of the simplest method, i. e., summation 
by arithmetic means of the sums, to double series. We con­
sider the double series Sa^-, and we set 

i=m,j=n i=m,j=n 

Smn = / j dij) &mn == / J $ij) 

Vmn = Smnl(m + l ) ( l l + 1 ) . 

Then if lim amn exists and is equal to a, we say that the series 

Sa»7 is summable ((71) to the value cr. I t is easy to establish 
the consistency of this definition with the Pringsheim defin­
ition of convergence, for series such that | smn | < C, a positive 
constant, for all values of m and n. Moreover, in that case it 
will also be true that | <rmn | < C f or all values of m and n. 

The theorem of Frobenius for simple series has been ex­
tended to double series by Bromwich and Hardy [2], and Brom-

* For abstracts of these papers, see BULLETIN, vol. 24, pp. 65 and 422. 
t Cf. a principle of generalization laid down by E. H. Moore, Introduc­

tion to a Form of General Analysis, p. 1. 
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wich's theorem for simple series has been extended to double 
series by the writer [16]. Fejer's theorem about the summa-
bility of the ordinary Fourier series has been extended to 
the double Fourier series, for points of continuity* of the 
function developed, by W. H. Young [21] and the writer [16], 
and for points of discontinuity of certain types by the writer 
[17]. These extensions, taken in connection with the exten­
sion of the theorem on convergence factors, enable us to dis­
cuss certain problems in mathematical physics in which double 
Fourier series occur, in a manner analogous to the discussion 
of the problem in the flow of heat considered earlier in the 
paper. Such a discussion may be found in [16]. 

The consideration of the summability of the double Four­
ier series naturally suggests the consideration of the summa­
bility of double series involving other orthogonal functions. 
Furthermore, the extension of the conception of summability 
to double series leads naturally to its further extension to 
triple series and to multiple series of any order. In particular 
we might study the summability of the triple Fourier series 
and thus obtain results having important applications to 
mathematical physics, analogous to those mentioned in con­
nection with the ordinary and double Fourier series. Many 
other special studies readily suggest themselves. Thus we see 
that the work already done on the summability of develop­
ments in orthogonal functions is only a beginning, and that a 
large unexplored field remains to be investigated. 
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MODULAR SYSTEMS. 

The Algebraic Theory of Modular Systems. By F. S. MACAU-
LAY. [Cambridge Tracts in Mathematics and Mathemat­
ical Physics, No. 19.] Cambridge University Press, 1916. 
xiv + 112 pp. 
A MODULAR system is an infinite aggregate of polynomials 

in n variables x±, x2, • • •, xn, defined by the property that if 
F, F\, F2 belong to the system, Fx + F2 and AF also belong to 
the system, where A is any polynomial m X\y x2, ' ' *, xn» 
Hence if Fly F2, • • •, Fk belong to a modular system so also 
does AiF± + A2F2 + • • • + AkFk, where Al9 A2, - -, Ak are 
arbitrary polynomials in xly x2, • • •, xn. In the algebraic the­
ory (to which this tract is devoted) polynomials such as F 
and aF, where a is a quantity not involving the variables, are 
regarded as the same polynomial. 


