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Comparing Normal Means: New Methods for

an Old Problem

José M. Bernardo∗ and Sergio Pérez†

Abstract. Comparing the means of two normal populations is an old problem
in mathematical statistics, but there is still no consensus about its most appro-
priate solution. In this paper we treat the problem of comparing two normal
means as a Bayesian decision problem with only two alternatives: either to accept
the hypothesis that the two means are equal, or to conclude that the observed
data are, under the assumed model, incompatible with that hypothesis. The com-
bined use of an information-theory based loss function, the intrinsic discrepancy

(Bernardo and Rueda 2002), and an objective prior function, the reference prior

(Bernardo 1979; Berger and Bernardo 1992), produces a new solution to this old
problem which has the invariance properties one should presumably require.

Keywords: Bayes factor, BRC, comparison of normal means, intrinsic discrepancy,
precise hypothesis testing, reference prior, two sided tests.

1 Introduction

1.1 Problem statement

Comparing the expected values µx and µy of two normal populations N(x |µx, σx)

and N(y |µy, σy), given the information provided by two independent random samples,

x = {x1, . . . , xn} and y = {y1, . . . , ym} of possibly different sizes, is surely one of the

oldest non-trivial problems in mathematical statistics.

In this paper we formally treat the problem of comparing two normal means as a

decision problem with only two alternatives: either a0: to accept the (null) hypothesis

that the two means are equal, and hence work as if µ1 = µ2; or a1: to conclude that,

under the assumed model, the observed data are incompatible with such hypothesis.

Within this framework, the solution obviously depends on both the loss function and

the prior distribution. In Section 2, a number of options are analyzed, and it is ar-

gued that the combined use of an invariant information-theory based loss function, the

intrinsic discrepancy (Bernardo and Rueda 2002), and an objective prior function, the

reference prior (Bernardo 1979; Berger and Bernardo 1992) may be expected to produce

an appropriate solution, which is invariant under reparametrization. In Section 3, the

problem of comparing two normal means with common variance is solved from this point

of view, and its extension to the case of possibly different variances is briefly discussed.
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1.2 Notation

Probability distributions are described through their probability density functions, and

no notational distinction is made between a random quantity and the particular values

that it may take. Bold italic roman fonts are used for observable random vectors (typi-

cally data) and bold italic greek fonts for unobservable random vectors (typically pa-

rameters); lower case is used for variables and upper case calligraphic for their domain

sets. The standard mathematical convention of referring to functions, say fz(·) and

gz(·), respectively by f(z) and g(z) is often used. Thus, the conditional probability

density of observable data given ω is represented by either pz(· |ω) or p(z |ω), with

p(z |ω) ≥ 0, and
∫

Z
p(z |ω) dz = 1, and the posterior density of a non-observable pa-

rameter vector θ ∈ Θ given data z is represented by either πθ(· | z) or π(θ | z), with

π(θ | z) ≥ 0 and
∫
Θ π(θ | z) dθ = 1. Density functions of specific distributions are de-

noted by appropriate names. In particular, if x has a normal distribution with mean µ
and standard deviation σ, its probability density function will be denoted by N(x |µ, σ);

if λ has a gamma distribution with mean α/β and variance α/β2, its density function

will be denoted by Ga(λ |α, β); if t has a noncentral Student t distribution with non

centrality parameter δ and ν degrees of freedom, its density function will be denoted by

NcSt(t | δ, ν).
In the problem considered, available data z typically consist of two random samples

z = {x,y}, x = {x1, . . . , xn} and y = {y1, . . . , ym}, of possibly different sizes n and m,

respectively drawn from N(x |µx, σx) and N(y |µy, σy). Standard notation is used for the

sample means and variances, respectively denoted by x̄ =
∑n

j=1 xj/n, ȳ =
∑m

j=1 yj/m

and s2x =
∑n

j=1(xj − x̄)2/n, s2y =
∑m

j=1(yj − ȳ)2/m.

