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Does the effect of micronutrient

supplementation on neonatal survival vary with

respect to the percentiles of the birth weight

distribution?
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Abstract.

Scientific Background: In developing countries, higher infant mortality is
partially caused by poor maternal and fetal nutrition. Clinical trials of micronutri-
ent supplementation are aimed at reducing the risk of infant mortality by increas-
ing birth weight. Because infant mortality is greatest among the low birth weight
infants (LBW) (≤ 2500 grams), an effective intervention may need to increase
birth weight among the smallest babies. Although it has been demonstrated that
supplementation increases the birth weight in a trial conducted in Nepal, there
is inconclusive evidence that the supplementation improves their survival. It has
been hypothesized that a potential benefit of the treatment on survival among
the LBW infants is partly compensated by a null or even harmful effect among
the largest infants. Exploratory analyses have suggested that the treatment effect
on birth weight might vary with respect to the percentiles of the birth weight
distribution.

Data: The methods in this paper are motivated by a double-blind randomized
community trial in rural Nepal (Christian et al 2003a,b). The investigators imple-
mented an intervention program to evaluate benefits of the following micronutrient
supplementations: folic acid and vitamin A (F+A); folic acid, iron, and vitamin
A (F+I+A); folic acid, iron, zinc, and vitamin A (F+I+Z+A); multiple nutrients
and vitamin A (M+A). Each micronutrient supplement was administered daily
to 1000 pregnant women, who ultimately delivered approximately 800 live-born
infants. The team measured the birth weight within 72 hours of delivery and then
followed the infants for one year to determine whether or not they survived. In
addition, they measured several characteristics of the mother (maternal age, ma-
ternal height, arm circumference) and of the infant (weight, length, head and chest
circumference).
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2 Effect of micronutrient supplementation on neonatal survival

In this case study we focus on the supplementations F+I+A and M+A as
compared to vitamin A only and we address the following scientific questions:

1. Is there an overall effect of the treatments on birth weight? Does this effect
vary with the percentiles of the birth weight distribution? In particular, is it
largest among the LBW infants?

2. Is there an overall effect of the treatments on survival? Does this effect vary
with the percentiles of the birth weight distribution? In particular, is it
largest among the LBW infants?

3. Do these percentile-specific effects on birth weight and survival differ by
micronutrients?

Statistical Approach: The data analysis is challenged by measurement error
and informative missing data in birth weight and survival. In community-based
interventions in developing countries, most births occur in the home without as-
sistance from trained birth attendants. Approximately 88% of the babies are mea-
sured within 72 hours of the delivery. The remaining 12% are measured between
72 and 2000 hours from the delivery approximately. Hence, weights are obtained
at varying times following birth and therefore are imprecise measures of the “true
weight at birth”. In addition, a high proportion of deaths of young infants occur
in the first few hours after birth. If there is a delay in reaching the mother and in-
fant, then many of these infants would not be weighed because they have already
died. For example in the F+I+A group, approximately 7% of the birth weight
measurements are missing and among this 7%, approximately 34% of the babies
have died within 24 hours of the delivery. These babies are likely to have been of
lower birth weight than those who survived to be weighed, and therefore, these
missing birth weights due to death are likely to be informative.

In this paper we develop a measurement error model with counterfactual vari-
ables that address the scientific questions for this birth weight-mortality case study.
Our approach integrates Bayesian methods and data augmentation
(Tanner and Wong 1987; Tanner 1991; Albert and Chib 1993; Chib and Greenberg
1998) with a counterfactual model and principal stratification
(Rubin 1978; Holland 1986; Frangakis and Rubin 2002). We calculate marginal
posterior distributions of the treatment effects on birth weight and infant mortal-
ity that are allowed to vary with the percentiles of the birth weight distributions.
We compare our posterior inferences with two simpler approaches. The first still
relies on a Bayesian approach but ignores the uncertainty in the imputation and
prediction of the birth weight and does account for the mother’s covariates. The
second is a simpler re-sampling approach that imputes the missing birth weights
(Rubin 1987).

Results and Public Health Impact: First we found that both F+I+A and
M+A increase birth weight. However, the F+I+A increases birth weight mainly
among the LBW infants, whereas M+A increases birth weight across the entire
birth weight distribution compared to vitamin A only. The F+I+A reduces the
risk of infant mortality, whereas the M+A slightly increases the risk of early infant
mortality, especially among the larger infants.

Currently, recommendations exist to supplement pregnant women in developing
countries. This case study provides critical information toward the evaluation and
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planning of these public health interventions.

