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ON A THEOREM OF OSCILLATION. 

BY PROFESSOR WILLIAM F. OSGOOD. 

IN his book on series which represent the potential function 
Bôcher makes use of the first part of the following theorem.* 
All the variables are real. 

THEOREM—Let <p(t) be continuous and monotonie in the inter­
val T ^t < oo, and let <p(f) be always greater numerically than 
a certain positive constant y: 

\<p(t)\>y. 

J f <p(t) < 0, an arbitrary solution of the differential equation 

oscillates an infinite number of times in any interval T ^ T' 
^ t < oo, in which it is considered, the amplitudes of the oscil­
lations remaining finite. 

If, furthermore, <p(t) remains finite, the amplitudes of the oscil­
lations do not become less than a certain positive constant. More­
over, the amplitudes vary monotonically, increasing when <p(t) 
Increases algebraically, and decreasing in the opposite case. 

Bôcher states the theorem without the restriction that <p(t) 
be monotonie, and outlines a suggestive dynamical proof. 
Professor BirkhofFs comment in the foregoing article led me 
to examine critically both theorem and proof. It is easy to 
seef that the theorem is not true under Bôcher's hypotheses. 
He needed the theorem, however, only in the restricted form 
above given. Moreover, he does not state the last paragraph 
of the theorem, this extension not being requisite for his 
purposes. 

As regards this extension, it is not difficult to show that, if 
<p(t) is not required to remain finite, the amplitudes of the os­
cillations may become infinitesimal, when t becomes infinite. 

* Ueber die Reihenentwickelungen der Potentialtheorie; Teubner, 1894, 
p. 178. 

t Cf. infra. 
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Proof. Let 

p = p(t) = - <p(f), pn = 

To integrate the differential equation 

/ i \ d2y 

(1) 2p = - m 
proceed in the usual manner: 

dyd2y dy 
2Ttdë=-2vyJt' 

= P (U 

( A ) 1 - " 2 / ^ + c. 
We will now introduce with Bôcher the dynamical interpre­

tation of the equation (1) as representing Newton's second 
law of motion for a particle of unit mass acted on by a cen­
tral attractive force whose intensity, in absolute units, is py, 
and moving in a right line through the center of force 0. Here, 
t represents the time, and y the distance, measured algebra­
ically, of the particle from 0. 

We will determine the constant of integration for two par­
ticular cases. 

Case A. The particle is projected from 0 in the sense of 
the increasing y with an initial velocity v = c. Then 

(jy-'-Mr"*-
The amplitude h of this half-oscillation is given [by putting 
dy/dt = 0, y = h. Hence 

(2) X h C2 

pydy = J • 
Case B. The particle is released from rest at the point 
= h > 0. Then 

(f)2=2f^-
The velocity c with which it reaches the center of force is 
given by the equation 



218 ON A THEOREM OF OSCILLATION. [ F e b . , 

= 2 I pydy, 
Jo 

which is of the same form as (2). 
Thus both cases lead to the same formal relation (2) be­

tween c and h. 
Consider, now, an arbitrary solution y of (1) in the interval 

T ^ f ^t< oo y and suppose 

y\t=*> o. 

Since the force is attractive and its intensity is at least yy, the 
particle will be pulled in to the center of force, and the given 
solution will vanish at a definite instant* t = to > f. 

I t is sufficient, then, to consider a half-oscillation, i. e., an 
excursion from the center of force back to that point. Let 
the particle be projected at the instant t = t0 from 0 with 
velocity vo in the direction of the positive y's. 

I. Let the monotonie function p(t) decrease. Then 

POO > 7, P(°°) ^ 7-

Corresponding to Case A, we have for the motion away from 
0 to rest 

(S) Sfâîf^-Ï-
Hence 

* The argument can be equally well carried through analytically. The 
curve corresponding to the solution in question, y = f (f), is concave down­
ward, since d2y/dt2 < 0. If f(t') > 0, the curve must have a maximum 
and return to the initial level, y — fit') = b. For, while it is above that 
level, 

m = — py < — yb = — k. 