2 Structure of the decision problem

2.1 Precise hypothesis testing

Assume that available data z have been generated from an unknown element of the

family of probability distributions for z ∈ Z , M = {pz(· |φ,ω), φ ∈ Φ, ω ∈ Ω},
and suppose that it is desired to evaluate whether or not these data may be judged to

be compatible with the (null) hypothesis H0 ≡ {φ = φ0}. This may be treated as a

decision problem with only two alternatives:

{
a0 : to accept H0 and work as if φ = φ0

a1 : to claim that the observed data are incompatible with H0

(1)

Notice that, with this formulation, H0 is generally a composite hypothesis, described

by the family of probability distributions M0 = {pz(· |φ0,ω0), ω0 ∈ Ω}, for z ∈ Z .

Simple nulls are included as a particular case where there are no nuisance parameters.

The foundations of decision theory (see e.g., Bernardo and Smith 1994, Ch. 2,

and references therein) dictate that to solve this decision problem utility functions

u{ai, (φ,ω)} for the two alternatives a0 and a1, and a joint prior distribution π(φ,ω)
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for the unknown parameters (φ,ω) must be specified, and that H0 should be rejected

if, and only if, the posterior expected utility from rejecting, u(a1 | z), is larger than the

posterior utility from accepting, u(a0 | z), that is if, and only if,

u(a1 | z) − u(a0 | z) =

∫

Φ

∫

Ω

[u{a1, (φ,ω)} − u{a0, (φ,ω)}] π(φ,ω | z) dφ dω > 0,

where, using Bayes theorem, π(φ,ω | z) ∝ p(z |φ,ω)π(φ,ω) is the joint posterior which

corresponds to the prior π(φ,ω). Thus, only the difference u{a1, (φ,ω)}−u{a0, (φ,ω)},
must be specified. This difference may usefully be written as

u{a1, (φ,ω)} − u{a0, (φ,ω)} = `{φ0, (φ,ω)} − u0,

where `{φ0, (φ,ω)} may be interpreted (Bernardo and Rueda 2002) as the non-negative

terminal loss suffered by accepting φ = φ0 given (φ,ω), and where u0 > 0 is the utility

of accepting H0 when it is true. The corresponding Bayes criterion is to reject H0 if,

and only if,

t(φ0 | z) =

∫

Θ

∫

Ω

`{φ0, (φ,ω)}π(φ,ω | z) dφ dω > u0,

that is, if the posterior expected loss, the test statistic t(φ0 | z) is large enough.

2.2 The intrinsic discrepancy loss

As one would expect, the optimal decision depends heavily on the particular loss func-

tion `{φ0, (φ,ω)} which is assumed to describe the preferences of the decision maker.

Specific problems may require specific loss functions, but conventional loss functions

may be used to proceed when one does not have any particular application in mind.

2.2.1 Conventional loss functions

A common conventional loss function is the step loss function induced by assuming step

utility functions for both actions of the form u{a1, (φ,ω)} = a if φ 6= φ0, and zero

otherwise, and u{a0, (φ,ω)} = b if φ = φ0, and zero otherwise. Whatever the loss

function might be, one may (or may not) hold a sharp prior which makes values of φ

close to the null value φ0 comparatively very likely. Notice, however, that a step loss

function forces the use of a non-regular “spiked” proper prior which places a lump of

probability p0 > 0 at φ = φ0, for otherwise the optimal decision would always be to

reject H0. This leads to rejecting H0 if (and only if) its posterior probability is too small

or, equivalently, if (and only if) the Bayes factor against H0, is sufficiently large. This

will be appropriate wherever preferences are well described by a step loss function, and

prior information is available to justify an informative, spiked prior. It may be argued

that many scientific applications of precise hypothesis testing fail to meet one or both

of these conditions.