Keywords: percentiles, counterfactual, Bayesian computation

1 Introduction

In developing countries, higher infant mortality is partially caused by poor maternal

and fetal nutrition. Because infant mortality is greatest among low birth weight (LBW

≤ 2500 grams) and very low birth weight (VLBW ≤ 1500 grams) infants, it is as-

sumed that an effective intervention must increase birth weight among the smallest

babies, that is, in the left tail of the birth weight distribution. That maternal nutri-

tional supplementation increases average birth weight has been demonstrated in repli-

cated randomized trials in several countries (Lechtig et al. 1975; Ceesay et al. 1997;

Caulfield et al. 1999; Christian et al. 2003a). However, to date, there is limited di-

rect evidence that maternal supplementation causes a reduction in the prevalence of

babies born at the smallest weights and that this reduction improves their survival

(Garner et al. 1992; McIntire et al. 2001; West et al. 1999; Katz et al. 2000a; Rasmussen

2001; Christian et al. 2003b).

The methods in this paper are motivated by a double-blind randomized community

trial in rural Nepal (Christian et al. 2003a). The investigators administered an inter-

vention program to evaluate benefits of the following micronutrient supplementations:

folic acid and vitamin A; folic acid, iron, and vitamin A; folic acid, iron, zinc, and

vitamin A; multiple nutrients and vitamin A. The control was vitamin A alone. Each

micronutrient supplement was administered daily to 1000 pregnant women, who ulti-

mately delivered approximately 800 live born infants. Details on the study designs are

in Christian et al. (2003a). The team measured the birth weight within 72 hours of

delivery and then followed the infants for one year to determine whether or not they

survived. In addition, they measured several characteristics of the mother (maternal

age, parity, maternal height, arm circumference) and of the infant (weight, length, head

and chest circumference).

To develop the methodology, we will focus our data analysis on two novel treatment

groups, the folic acid, iron, and vitamin A (denoted as F+I+A) and the multiple nutrient

and vitamin A (denoted as M+A), in comparison to the standard control (vitamin A

only). The data analysis is challenged by measurement error and informative missing

data. In community-based interventions in developing countries, a large proportion of

births occur in the home without assistance from trained birth attendants. For example,

in the F+I+A group, 88% of the babies were measured within 72 hours of the delivery.

The remaining 12% were measured between 72 and 2644 hours of delivery. Hence, the

observed weights are imprecise measures of the “birth weight” which we define here as

the value at 72 hours.

In addition, a non-negligible proportion of infants die in the first few hours of birth.

If there is a delay in reaching the mother and infant, then many of these infants cannot

be weighed because they have already died. In the F+I+A group, approximately 7% of
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the birth weight measurements are missing and among this 7%, 34% of the babies have

died right after the delivery. These babies are likely to have been of lower birth weight

than those who survived to be weighed, and therefore, these missing birth weights are

likely to be informative of birth weight. Table 2 provides summary statistics for all

treatment groups. Gestational age, number of cigarettes smoked, height, weight and

age of the mother are all good predictors of birth weight and will be used to impute

missing weights.

An interesting aspect of this study is that the investigators anticipate that some of

these micronutrient supplementations may affect birth weight, and ultimately survival,

differently among the smaller and larger babies. The top panel of Figure 1 shows the

difference between the empirical quantile functions of the birth weights for the two novel

interventions, each versus the control (Q̂1(p)− Q̂0(p)) plotted against the percentiles p.
The red dots denote quantile differences of birth weights including the ones measured

after 72 hours. The black dots denote quantile differences obtained from a “working

data set” where the birth weight measurements taken after the 72 hours where replaced

by their predicted values at time zero (details on this prediction model are provided in

Section 2). The dotted horizontal line is placed at the average difference of the birth

weights between the two groups. Note that although the average treatment effects for

the two treatment groups are similar and equal to 67 and 81 grams for the F+I+A

and M+A groups respectively, these plots suggest that there could be an interaction

between the treatment effect and the birth weight percentiles: F+I+A increases birth

weight mainly among the smaller babies, while the M+A increases birth weight across

the entire birth weight distribution.

To explore the association between birth weight and mortality, we fit a logistic

regression model expressing the log odds of infant death as a separate smooth function

of the birth weight for the control and intervention groups. The bottom panel of Figure

1 shows the estimated smooth curves with 95% confidence bands across the ranges of

the measured birth weights in the two groups. These plots suggest that the probability

of death decreases as the birth weight increases and tends to rise again for the heaviest

babies in the control group.

This exploratory analysis suggest that: 1) the treatment effect on birth weight might

vary with respect to the percentiles of the birth weight distribution for F+I+A but not

for M+A; 2) the increase in birth weights among the largest babies for M+A could have

a negative impact on survival; 3) it is necessary to properly account for the measurement

error in the time of the birth weight measurements.

In this paper, we develop a Bayesian measurement error model to address the fol-

lowing scientific questions:

1. Is there an overall effect of the treatments on birth weight? Does this effect vary

with respect to the percentiles of the birth weight distribution? In particular, is

it largest among the LBW infants?

