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Integral priors for the one way random effects

model

Juan Antonio Cano∗, Mathieu Kessler† and Diego Salmerón‡

Abstract. The one way random effects model is analyzed from the Bayesian
model selection perspective. From this point of view Bayes factors are the key
tool to choose between two models. In order to produce objective Bayes factors
objective priors should be assigned to each model.

However, these priors are usually improper provoking a calibration problem
which precludes the comparison of the models. To solve this problem several
derivations of automatically calibrated objective priors have been proposed among
which we quote the intrinsic priors introduced in Berger and Pericchi (1996) and
the integral priors introduced in Cano et al. (2006). Here, we focus on the use of
integral priors which take advantage of MCMC techniques to produce most of the
times unique Bayes factors. Some illustrations are provided.
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1 Introduction

In model selection problems we consider two models Mi, i = 1, 2, where the data x

are related to the parameter θi by a density fi(x|θi), the default (improper) priors are

πN
i (θi) = cihi(θi), i = 1, 2, and the resulting Bayes factor,

BN
21(x) =

mN
2 (x)

mN
1 (x)

=
c2
∫
Θ2
f2(x|θ2)h2(θ2)dθ2

c1
∫
Θ1 f1(x|θ1)h1(θ1)dθ1

depends on the arbitrary ratio c2/c1. Therefore, we are left with two problems, that is,

first the determination of the ratio c2/c1 is paramount, second the Bayes factor using

πN
i (θi) is not an actual Bayes factor and inference methods based on proper priors

are preferable to those that are not, see Principle 1 in Berger and Pericchi (1996).

An attempt for solving these problems (Berger and Pericchi (1996)), consists in using

intrinsic priors πI
1and πI

2 that are solutions to a system of two functional equations.

Intrinsic priors provide a Bayes factor free of arbitrary constants but whether or not

it is an actual Bayes factor or a limit of actual Bayes factors depends on the model

(Berger and Pericchi, 1996). An additional difficulty when considering intrinsic priors

is that they might be not unique, see Cano et al. (2004) and Cano et al. (2006).
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On the other hand, in Cano et al. (2006) the so-called integral priors for model

selection are proposed as solutions to the system of integral equations

π1(θ1) =

∫

X

πN
1 (θ1 | x)m2(x)dx (1)

and

π2(θ2) =

∫

X

πN
2 (θ2 | x)m1(x)dx, (2)

where x is an imaginary minimal training sample, see Berger and Pericchi (1996), and

mi(x) =
∫
fi(x|θi)πi(θi)dθi, i = 1, 2. The method can be seen as a symmetrization of

the equation that defines the expected posterior prior introduced in Pérez and Berger

(2002). We emphasize that in this system both priors πi, i = 1, 2, are the incognita.

These integral priors are well behaved, i.e. they provide a Bayes factor free of

arbitrary constants which in fact is an actual Bayes factor or a limit of actual Bayes

factors. Moreover, it turns out to be unique in many situations, and it can be shown

that a sufficient condition for the uniqueness is that the Markov chain with transition

density Q(θ′1 | θ1) =
∫
g(θ1, θ

′
1, θ2, x, x

′)dxdx′dθ2, where

g(θ1, θ
′
1, θ2, x, x

′) = πN
1 (θ′1 | x)f2(x|θ2)πN

2 (θ2 | x′)f1(x′|θ1),
is recurrent.

In this paper, we consider the random effects model

M : yij = µ+ ai + eij , i = 1, ..., k; j = 1, ..., n,

where the variables eij ∼ N(0, σ2) and ai ∼ N(0, σ2
a), i = 1, ..., k; j = 1, ..., n, are inde-

pendent. We are interested in the selection problem between models with parameters:

M1 : θ1 = (µ1, σ1, 0) and M2 : θ2 = (µ2, σ2, σa).

The default priors we use to derive the integral priors in equations (1) and (2) are the

reference priors πN
1 (θ1) = c1/σ1 and πN

2 (θ2) = c2σ
−2
2 (1 + (σa/σ2)

2)−3/2. Note that

πN
1 (θ1) is the reference prior for model M1 and πN

2 (θ2) is the reference prior for model

M2 for the ordered group {σa, (σ, µ)} when n = 1. We use the prior πN
2 (θ2) for the sake

of simplicity to keep the paper within a methodological level. Under these assumptions

the sample densities for the two models are:

f1(y |θ1) =

k∏

i=1

Nn(yi | µ11n, σ
2
1In)

and
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f2(y |θ2) =

k∏

i=1

Nn(yi | µ21n, σ
2
2In + σ2

aJn),

where yi = (yi1, ..., yin)′, y = (y1, ...,yk)′, 1n = (1, ..., 1)′, In is the identity matrix of

dimension n and Jn the square matrix of dimension n with all the entries equal to one.