Another example of a conventional loss function is the ubiquitous quadratic loss

function. With a quadratic loss function, H0 should be rejected if (and only if) the
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posterior expected Euclidean distance of φ0 from the true value φ is too large. In

marked contrast with step loss functions, the quadratic loss function (as many other

continuous loss functions) may safely be used with (typically improper) ‘noninformative’

priors. However, most conventional continuous loss functions, such as the quadratic

loss, depend dramatically on the particular parametrization used. Yet, since the model

parametrization is arbitrary, one would expect that for any one-to-one function ψ(φ),

the conditions under which φ = φ0 must be rejected should be precisely the same as

the conditions under which ψ = ψ(φ0) must be rejected. This requires the use of a loss

function which is invariant under one-to-one reparametrizations.

2.2.2 The intrinsic discrepancy loss function

Bernardo and Rueda (2002) and Bernardo (2005b) argue that an invariant loss function

which is appropriate for general use in hypothesis testing is the intrinsic discrepancy,
δz{H0, (φ,ω)}, defined as the minimum (Kullback-Leibler) logarithmic divergence be-

tween the distribution pz(· |φ,ω) which is assumed to have generated the data, and

the family of distributions F0 ≡ {pz(· |φ0,ω0),ω0 ∈ Ω} which corresponds to the

hypothesis H0 ≡ {φ = φ0} to be tested. Formally,

δz{H0, (φ,ω)} ≡ inf
ω0∈Ω

κ∗z{pz(· |φ0,ω0), pz(· |φ,ω)}, (2)

κ∗z{pz(·), qz(·)} ≡ min{κ{pz(·) | qz(·)}, κ{qz(·) | pz(·)}}, (3)

κ{qz(·) | pz(·)} ≡
∫

Z

pz(z) log
pz(z)

qz(z)
dz. (4)

The intrinsic discrepancy function κ∗z{pz(·), qz(·)} defined by (3), a measure of the

disparity between the distributions pz(·) and qz(·), has many attractive properties. It is

symmetric, non-negative, and it is zero if, and only if, pz(z) = qz(z) almost everywhere.

It inherits the additive property of the logarithmic divergence, so that it is additive
under independent observations; thus if z = {x1, . . . , xn}, pz(z) =

∏n
i=1 px(xi), and

qz(z) =
∏n

i=1 qx(xi), then

κ∗z{pz(·), qz(·)} = n κ∗x{px(·), qx(·)}.

Thus, the intrinsic loss to be suffered by deciding that a random sample of size n was

generated from a particular distribution is n times the intrinsic loss to be suffered by

deciding that a single observation was generated from that distribution.

The intrinsic discrepancy loss (2) is invariant under one-to one transformations of

the parameters. Thus, for any one-to-one function ψ = ψ(φ) the intrinsic loss suffered

from assuming that φ = φ0 is precisely the same as that of assuming that ψ = ψ(φ0).

Moreover, one may equivalently work with sufficient statistics: if t = t(z) is a sufficient

statistic for pz(· |φ,ω), then δz{H0, (φ,ω)} = δt{H0, (φ,ω)}. The intrinsic loss may

be safely be used with improper priors.

If, as it is usually the case, the parameter space Φ×Ω is convex, the two minimization



José M. Bernardo and Sergio Pérez 49

procedures in (2) and (3) may be interchanged (Juárez 2005) to have

δz{H0, (φ,ω)} (5)

= min

{
inf
ω0∈Ω

κ{pz(· |φ0,ω0) | pz(· |φ,ω)}, inf
ω0∈Ω

κ{pz(· |φ,ω) | pz(· |φ0,ω0)}
}

which is typically easier to compute than direct evaluation of (2) and (3).

As it is apparent from its definition, the intrinsic loss δz{H0, (φ,ω)} is the minimum
expected log-likelihood ratio (under repeated sampling) against H0. This provides a

direct calibration for its numerical values; thus, intrinsic loss values of about log(10)

indicate some evidence against H0, while intrinsic loss values of about log(100) indicate

rather strong evidence against H0.