2. Is there an overall effect of the treatments on survival? Does this effect vary with

respect to the percentiles of the birth weight distribution? In particular, is it
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largest among the LBW infants?

3. Do these percentile-specific effects on birth weight and survival differ by micronu-

trients?

The broad objectives of this paper are to address these scientific questions by devel-

oping and applying a Bayesian model with counterfactual variables (Rubin 1978; Holland

1986) for this birth weight-mortality study. Our approach integrates Bayesian meth-

ods and data augmentation (Tanner and Wong 1987; Tanner 1991; Albert and Chib

1993; Chib and Greenberg 1998) with a counterfactual model with principal stratifi-

cation (Rubin 1978; Holland 1986; Frangakis and Rubin 2002). We define parameters

that measure the effects of an intervention on a clinical outcome (infant mortality) that

are allowed to vary with the percentiles of the post-treatment variable (birth weight).

A Bayesian approach to counterfactual modelling is very attractive because we can: 1)

calculate the posterior distributions of percentile-specific effects accounting for the un-

certainty about the missing counterfactuals, measurement error, and missing data; and

2) investigate the sensitivity of causal inferences to key assumptions for which there are

no direct observations in the data set.

In our previous work (Dominici et al. 2005b) we have estimated percentile-specific

effects for this case study by comparing F+I+A versus A and by using a “working

data set” where: a) the missing birth weight measurements were imputed by use of a

regression model having as predictors the mother’s covariates; and b) the birth weight

measurements made after the 72 hours where replaced by their predicted values at time

zero. We did not account for the uncertainty in the imputation and prediction, and we

relied upon this working data set to make inferences on the parameters of interest.

In this manuscript we extend our previous approach and build a Bayesian measure-

ment error model that: 1) imputes the missing birth weights accounting for the mother’s

covariates and death; 2) accounts for the uncertainty in the imputation of the missing

birth weights and in the prediction of the “weights at birth” for the babies that have

been weighted after 72 hours; 3) compares our Bayesian inferences with our previous

work (Dominici et al. 2005b) but does not consider the mother’s covariates and the un-

certainty in the imputation of the birth weights; 4) compares our Bayesian inferences

with a non-parametric approach which is based upon smoothing across percentile dif-

ferences between the empirical quantile functions of the two groups and which “fills in”

the missing data by multiple imputation (Rubin 1987); and finally 5) contrast results

between the two treatment groups.

2 Details on the community intervention trial

The randomized trial design, methods and results have been described previously

(Christian et al. 2003b; Katz et al. 2005). Briefly, 426 communities in the Sarlahi dis-

trict, Nepal, were randomized to receive one of five different maternal supplements.

From December 1998 through April 2001, all married women of childbearing age who

were not already pregnant or breastfeeding an infant less than nine months of age and
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who agreed to participate, were visited every five weeks and asked if they had experi-

enced menses in the past five weeks. If they had not, they were given a urine-based

pregnancy test. If found to be pregnant, they were enrolled in the trial and supple-

mented with either vitamin A alone as the control group (1000 µg), vitamin A plus folic

acid (400 µg), vitamin A plus folic acid plus iron (60 mg ferrous fumarate), vitamin A

plus folic acid plus iron plus zinc (30 mg zinc sulphate), or a multiple micronutrient

supplement that included the same quantities of vitamin A, iron folic acid and zinc,

along with vitamin D (10 µg), vitamin E (10 mg) vitamin B-1 (1.6 mg), vitamin B-2

(1.8 mg), niacin (20 mg), vitamin B-6 (2.2 mg), vitamin B-12 (2.6 µg), vitamin C (100

mg), vitamin K (65 µg), copper (2.0 mg), and magnesium (100 mg).

Pregnant women were interviewed at the time of enrollment when maternal height,

weight, age, date of last menstrual period, parity, smoking history, and other charac-

teristics were recorded. The main outcomes of the study were birth weight and infant

survival. Since 95% of births occurred in the home, attended primarily by relatives or

untrained traditional birth attendants, a female staff member who lived in the village

reported the birth to a supervisor who dispatched an anthropometrist to the home to

obtain “birth weight” using a balance scale accurate at ± 2 grams so that pure mea-

surement error is negligible. The aim was to weigh the infant as soon after birth as

possible. The inability to obtain weights at the exact time of birth leads to a set of

methodological issues, some of which can be addressed by altering data collection pro-

cedures and some of which can be addressed at the time of data analysis. The question

is how to use the observed weights and covariates predictive of birth weight to estimate

what the birth weight would have been if it had been measured at the time of delivery.