The rest of the paper is organized as follows. In section 2 the Bayes factor for the

default priors is obtained. Integral and intrinsic priors for the one way random effects

model are derived in section 3, where it is noticed that intrinsic priors are not unique.

In section 4 we address the problem of the uniqueness of integral priors through the

consideration of its associated Markov chain. In section 5 some illustrations are provided

and finally, the conclusions are stated in section 6.

2 Bayes factors for the default priors

Let S be the total sum of squares,
∑k

i=1

∑n
j=1(yij − y)2, decomposed as S = S1 + S2,

where S1 =
∑k

i=1

∑n
j=1(yij − yi)

2 and S2 =
∑k

i=1 n(yi − y)2. The marginal mN
1 (y) is

obtained as

mN
1 (y) =

∫
f1(y |θ1)πN

1 (θ1)dθ1 =

∫ k∏

i=1

Nn(yi | µ11n, σ
2
1In)

c1
σ1
dµ1dσ1.

Applying theorem A.2.2 in Moreno and Torres (2004) it is straightforward to see that

mN
1 (y) =c1

(Sπ)−
nk−1

2

2
(nk)−

1
2 Γ

(
nk − 1

2

)
.

On the other hand, mN
2 (y) is given by

∫ k∏

i=1

Nn(yi | µ21n, σ
2
2In + σ2

aJn)c2σ
−2
2 (1 + (σa/σ2)

2)−3/2dµ2dσ2dσa,

that, applying theorem A.2.3 in Moreno and Torres (2004) with Ai = σ2
2In + σ2

aJn and

therefore A−1
i = σ−2

2 (σ2
2 + nσ2

a)−1
[
(σ2

2 + nσ2
a)In − σ2

aJn

]
, can be written as

mN
2 (y) = c2(2π)−

nk−1
2 (nk)−

1
2 ·

·
∫
σ
−(n−1)k
2 (σ2

2 + nσ2
a)−

k−1
2 exp



−

S − nσ2
aS2

σ2
2+nσ2

a

2σ2
2





(1 + (σa/σ2)
2)−3/2

σ2
2

dσ2dσa.

Then using the change of variables σa/σ2 = u and σ2 = v we obtain

mN
2 (y) =c2(2π)−

nk−1
2 (nk)−

1
2 2

nk−3
2 Γ

(
nk − 1

2

)
S−nk−1

2 ·
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·
∫

(1 + nu2)−
k−1
2

(
1 − nu2

1 + nu2

S2

S

)−nk−1
2

(1 + u2)−
3
2 du.

The following expression is finally obtained for the Bayes factor BN
21(y)

BN
21(y) =

c2
c1

∫ ∞

0

(1 + nu2)−
k−1
2

(
1 − nu2

1 + nu2

S2

S

)−nk−1
2

(1 + u2)−
3
2 du, (3)

which unfortunately as we previously stated depends on the arbitrary ratio c2/c1. To

avoid this indeterminacy we will use integral and intrinsic priors instead of the original

default priors.

3 Integral and intrinsic priors

To derive the integral and the intrinsic priors we first need an imaginary minimal training

sample. According to the above expression for mN
1 (y) and mN

2 (y) we note that when

n = 1 and k = 2, mN
1 (y), mN

2 (y) >0, and therefore the vector y(l) = (y11, y21)
′ is a

minimal training sample; moreover, in this case BN
21(y(l)) =1 and therefore mN

1 (y(l)) =

mN
2 (y(l)). Consequently, see subsection 3.4 in Cano et al. (2006), {πN

1 , π
N
2 } are integral

priors and they are well calibrated when c1 = c2.

Likewise, in Moreno et al. (1998) the following intrinsic priors {πI
1 , π

I
2} are chosen

πI
1(θ1) = πN

1 (θ1)

πI
2(θ2) = πN

2 (θ2)Ey(l)|θ2
{BN

12(y(l))},
from where we deduce that {πN

1 , π
N
2 } are intrinsic priors and they are well calibrated

when c1 = c2 too. Whether or not the integral and the intrinsic priors are unique is a

matter of, at least, theoretical interest.