2.3 The Bayesian Reference Criterion (BRC)

Any statistical procedure depends on the accepted assumptions, and those typically

include many subjective judgements. If has become standard, however, to term ‘objec-

tive’ any statistical procedure whose results only depend on the quantity of interest, the

model assumed and the data obtained. From this point of view, frequentist procedures

are declared to be ‘objective’, and this has often be used as an argument against Bayesian

solutions. Objective Bayesian solutions in this sense require the use of objective prior

functions, that is formal priors which only depend on the quantity of interest and on

the model assumed. See Berger (2006) (and ensuing discussion) for a recent analysis

of this often polemical issue. The reference prior (Bernardo 1979; Berger and Bernardo

1992; Bernardo and Smith 1994; Bernardo 2005a), loosely defined as that prior which

maximizes the missing information about the quantity of interest, provides a general

solution to the problem of specifying an objective prior.

2.3.1 The intrinsic statistic

The Bayesian reference criterion (BRC) is the normative Bayes solution to the decision

problem of hypothesis testing described in Section 2.1 which corresponds to the use of

the intrinsic loss function and the reference prior function.

Given model M = {pz(· |φ,ω), φ ∈ Φ, ω ∈ Ω}, this formally means to reject the

hypothesis H0 ≡ {φ = φ0} if, and only if

d(H0 | z) =

∫ ∞

0

δ π(δ | z) dδ > δ0, (6)

where d(H0 | z), termed the intrinsic (test) statistic, is the reference posterior expec-

tation of the intrinsic loss δz{H0, (φ,ω)} defined by (2), and where δ0 is a context

dependent positive utility constant, the largest acceptable average log-likelihood ratio
against H0 under repeated sampling. For scientific communication, δ0 could convention-

ally be set to δ0 = log(100) ≈ 4.6.
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3 Normal means comparison

3.1 Problem statement in the common variance case

Let available data z = {x,y}, x = {x1, . . . , xn}, y = {y1, . . . , ym}, consist of two ran-

dom samples of possibly different sizes n and m, respectively drawn from N(x |µx, σ)

and N(y |µy, σ), so that the assumed model is

p(z |µx, µy, σ) =
∏n

i=1
N(xi |µx, σ)

∏m

j=1
N(yj |µy, σ). (7)

It is desired to test H0 ≡ {µx = µy}, that is, whether or not these data could have been

drawn from some member of the family of probability distributions

M0 ≡ {p(z |µ0, µ0, σ0), µ0 ∈ <, σ0 > 0}
p(z |µ0, µ0, σ0) =

∏n

i=1
N(xi |µ0, σ0)

∏m

j=1
N(yj |µ0, σ0). (8)

To implement the BRC criterion described above one should:

1. Compute the intrinsic discrepancy δ{H0, (µx, µy, σ)} between the family of distri-

butions M0 which define the hypothesisH0 and the assumed model p(z |µx, µy, σ).

2. Determine the reference joint prior πδ(µx, µy, σ) of the three unknown parameters

when δ is the quantity of interest.

3. Derive the relevant intrinsic statistic, that is the reference posterior expectation

d(H0 | z) =
∫∞

0 δ πδ(δ | z) dδ of the intrinsic discrepancy δ{H0, (µx, µy, σ)}.

3.2 The intrinsic loss

Logarithmic divergences. The (Kullback-Leibler) logarithmic divergence of a normal

distribution N(x |µ2, σ2) from another normal distribution N(x |µ1, σ1) is given by

κ{µ2, σ2 |µ1, σ1} ≡ κ{N(x |µ2, σ2) |N(x |µ1, σ1)}

≡
∫ ∞

−∞

N(x |µ1, σ1) log
N(x |µ1, σ1)

N(x |µ2, σ2)
dx

=
1

2

(
µ2 − µ1

σ2

)2

+
1

2

(
σ2

1

σ2
2

− 1 − log
σ2

1

σ2
2

)
. (9)

This is a nonnegative quantity which is zero if, and only if, µ1 = µ2 and σ1 = σ2.