The second issue is that a high proportion of deaths of young infants occur in the

first few hours after birth. If there is a delay in reaching the mother and infant, then

many of these infants cannot be weighed because they have already died. It is also more

likely that these early deaths involve premature and small for gestational age babies.

Hence, these missing birth weights due to death are likely to be lower than those of

infants who survive long enough for a weight to be obtained. Again, it may be possible

to predict the birth weight of these infants through the use of maternal covariates and

weights of infants who died soon after birth, but for whom birth weight was obtained.

In this paper we will focus on two treatments only: 1) folic acid plus iron plus vitamin

A (which we will denote by F+I+A); and 2) the multiple micronutrient supplement plus

vitamin A (which we will denote by M+A). Table 1 summarizes the sample sizes, the

percentages of the birth weight measurements made after 72 hours, the percentage of

missing birth weights, and the percentages of deaths among the babies with missing

birth weight measurements.
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3 A Non-parametric approach with multiple imputa-

tion

We start the analysis using a simple non-parametric approach with multiple imputation

to estimate percentile-specific treatment effects on birth weight. In the results section

(Section 5), we will compare results from the approach described here versus a Bayesian

model with measurement error and counterfactual variables described in Section 4.

Notation: To establish notation, letW obs
iti

be the weight of the infant imeasured at time

ti, let Y obs
i be the observed mortality indicator within one year, let Zi be the treatment

indicator, and let xi be the vector of mother’s covariates. Let I = {i : i = 1, . . . , N}
be the entire population of babies. We denote by n0 and n1 the number of live births

for the control and the treatment groups respectively and let N = n0 + n1 be the total

number of live births. The data analysis is challenged by two facts: 1) for i ∈ Imis ⊂ I,
W obs

iti
are missing values; 2) for i ∈M ⊂ I, W obs

iti
are measured for ti > 72 hours. Table

2 summarizes the percentages of missing data and of measurements made after 72 hours

for each treatment group.

Multiple imputation of missing birth weights and prediction of “weights at

birth”: To impute the missing birth weights and predict the birth weights for the

babies that have been measured after 72 hours, we fitted the following regression model

separately for the two treatment groups compared to the control (that is for F+I+A

versus A, and for M+A versus A):

W obs
iti

| ti, Zi, Y
obs
i ,xi ∼ N(µi, σ

2), where

µi = β0 + β1Zi + β2ti + β3Y
obs
i + β4num.cigi + β5gest.agei+

+β6mom.weighti + β7mom.heighti + β8mom.agei,
i ∈ I\Imis.

(1)

Missing birth weights were multiply imputed by using multiple imputation (Rubin

1987). Specifically, let Ŵiti
be the predicted birth weight at time ti from model (1). Let

σ̂2 be the estimated residual variance of the regression model. For i ∈ Imis, we created

fifty imputed data sets by samplingW
(j)
iti=0 from a normal distribution with mean Ŵiti=0

and standard deviation σ̂ for j = 1, . . . , J . For i ∈M , we predict the“birth weights” by

taking Ŵiti=0 + (W obs
iti

− Ŵiti
). Note that this approach accounts for the uncertainty in

the imputation of the missing data but not for the uncertainty in the prediction of the

birth weights for the infants measured after 72 hours.

Estimating percentile-specific effects: The second component of this analysis ap-

proach is to estimate the treatment effect on birth weight as a smooth function of the

percentiles of the birth weight distribution. In this approach, we do not make any dis-

tributional assumption on the birth weights. We define the percentile-specific treatment

effect ∆W
p as the difference between the quantile functions of the birth weights for the

treatment and the control, and we assume that such difference is a smooth function of
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the percentiles of the birth weight distribution. That is:

∆W
p = Q1(p) −Q0(p) = s(p, λ) (2)

where s is a natural cubic spline of the percentile p with λ degrees of freedom (we

set λ = 5).

To estimate ∆W
p for 0 < p < 1, we:

1. calculate the percentiles pi = i/(n0 + 1) with n0 = 766 (the smallest number of

infants across treatment groups);

2. calculate the differences between the empirical quantiles of the birth weights

Q̂1(pi) − Q̂0(pi);

3. smooth these differences across the percentiles pi.

Note that for p = 0.5, estimating ∆W
p=0.5 reduces to the usual method of estimating a

treatment effect by comparing medians between the treatment and control groups.

To account for the uncertainty in the imputation of the missing values, we repeated

steps 1-3 separately for 50 imputed data sets. We then calculate the percentile-specific

treatment effect and its corresponding total statistical variance by using standard mul-

tiple imputation methods (Rubin 1987). Let ∆̂W (j)

p and V (j)(p) be the point estimate

and the bootstrap variance of ∆W
p for the j-th imputed data set, respectively. For each

j, we obtain the overall estimate of the treatment effect and its total variance, denoted

by ∆̂W
p and T̂ V p, as follows:

∆̂W
p = 1

J

∑J
j=1 ∆̂W (j)

p

T̂ V p = Ap + (1 + 1
J )Bp, where

Ap = 1
J

∑J
j=1 V

(j)
p

Bp = 1
J−1

∑J
j=1(∆̂

W (j)

p − ∆̂W
p )2.