In the case where model M1 is nested in model M2, the system of functional equa-

tions mentioned in section 1 reduces to a single equation with two incognita and it is a

well known result in the literature on intrinsic priors that they are not generally unique.

Nevertheless, Moreno et al. (1998) provides a limiting procedure for choosing the above

pair of sensible intrinsic priors that essentially consists in fixing πN
1 (θ1) as the intrin-

sic prior for the simpler model obtaining πI
2 (θ2) from the above mentioned functional

equation as the intrinsic prior for model M2. However, in Cano et al. (2006), it can be

seen that integral priors are unique provided its associated Markov chain is recurrent.

4 Markov chain associated with the integral priors

The transition density of the associated Markov chain, θ1 → θ′1, can be described in a

simple way. The posterior distribution πN
1 (θ1|y(l)) is obtained as

πN
1 (σ1|y(l)) ∝ σ−2

1 exp

(
− (y11 − y12)

2

2σ2
1

)
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and

πN
1 (µ1|σ1,y(l)) = N(µ1|y(l), σ2

1/2),

where y(l) is the average of the components of y(l).

To obtain the posterior distribution πN
2 (θ2|y(l)) first note that

πN
2 (µ2|σa, σ2,y(l)) = N(µ2|y(l), (σ2

2 + σ2
a)/2)

and

πN
2 (σ2, σa|y(l)) ∝ σ−2

2 (1 + (σa/σ2)
2)−3/2(σ2

a + σ2
2)−1/2 exp

(
− (y11 − y12)

2

4(σ2
2 + σ2

a)

)
,

then the random variables u, z and ε defined by the equations

σa

σ2
= u, σ2

2 + σ2
a =

(y11 − y12)
2

4
z

and

µ2 = y(l) +
1

2
ε
√
σ2

2 + σ2
a

have densities q1(u) = (1 + u2)−3/2, q2(z) ∝ z−3/2e−1/z and ε ∼ N(0, 1). Therefore the

simulation from πN
2 (θ2|y(l)) can be done simulating u, z and ε and solving the above

equations.

In summary, combining the transitions θ1 → y(l)′ → θ2 → y(l) → θ′1 we obtain that

µ′
1 = µ1 + σ1α

and

σ′
1 = σ1β,

where

β =

√
w

4
| ε3 − ε4 | √z | ξ1 − ξ2 |,

α = ξ +
ε2
√
z

2
√

2
| ξ1 − ξ2 | +

ε3 + ε4
2

√
z | ξ1 − ξ2 | /2 + βε1/

√
2

and ξ1, ξ2, ε1, ε2, ε3, ε4 ∼ N(0, 1), u ∼ q1(u) = (1+u2)−3/2, z ∼ q2(z) ∝ z−3/2e−1/z and

w ∼ p(w) ∝ w−3/2e−1/w.

Regarding the autonomous chain (σn), (logσn) is a recurrent random walk since

E(logβ) = 0 and E((log β)2) < +∞. Although, for the whole chain (µn, σn), we have

not been able to establish recurrence so far because the second order moments for α and

β are not finite. However, under some assumptions commonly satisfied the recurrence

of the chain can be established and then the integral priors are unique. This is done in

the following proposition.
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Proposition 1 Let {π1(θ1), π2(θ2)} be integral priors. Suppose that the integral
prior π1(θ1) = ϕ(σ1) does not depend on µ1, then the integral priors are unique up to a
multiplicative constant.

Proof

It follows, see Cano et al. (2006), that π1(θ1)dθ1 is an invariant σ-finite measure for

the Markov chain

µ′
1 = µ1 + σ1α

σ′
1 = σ1β.

If p2(β)p1(α|β) denotes the density function of (α, β) then the transition densityQ(θ′1|θ1)
is

1

σ2
1

p2

(
σ′

1

σ1

)
p1

(
µ′

1 − µ1

σ1

∣∣∣σ
′
1

σ1

)

and it follows from the invariance property that

ϕ(σ1) =

∫
1

σ1
p2

(
σ′

1

σ1

)
p1

(
r
∣∣∣σ

′
1

σ1

)
ϕ(σ′

1)drdσ
′
1 =

∫
1

σ1
p2

(
σ′

1

σ1

)
ϕ(σ′

1)dσ
′
1.