Using (9) and the additive property of the logarithmic divergences, the logarithmic

divergence of p(z |µ0, µ0, σ0) from p(z |µx, µy, σ) is

κ{pz(· |µ0, µ0, σ0) | pz(· |µx, µy, σ)}
= n κ{µ0, σ0 |µx, σ} +m κ{µ0, σ0 |µy, σ}

=
n

2

(
µ0 − µx

σ0

)2

+
m

2

(
µ0 − µy

σ0

)2

+
n+m

2

(
σ2

σ2
0

− 1 − log
σ2

σ2
0

)
. (10)
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Similarly, the logarithmic divergence of p(z |µx, µy, σ) from p(z |µ0, µ0, σ0) is

κ{pz(· |µx, µy, σ) | pz(· |µ0, µ0, σ0)}
= n κ{µx, σ |µ0, σ0} +m κ{µy, σ |µ0, σ0}

=
n

2

(
µ0 − µx

σ2

)2

+
m

2

(
µ0 − µy

σ2

)2

+
n+m

2

(
σ2

0

σ2
− 1 − log

σ2
0

σ2

)
. (11)

The minimum of the logarithmic divergence (11) for all µ0 ∈ < and σ0 > 0 is reached

when µ0 = (nµx +mµy)/(n+m) and σ0 = σ, and substitution yields

inf
µ0∈<, σ0>0

κ{pz(· |µ0, µ0, σ0) | pz(· |µx, µy, σ)}

=
nm

2(m+ n)

(
µx − µy

σ

)2

=
h(n,m)

4
θ2 (12)

where
1

h(n,m)
=

1

2

(
1

n
+

1

m

)
, h(n,m) =

2nm

m+ n
, θ =

µx − µy

σ
,

which only depends on h(n,m), the harmonic mean of the two sample sizes, and θ2, the

squared standardized distance between the two means.

Similarly, the minimum of the logarithmic divergence (10) for all µ0 ∈ < and σ0 > 0

is reached when

µ0 =
nµx +mµy

n+m
, σ2

0 = σ2 +
mn

(m+ n)2
(µx − µy)

2 ,

and substitution yields

inf
µ0∈<, σ0>0

κ{pz(· |µx, µy, σ) | pz(· |µ0, µ0, σ0)}

=
n+m

2
log

[
1 +

mn

(n+m)2

(
µx − µy

σ

)2
]

=
n+m

2
log

[
1 +

h(n,m)

2(n+m)
θ2
]
. (13)

3.2.1 The intrinsic discrepancy loss function

Since the first minimized logarithmic discrepancy (Equation 12) may be written as

[(m + n)/2][h(n,m)/(2(m + n))] θ2 and, for all positive w, log(1 + w) < w, the value

of the second minimized logarithmic discrepancy (Equation 13) is always smaller than

the first, and therefore, using (5), the required intrinsic loss function is given by (13),

so that

δz{H0, (µx, µy, σ)} =
n+m

2
log

[
1 +

h(n,m)

2(n+m)
θ2
]
, (14)
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a logarithmic transformation of the standardized distance θ = (µx −µy)/σ between the

two means. The intrinsic loss (14) increases linearly with the total sample size n+m,

and it is essentially quadratic in θ in a neighbourhood of zero, but it becomes concave

for | θ | > (k+1)/
√
k, where k = n/m is the ratio of the two sample sizes, an eminently

reasonable behaviour which conventional loss functions do not have. For equal sample

sizes, m = n, this reduces to

δz{H0, (µx, µy, σ)} = n log

[
1 +

1

4

(
µx − µy

σ

)2
]

= n log

[
1 +

θ2

4

]
(15)

a linear function of the sample size n, which behaves as θ2/4 in a neighbourhood of the

origin, but becomes concave for | θ | > 2.