(3)

Permutation test: Finally, to test whether the treatment effect is constant across the

percentiles of the birth weight distribution, we perform a permutation test. Specifically,

for h = 1, . . . , 500, we randomly re-assign the birth weights to the two treatment groups

and calculate the test statistics T h =
∑n0

i=1(ŝ
h(pi, λ) − s̄h)2 where s̄h =

∑n0

i=1 ŝ
h(pi, λ).

We calculate the one-sided p-value as the probability that T h exceeds the observed test

statistics Tobs =
∑n0

i=1(ŝ(pi, λ) − s̄)2 where s̄ =
∑n

i=1 ŝ(pi, λ) .

The modelling approach illustrated in this section has been described elsewhere

(Katz et al. 2005). The idea of smoothing quantile differences across percentiles to

improve estimation of the average difference between two outcomes has recently been

discussed by Dominici et al. (2005a) for estimating the difference in means for skewed

distributions. This approach was then implemented for estimating average medical

expenditures between diseased and non-diseased patients (Dominici and Zeger 2005).
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In this paper we have tailored this idea for the ultimate goal of estimating percentile-

specific treatment effects.

4 A Bayesian Model with Measurement Error

In this section, we define a Bayesian approach for approximating the marginal posterior

distributions of all parameters of scientific interest accounting for 1) measurement error

in the birth weights; 2) uncertainty in the imputation of the missing values; and 3)

uncertainty in the imputation of the missing counterfactuals.

Adopting a counterfactual model (Rubin 1978; Holland 1986), let Zi be the treatment

assignment, and Wi(Zi) be the birth weight of baby i given the treatment assignment

Zi. We define Yi(Zi) to be the mortality indicator for baby i corresponding to treatment

assignment Zi. We refer to Yi(Zi) and Wi(Zi) as potential outcomes. Note that Yi(0)

and Wi(0) are defined for all N babies, but only observed for the n0 babies in the control

group of the study. Similarly, Yi(1) and Wi(1) are defined for all N babies, but only

observed for the n1 babies in the intervention group. Thus Y obs
i = {Yi(z), if z = Zi}

and W obs
i = {Wi(z), if z = Zi}, respectively. Finally, let ti be the time at which birth

weight is measured for baby i. Since weights are stable in the first 72 hours, we define

ti = 0 for the interval 0-72. Let Witi
(Zi) be the potential weight at time ti.

We define the likelihood function for the complete data as a function of three vectors

of unknown parameters:

L(η1,η2,η3) =
∏N

i=1 Pr(Yi(1), Yi(0) |Wi(1),Wi(0),η1) × f1(Wi(1),Wi(0) | xi,η2)×
× ∏

i∈M f2(Witi
(0),Witi

(1) |Wi(0),Wi(1), ti,η3).
(4)

In the next three subsections we specify: 1) an odds-ratio association model for

bivariate mortality indicators given the birth weights P (Yi(1), Yi(0) | Wi(1),Wi(0),η1)

(Liang et al. 1992); 2) the joint distribution of f1(Wi(1),Wi(0) | xi,η2) as a bivariate

normal given the mother’s covariates; and 3) the measurement error model for the babies

weighted after 72 hours f2(W
obs
iti

|W obs
i , ti,η3).

4.1 Statistical model for infant mortality given birth weight

Following Liang et al. (1992), we parameterize the 2× 2 joint distribution [Yi(0), Yi(1) |
Wi(0),Wi(1),η1] in terms of the two margins and the odds ratio. Specifically, we assume

that:

P{Yi(0) = yi(0), Yi(1) = yi(1) |Wi(0),Wi(1),η1} =

µi(0)yi(0)(1 − µi(0))1−yi(0) × µi(1)yi(1)(1 − µi(1))1−yi(1)+

(−1)yi(0)−yi(1){µi(11) − µi(0)µi(1)}
(5)
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where µi(1) = Pr(Yi(Zi) = 1 | Zi,Wi(Zi)) is assumed to follow the logistic model:

logitPr{Yi(Zi) = 1 | Zi,Wi(Zi)} = β0 + β1Zi + s(Wi(Zi), 3), Zi = 0, 1, (6)

and s() denotes a natural cubic spline with 3 knots. The parameter µi(11) = Pr(Yi(0) =

Yi(1) = 1 | Wi(0),Wi(1)) is a known function of the marginal probabilities µi(1), µi(0)

and of the pre-specified odds ratio ψ. Thus η1 = (β, ψ) where β also includes the

regression coefficients of the spline basis.