Consider the parabola for which d2y/dt2 = — k, and which is tangent 
initially to the above curve: 

O) Y = b+f(n(t-n-m-t')>. 
Then the given curve will lie below the parabola so long as it lies above 
the line y = b. For, by Taylor's theorem with the remainder, 

(ii) y = b +ƒ'(*')(* ~ tf) + hf'Mft - t')\ t' < r < L 
Hence 

Y-y = i\py-k}t-T ( * - 0 8 , 
and the bracket is positive so long as y'^b. 

Thus the curve y =/(t) cuts the line y = b a second time, and at this 
point the slope is negative. From now on the curve lies below its tangent 
at this point, till it cuts the axis of t. 
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, s flo s ^° 

Corresponding to Case B, we have for the motion back* to 0 

(4) -j-^lj vydy = ~2-

From (3) and (4) we infer that 

I t thus appears that, as the motion continues, the successive 
values VQ, V2, VA, • • • never increase, and hence hn remains 
finite, since 

, ^ V2n ^ % 

V7 V7 

To show that hn remains greater than a certain positive 
constant, we replace (3) and (4) by the new relations 

(5) -y>îj pydy = Y; 

2 -

Hence, 
h > — %

 > flo 

On writing down the corresponding relations for the further 
half-oscillations and taking v2m always to mean the numerical 
value of dy/dt at 0, 

n > y* 

Vp4
 = Vp 2

 3 

Vin y V2n~2 

we obtain 
rtr-2 

y ^ V2n ^ ^0 
"w+1 = / = /—> 

Afp2n -VPO 

* p, considered as a function of y, is multiple-valued : but in each of the 
cases A and B we are dealing only with a single-valued branch of the func­
tion. 
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and thus the theorem is proven for the case of a decreasing 
function p(t), the corresponding function <p(t) increasing. 

Finally, hn increases monotonically, 

hn+i ^ hn, 
since from (5) and (6) 

T^ == ni = /—» 

etc. 
II. When pit) is an increasing function, the proof is given 

in a similar manner. Instead of (3) and (4) we now have 

2 ' (7) ^ S £wiv 

(8) ?f>=l£wi»-t 
Here, we have 

Hence 
, V V2n ^ VQ 
">n+l ^ ' I ^ / y 

-Vp2n Vpo 
a n d hn r emains finite. 

T o show t h a t hn does no t fall below a posit ive constant , 
wri te 

(9) * f 

n ^ ***** . T 1 j ^ 

Hence 

and thus 

, ^ flo ^ Vo ^ 

-\pi A/7 

«o 

From (7) and (8) it follows that 

etc. 
Vp2 -Vpo 
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Hence 
/ftn+i ^ hn> 

and hn decreases monotonically. 
Physical Interpretation.—A physical interpretation of the 

problem just discussed is given by the small oscillations of a 
simple pendulum, the cord of which, in Case I, is gradually 
lengthened, monotonically, remaining finite; while in Case I I 
the cord is monotonically shortened, never becoming less than 
a positive fixed length. 

The same physical picture is useful, too, for showing that 
the theorem, stated without restriction on <p(f), is false. For 
the way a child swings higher and higher is to lengthen the 
equivalent simple pendulum on the downward arc, and sud­
denly to shorten it as the upward arc begins. 

Bocher's theorem (b), 1. c , namely that, when <p(f) is con­
tinuous and 

0 < g S <p(t) S G> 

there is one and only one solution which remains finite, and 
this vanishes at infinity, is correct without any further re­
striction on the function <p. An elementary analytic proof 
can be given by the aid of the law of the mean and Taylor's 
theorem with the remainder, carried through the term of the 
second order. 

HARVARD UNIVERSITY, 
CAMBRIDGE, MASSACHUSETTS, 

December 8, 1918. 

PROOF OF A PROPERTY OF THE NORM OF A 
CYCLOTOMIC INTEGER. 

BY MR. H. S. VANDIVER. 

(Read before the American Mathematical Society April 27, 1918.) 

KUMMER in his first proof of the general law of reciprocity 
between two ideals in a regular cyclotomic algebraic field 
gave a theorem* which forms a link in his chain of reasoning. 
Let 

* Abhandlungen Berlin Academy, 1859, p . 119, formula (7). 