3.3 The intrinsic statistic

Reference analysis. The intrinsic loss δz{H0, (µx, µy, σ)} (Equation 14) is a simple piece-

wise invertible function of θ, the standardized difference of the means. Consequently,

the required objective prior is the joint reference prior function πθ(µx, µy, σ) when the

standardized difference of the means, θ = (µx − µy)/σ, is the quantity of interest.

This may simply be obtained using the orthogonal parametrization {θ, ω1, ω2}, with

ω1 = σ
√

2(m+ n)2 +mnθ2, ω2 = µy +
n

n+m
σ θ.

Indeed, Fisher’s information matrix in this parametrization is

F (θ, ω1, ω2) =
2(m+ n)2 +mnθ2

m+ n




2mn(m+n)2

(2(m+n)2+mnθ2)2 0 0

0 ω−2
1 0

0 0 (m+ n)2ω−2
1


 (16)

and, therefore (see Bernardo and Smith 1994, Th. 5.30), the reference prior in that

parametrization is πθ(θ, ω1, ω2) = π(ω2 | θ, ω1)π(ω1 | θ)π(θ), where π(ω2 | θ, ω1) = 1,

π(ω1 | θ) = ω−1
1 , and π(θ), the marginal reference prior for the quantity of interest is

π(θ) =

(
1 +

mn

2(m+ n)2
θ2
)−1/2

=

(
1 +

h(n,m)

4(m+ n)
θ2
)−1/2

. (17)

In the original parametrization this becomes

πθ(µx, µy, σ) =
1

σ2

(
1 +

h(n,m)

4(m+ n)

(µx − µy

σ

)2
)−1/2

. (18)

Using Bayes theorem to obtain the joint reference posterior

πθ(µx, µy, σ | z) ∝ p(z |µx, µy, σ)πθ(µx, µy, σ),
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changing variables to {θ, µy, σ}, and integrating out µy and σ, produces the (marginal)

reference posterior density of the quantity of interest

π(θ | z) = π(θ | t,m, n) ∝
(

1 +
h(n,m)

4(m+ n)
θ2
)−1/2

NcSt

(
t
∣∣∣
√
h(n,m)

2
θ, n+m− 2

)
(19)

where

t =
x̄− ȳ

s
√

2/h(n,m)
, s2 =

n s2x +ms2y
n+m− 2

, (20)

and NcSt(· |λ, ν) is the density of a noncentral Student distribution with noncentrality

parameter λ and ν degrees of freedom. The reference posterior (19) is proper provided

n ≥ 1, m ≥ 1, and n+m ≥ 3. For further details on this derivation, see Pérez (2005).

Notice that (19) has the form π(θ | z) ∝ π(θ) p(t | θ). Indeed, the sample mean dif-

ference x̄ − ȳ has a normal sampling distribution with mean µx − µy and variance

h(n,m)σ2/2, the ratio (n+m−2)s2/σ2 has an independent χ2 distribution with n+m−2

degrees of freedom and, therefore, t has a noncentral Student t sampling distribution

with non-centrality parameter
√
h(n,m)/2 θ and n +m − 2 degrees of freedom. This

result was to be expected, since the posterior distribution of θ only depends on the data

through t and the sample sizes, and reference analysis in known to be consistent under

marginalization. It may be verified that the naive prior π(µx, µy, σ) = σ−1 produces a

marginalization paradox of the type described in Dawid, Stone and Zidek (1973).

3.3.1 The intrinsic statistic

The reference posterior for θ may now be used to obtain the required intrinsic test

statistic. Indeed, substituting into (14) yields

d(H0 | z) = d(H0 | t,m, n) =

∫ ∞

0

n+m

2
log
[
1 +

h(n,m)

2(m+ n)
θ2
]
π(θ | t,m, n) dθ, (21)

where π(θ | t,m, n) is given by (19). This has no simple analytical expression but may

easily be obtained by one-dimensional numerical integration.