Let I0 ⊂ I and I1 ⊂ I be the two sub-populations of n0 and n1 infants assigned to

the control and to the treatment, respectively. Within Gibbs sampling we will sample the

missing counterfactuals from the conditional distributions [Yi(0) | Yi(1),Wi(1),Wi(0),η1]

for i = 1, . . . , n1 and from [Yi(1) | Yi(0),Wi(1),Wi(0),η1] for i = 1, . . . , n0. Note that

this imputation depends upon unverifiable assumptions about the association between

the counterfactual pairs of variables {Yi(0), Yi(1)} denoted by the parameter ψ. We as-

sume that ψ is known and we will perform sensitivity analyses with respect to different

values for ψ. The rationale behind the range of values considered is provided in section

4.4.

4.2 Statistical model for birth weight

We specify the joint distribution f1(Wi(1),Wi(0) | xi,η2) as follows:

(
Wi(0)

Wi(1)

)
∼ N2

(
α00 +α0(xi − x̄)

α01 +α1(xi − x̄)
,

[
σ2

0 σ0σ1ρ
σ0σ1ρ σ2

1

])
, i = 1, . . . , N (7)

where

α0z +αz(xi − x̄) = α0z + α1znum.cigi + α2zgest.agei + α3zmom.weighti+

+α4zmom.heighti + α5zmom.agei, z = 0, 1.
(8)

Thus η2 = (α0z ,αz, z = 0, 1, σ0, σ1, ρ).

Under model (7) and within the Gibbs sampling, we will carry out two types of

imputation. The first imputation borrows strength across babies and use the mother’s

covariates to impute the missing birth weights. Let n0mis and n1mis be the number

of missing birth weight measurements for the control and treated groups where Imis =

I0mis

⋃
I1mis and nmis = n0mis + n1mis. At each iteration of the Gibbs sampling, we

will sample: 1) the missing birth weights for the control group from the full conditional

distribution [Wi(0) | Yi(0),xi,η2] for i ∈ I0mis and 2) the missing birth weights for

the treatment group from the full conditional distribution [Wi(1) | Yi(1),xi,η2] for

i ∈ I1mis.

The second imputation relies on the correlation ρ between Wi(0) and Wi(1) for

the same baby to impute the missing counterfactuals. That is, we will impute the

missing counterfactuals by sampling from the full conditional distribution [Wi(0) |
Wi(1), Yi(0), Yi(1),η2] for i ∈ I1 and from [Wi(1) | Wi(0), Yi(0), Yi(1),η2] for i ∈ I0.
Note that this second imputation depends upon unverifiable assumptions about ρ. Like



F. Dominici, S.L. Zeger, G. Parmigiani, J. Katz and P. Christian 11

for ψ, we assume that ρ is known but we perform sensitivity analyses of our results with

respect to different values for ρ.

4.3 Measurement Error Model

In this section we specify a measurement error model that allows us to sample the “birth

weights” for the infants that have been measured after 72 hours. Let M0 and M1 be the

subsets of m0 and m1 infants that have been measured after 72 hours under the control

and the treatment groups respectively. We assume that:

∏

i∈M

f2(Witi
(0),Witi

(1) | Wi(0),Wi(1), ti,η3) =
∏

i∈M0

f2(Witi
(0) |Wi(0), ti,η3) ×

∏

i∈M1

f2(Witi
(1) |Wi(1), ti,η3).

That is, we assume that:

1. the measurements made after 72 hours are independent across treatment groups

conditionally on the birth weights:

[Witi
(0),Witi

(1) |Wi(0),Wi(1), ti,η3] = [Witi
(0) |Wi(0),Wi(1), ti,η3] ×

[Witi
(1) |Wi(0),Wi(1), ti,η3];

2. the measurements made after 72 hours depend only on the birth weights for the

same treatment group, that is:

[Witi
(Zi) |Wi(Zi),Wi(1 − Zi), ti,η3] = [Witi

(Zi) | Wi(Zi), ti,η3].

We then specify the following measurement error model:

Witi
(z) | ti ∼ N

(
γ0 + γ1ti, τ

2
)
, i ∈ I\Imis. (9)

Ideally, we would like to allow each baby to have his/her own random intercept.

However, because we have only one birth weight measurement for each baby, a random

intercept model is not identifiable.