Therefore ϕ(σ1)dσ1 is an invariant σ-finite measure for the recurrent Markov chain

σ′
1 = σ1β meaning that ϕ(σ1), and therefore π1(θ1), have to be proportional to 1/σ1,

and the proposition is proved.

Remark 1. Note that if the integral prior π1(θ1) can be written as π1(θ1) =

ϕ1(µ1|σ1)ϕ2(σ1) with ∫
ϕ1(µ1|σ1)dµ1 = 1, ∀σ1 > 0,

then, from the invariance property it follows that

ϕ2(σ1) =

∫
1

σ1
p2

(
σ′

1

σ1

)
ϕ2(σ

′
1)dσ

′
1

and again ϕ2(σ1), and therefore π1(θ1), have to be proportional to 1/σ1 and the integral
priors are unique up to a multiplicative constant.

5 Illustrations

In the context of variance components problems, two popular data sets can be found

in Box and Tiao (1973), pages 246 and 247, respectively, where a parameter estimation

approach is used. We compute the Bayes factors for the two sets of data, using equation

(3), with c1 = c2.

The first set of data in Box and Tiao (1973) concerns batch to batch variation in

yields of dyestuff. The data arise from a balanced experiment where the total product

yield was determined for 5 samples from each of 6 randomly chosen batches of raw

material. The object of the study was to determine the relative importance of between
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batch variation versus variation due to sampling and analytic errors. To illustrate the

difficulty of the analysis and the need for objective procedures, we have explored the

sensitivity of the Bayes factor to the choice of hyperparameters of proper priors. More

concretely, assume we choose the following conventional proper priors:

M1 : (µ1, σ
2
1) ∼ N (ȳ, σ2

0) ⊗ IG(α, β),

M2 : (µ2, σ
2
2 , σ

2
a) ∼ N (ȳ, σ2

0) ⊗ IG(α, β) ⊗ IG(αa, βa),

where IG(α, β) denotes the Inverse Gamma distribution with mean β/(α − 1) and

variance β2/((α − 1)2(α − 2)). Fixing α = 20, αa = 13, βa = 20000 and varying β, we

find the following numerical values for the associated Bayes factors when σ0 → +∞:

β × 10−3 25 30 35 40 45 50

B21 2.99 1.90 1.32 0.98 0.77 0.63

It turns out the Bayes factor is very sensitive to the choice of the hyperparameters

and may lead to opposite conclusions.

The Bayes factor when the integral priors described in this paper are chosen is found

to be B21 = 10.0179, which means evidence in favor of M2.

We also computed for this data set the Bayes factor BWG
21 when the priors suggested

in Westfall and Gönen (1996) are chosen. An expression similar to (3) is obtained and

the numerical value is found to be BWG
21 = 11.9.

The second set of data are simulated data with µ2 = 5, σ2 = 4, σa = 2, k = 6 and

n = 5. For these data the resulting Bayes factor is B21 = 0.3671, which means evidence

in favor of model M1 despite the fact that the data were generated from model M2.

Notice that, for these data, we find BWG
21 = 0.17. An explanation for the misbehavior

of these Bayes factors is that the standard deviation of the error σ2 is twice as big as

the standard deviation σa of the random effects, which, together to the small number

of groups, makes difficult the detection of the random effects. A graphical exploration

of the data set, see Figure 1, confirms that even if the groups centers are different the

intragroup variation is too big to allow detection. We also have tested the normality

(Shapiro-Wilk test) of these data and the resulting p-value is 0.735. All these results

are in agreement with the results in Box and Tiao (1973), where it is found that the

posterior density for σa has its mode at the origin and is monotonically decreasing.

6 Conclusions

The methodology of integral priors introduced in Cano et al. (2006) has been applied

to solve the one way random effects model from a Bayesian perspective. The main

conclusion is that the default priors
{
πN

1 , π
N
2

}
are both integral priors and intrinsic

priors and they are well ”calibrated” when c1 = c2. This allows to use them to compute

the Bayes factor which has been done with two sets of data.
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Figure 1: Boxplot of the simulated data in Box and Tiao (1973), p 247: the intra-group

variability overwhelms the known inter-group variability.

The Markov chain associated when we use this methodology provides some insight on

how integral and intrinsic (in this case) priors work out. Finally, we note that intrinsic

priors are not unique while under some commonly satisfied assumptions the integral

priors are unique. However, the question of whether or not the integral priors for this

problem are unique is still an open problem.
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