3.3.2 Example

The derivation of the appropriate reference prior allows us to draw precise conclusions

even when data are extremely scarce. As an illustration, consider a (minimal) sample

of three observations with x = {4, 6} and y = {0}, so that n = 2, m = 1, x̄ = 5, ȳ = 0,

s =
√

2, h(n,m) = 4/3 and t = 5/
√

3. The corresponding exact reference posterior

density (Equation 19) is represented in Figure 1.

If may be verified numerically that the reference posterior probability that θ < 0 is

Pr[θ < 0 |x,y] =

∫ 0

−∞

π(θ | t,m, n) dθ = 0.0438,
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Figure 1: Reference posterior of the standardized difference θ = (µx − µy)/σ given the

sample of three observations z = {{4, 6}, {0}}.

directly suggesting some (mild) evidence against θ = 0 and, hence, against µx = µy.

On the other hand, using the formal procedure described above, the numerical value of

intrinsic statistic to test H0 ≡ {µx = µy} is

d(H0 | t,m, n) =

∫ ∞

0

3

2
log
[
1 +

2

9
θ2
]
π(θ | t,m, n) dθ = 1.193 = log[6.776].

Thus, given the available data, the expected value of the average (under repeated sam-

pling) of the log-likelihood ratio against H0 is 1.193 (so that likelihood ratios may be

expected to be about 6.8 against H0), which provides a precise measure of the available

evidence against the hypothesis H0 ≡ {µx = µy}.
This (moderate) evidence against H0 is not captured by the conventional frequentist

analysis of this problem. Indeed, since the sampling distribution of t under H0 is

a standard Student distribution with n+m − 2 degrees of freedom, the p-value which

corresponds to the two-sided test for H0 is 2(1−Tm+n−2(|t|), where Tν is the cumulative

distribution function of an Student distribution with ν degrees of freedom (see, e.g.,
DeGroot and Schervish 2002, Sec. 8.6). In this case, this produces a p-value of 0.21

which, contrary to the preceding analysis, suggests lack of sufficient evidence in the

data against H0.

3.3.3 Asymptotic approximations

For large sample sizes, p(t | θ) converges to a normal distribution N(t |
√
h(n,m)/2 θ, 1)

and the reference posterior of θ converges to

π
(
θ | t,m, n) ≈ N

(
θ
∣∣∣ t
√

2

h(n,m)
,

√
2

h(n,m)

)
= N

(
θ
∣∣∣ x̄− ȳ

s
,

√
m+ n

mn

)
.
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A good large sample approximation to the intrinsic statistic is given by

d(H0 | z) ≈
n+m

2
log

[
1 +

1

n+m
(1 + t2)

]
≤ 1

2
(1 + t2), (22)

where t is given by Equation (20).

3.4 Behaviour under repeated sampling

As it is usually the case with good objective Bayesian procedures, the behaviour under

repeated sampling of the intrinsic test statistic is very attractive from a frequentist,

repeated sampling perspective.

3.4.1 Sampling distribution of d(H0 | z) when H0 is true

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

Μx = Μy

dHH0 ÈDataL
Figure 2: Sampling distribution of d(H0 | z) under H0 obtained from 5000 simulations

of standard normal random samples of sizes n = 200 and m = 100.

When H0 is true, the sampling distribution of t is asymptotically normal N(t | 0, 1) and,

using (22), the sampling distribution of d(H0 | z) under the null is asymptotically

n+m

2
log

[
1 +

1

n+m

(
1 + F 1

n+m−2

)]
≈ 1

2

(
1 + χ2

1

)
(23)

where Fα
β is a Snedecor F with α and β degrees of freedom. In particular, the expected

value of d(H0 | z) under sampling when H0 is true converges to one, and its variance

converges to 1/2 as the sample sizes increase.
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As a numerical illustration, Figure 2 represents the histogram of the d(H0 | z) values

obtained from 5000 simulated samples zi = {xi,yi}, i = 1, . . . , 5000, where xi and yi

where random samples of sizes n = 200 and m = 100 respectively from standard normal

N(xj | 0, 1) and N(yj | 0, 1) distributions. The resulting sample mean and variances were

0.997 and 0.504 to be compared with the asymptotic values derived from the limiting

distribution 1
2 (1 + χ2

1), namely 1 and 1/2.