Let γ
(j)
0 be the current value of γ0 at the j-th iteration of the Gibbs sampler. We

then sample the weight at time 0 for the infants with ti > 72 as following:

W
(j)
i (0) = γ

(j)
0 + δi(0), i ∈M0

W
(j)
i (1) = γ

(j)
0 + δi(1), i ∈M1

where δi(zi) is a known quantity. We obtain the value of δi(zi) outside the Gibbs

sampling by fitting a regression on (Witi
(zi), ti) for i ∈ M and setting δi(zi) equal to

Ŵiti
(zi) −Witi

(zi) where Ŵiti
(zi) are the predicted values.
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4.4 Parameters of Scientific Interest

Some parameters of interest are defined in Table 3. The first row of Table 3 defines

the average counterfactual treatment effect on birth weight. The second row defines

the percentile-specific treatment effects on birth weight. Note that the parameter ∆W
p

is defined as a function of the marginal distributions of Wi(1) and Wi(0) and therefore

it does not depend on the parameter ρ. In addition, the distributional assumption (7)

allows the parameter ∆W
p to vary flexibly but smoothly as a function of the percentiles

(p) of the birth weight distribution.

If we do not account for the mother’s covariate and we assume

(
Wi(0)

Wi(1)

)
∼ N2

(
µ0

µ1
,

[
s20 s0s1ρ

s0s1ρ s21

])
, i = 1, . . . , N (10)

then ∆W
p = Q1(p) −Q0(p) = (µ1 − µ0) + Φ−1(s1 − s0), and if we further assume that

s1 = s0, then ∆W
p is not allowed to vary with p.

Throughout the paper we will compare our posterior inferences on ∆W
p under three

models. The first model, denoted as Model A and also defined in Equation (7), accounts

for the mother’s covariate and the uncertainty in the imputation of the missing birth

weights. The second model, denoted as Model B and defined in Equation (10), uses the

“working data set” and ignores uncertainty in the imputation of missing birth weights

and prediction of birth weights measured after the 72 hours. The third model, denoted

as Model C, is the non-parametric model with multiple imputation discussed in Section

3. In addition, we will estimate the tail probabilities of the distribution log(s21/s
2
0) under

(10) to provide evidence to assess whether the treatment effect varies as a function of

the birth weight percentiles. We will compare these posterior probabilities with the

p-values obtained from the permutation test described in Section 3.

The rest of Table 3 summarizes the parameters of scientific interest for the treat-

ment effects on infant mortality. The third row indicates the average “counterfactual”

treatment effect on survival. The fourth row introduces the percentile-specific effects

of treatment on survival defined as the difference in the probability of death between

treated and non-treated infants who are at the same percentiles of their respective birth

weight distribution. Note that this parameter is defined as a function of the marginal

distributions of Yi(0) |Wi(0) and Yi(1) |Wi(1) and therefore does not depend on ψ.

In the last four rows of Table 3, we implement the idea of principal stratification by

Frangakis and Rubin (2002) for defining causal parameters of the effects of treatment

on infant mortality that are “adjusted” and “mediated” by post-treatment changes in

birth weight. More specifically, τY
1 and τY

2 are the effects of treatment on mortality in

the two sub-populations of LBW babies for whom the treatment effect on birth weight

was smaller and larger than 50 grams, respectively. Thus a comparison between τY
1

and τY
2 measures the degree to which a causal effect of treatment on mortality occurs

together with a causal effect of treatment on the birth weight among the LBW infants.

The parameters τY
3 and τY

4 are the analogues of τY
1 and τY

2 for the not-LBW infants,
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that is, for the infants with birth weight larger than 2500 grams.

The average effects obtained under the counterfactual model may depend upon un-

verifiable assumptions about the joint distribution of the counterfactual pairs of variables

{Wi(0) and Wi(1)}, and {Yi(0) and Yi(1)}. As anticipated in the previous section, in

order to estimate these parameters, we make the following key but unverifiable assump-

tions about the correlation between the observed outcomes and their counterfactuals.

First, we assume that the correlation between Wi(Zi) and Wi(1−Zi), denoted by ρ, is

known and equal to 0.9. We will perform sensitivity analyses for ρ = 0.5. Second, we as-

sume that the odds ratio between the observed and counterfactual mortality given birth

weight, denoted by ψ,is equal to 25. We will perform sensitivity analyses for ψ = 1.5.

These choices have been guided by exploratory analyses of data from this randomized

trial and from other data sources (Rahmathullah et al. 2003; Katz et al. 2000b, 2001)

which have been used to estimate the correlations of birth weights for two successive

children born to the same mother and birth weights for twins.

5 Computation

To investigate the posterior distributions of all parameters of interest we implement a

Monte Carlo Markov Chain method with data augmentation for imputing the missing

data (Tanner 1991; Gelman et al. 1995). We implemented a Metropolis-within-Gibbs

(Tierney 1994) approach, in which both the parameters and the counterfactual variables

are sampled using a random walk proposal. Computational details and full conditionals

are summarized in the Appendix. We specify flat prior distributions on all the unknown

parameters, except for the parameters ρ and ψ which are equal to pre-specified fixed

values.