3.4.2 Sampling distribution of d(H0 | z) when H0 is not true

When H0 is not true, the sampling distribution of the intrinsic test statistic t is asymp-

totically normal N(t |
√
h(n,m)/2 θ, 1) and thus, using (22), the sampling distribution

of d(H0 | z) when H0 is false is asymptotically 1
2 [1 + χ2

1(h(n,m)θ2/2)], where χ2
1(λ) is

a non-central chi-squared distribution with one degree of freedom and non-centrality

parameter λ. In particular, the expected value of d(H0 | z) under sampling when H0

is false (so that θ > 0) is asymptotic to 1 + h(n,m)θ2/2 as the sample sizes increase.

Thus, the expected value of the test statistic when H0 is false increases linearly with the

harmonic mean h(n,m) of the two sample sizes. The standard deviation of d(H0 | z) is

asymptotic to
√

1/2 + h(n,m)θ2/2 as the sample sizes increase. Thus, for sufficiently

large samples, the value of d(H0 | z) will be larger than any fixed threshold with prob-

ability one, which establishes the consistency of the proposed procedure.

0 10 20 30

Μx =0.4, Μy =0

dHH0 ÈDataL
0 10 20 30

Μx =0.6, Μy =0

dHH0 ÈDataL

0 10 20 30

Μx =0, Μy =0

dHH0 ÈDataL
0 10 20 30

Μx =0.2, Μy =0

dHH0 ÈDataL

Figure 3: Sampling distribution of d(H0 | z) obtained from 5000 simulations of normal

random samples of sizes n = 200 and m = 100 from N(x |µx, 1) and N(y | 0, 1), for

µx ∈ {0.0, 0.2, 0.4, 0.6}.
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As a numerical illustration, Figure 3 represents the histograms (scaled to have area

equal to one) of the d(H0 | z) values obtained from 5000 simulated samples zi = {xi,yi},
for i = 1, . . . , 5000, where xi and yi where random samples of sizes n = 200 andm = 100

respectively from standard normal N(xj |µx, 1), µx ∈ {0.0, 0.2, 0.4, 0.6}, and N(yj | 0, 1)

distributions.

3.5 The general case

The methodology described above may be extended to the general case of possibly differ-

ent variances. Thus, let available data z = {x,y}, x = {x1, . . . , xn}, y = {y1, . . . , ym},
consist of two random samples respectively drawn from N(x |µx, σx) and N(y |µy, σy),

and suppose that it is again desired to verify whether or not the observed data z are

compatible with the hypothesis H0 that the two means are equal, that is, whether z

could have been drawn from a probability distribution of the family

M0 ≡ {p(z |µ0, µ0, σx0, σy0), µ0 ∈ <, σx0 > 0, σy0 > 0} . (24)

The relevant intrinsic loss function may then be found to be

δz{H0, (µx, µy, σx, σy)}

≈ n

2
log

[
1 +

θ21
(1 + r2)2

]
+
m

2
log

[
1 +

θ22
(1 + r−2)2

]
, (25)

where θ1 = (µx −µy)/σx and θ2 = (µx −µy)/σy are the two standardized differences of

the means, and r = r(σx, σy, n,m) = (nσy)/(mσx) is a measure of the design balance.

As one would expect, the intrinsic loss (25) reduces to (15) when n = m and σx = σy.

Derivation of the exact form of the appropriate joint reference prior πδ(µx, µy, σx, σy)

when the quantity of interest is δz{H0, (µx, µy, σx, σy), the intrinsic discrepancy be-

tween H0 and the true model is, however, not trivial. Work in this direction is in

progress.
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