For each posterior sample of the unknown parameters and counterfactuals, we obtain

a posterior sample of the percentile-specific parameters as follows. To obtain a posterior

sample of ∆W
p , we sort Wi(0) and Wi′ (1) within the two groups of treated and untreated

babies separately, and then we take their difference. Under model (10) we obtain a

posterior sample of ∆W
p by using the posterior samples of the parameters of the joint

normal distributions and plotting the theoretical function µ1 − µ0 + Φ−1(p)(s1 − s0).

To calculate a posterior sample of ∆Y
p , we first sort sample values of Yi(0) with

respect to Wi(0) and Yi′ (1) with respect to Wi′ (1) within each of the two groups sep-

arately, and then we take the difference. We smoothed the posterior samples of these

percentile-specific parameters to reduce Monte Carlo variability in the posterior proba-

bility bounds.

6 Results

Figure 2 shows birth weights plotted versus times of measurement. Red dots denote birth

weights measured under the treatment and green dots denote birth weights measured

under the control. The segments connect a random subset of the observed measurements
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W obs
iti

to the Bayesian posterior means of the predicted measurements at time zero W obs
i

for i ∈M .

Figure 3 shows the marginal posterior distributions of the average treatment effect

TEW = E[Wi(1) − Wi(0)] under two model specifications: 1) Model A defined in

Equation (7): a Bayesian model that accounts for the uncertainty in the imputation of

the missing data, the estimation of the birth weights at time zero, and the mother’s

covariates (red curve); 2) Model B defined in Equation (10): a Bayesian model that uses

one imputed data set only and that does not account for the mother’s covariates (green

curve). Overall we found that both supplementations are effective and increase birth

weight. Under Model A we obtain a smaller estimate of the average causal treatment

effect than under Model B. As expected, posterior inferences under Model A lead to an

estimate with larger posterior intervals than Model B because Model A accounts for the

uncertainty in the imputation of the missing birth weights and in the prediction of the

measurements after 72 hours.

Figure 4 shows the marginal posterior distributions of the percentile-specific treat-

ment effects on birth weight (∆W
p ) under Models A and B (red and green curves)

described above and under Model C (blue curve), a non-parametric model for the birth

weights with multiple imputation for the missing data (see Section 2). The grey polygon

denotes the corresponding 95% posterior confidence bands under Model A. The green

curve is obtained by taking the point-wise posterior means of the theoretical function

∆W
p = µ1 − µ0 + Φ−1(s1 − s0). At the far right are shown the point estimates and 95%

uncertainty bands of the average treatment effect E[Wi(1)]−E[Wi(0)] under the three

models. Inferences are similar across models.

In previous work (Dominici et al. 2005b), we have also modeled the joint distribution

of the birth weights in a more flexible way, by assuming that the margins follow a

mixture of three normal distributions and by introducing a correlation parameter ρ
between the standardized variables Φ−1[F0(Wi(0))] and Φ−1[F1(Wi(1))], where Φ is the

cdf of a standard normal distribution and F0, F1 are the cdf of a mixture of three normal

distributions of Wi(0) and Wi(1) respectively. We found that results under this mixture

model were very similar to the simpler ones shown here.

Although the two micronutrient supplementations have similar average causal ef-

fects, their percentile-specific treatment effects differ substantially. In Panel (a), for

the F+I+A group, the estimated ∆W
p are decreasing functions of p indicating that the

estimated treatment effects decrease from more than 100 grams in the left tail to 0

grams in the right tail. In Panel (b), for the M+A group, these parameters are almost

a constant function of p. Under Model B, the posterior probability that log s21 − log s20
is less than zero is 97% in Panel (a) and 70% in Panel (b). We have strong evidence

of an interaction between the treatment effect and the percentiles of the birth weight

distribution for F+I+A but not for M+A. Under Model C, we found that the one-sided

p-values from the permutation test described in Section 2 were equal to 0.10 for F+I+A

and equal to 0.96 for M+A.

Figure 5 shows the posterior means and 95% posterior regions of the percentile-

specific difference in infant mortality rates between the treatment and control popula-
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tions (∆Y
p ) plotted with respect to the percentiles of the birth weight distributions. For

a specific p, ∆Y
p is the difference in the probability of death between two babies with

birth weights Wi(1),Wi′ (0), each at the p-percentile of their respective birth weight

distributions. The vertical dotted line is placed at the 0.42 percentiles corresponding

to 2500 grams in the control sample. For F+I+A, there is suggestive evidence that the

treatment reduces mortality among the smallest babies but has no benefit for the babies

above the median birth weight. For M+A, these posterior inferences suggest that the

treatment does not affect mortality and that it might actually slightly increase the risk

among the largest babies.

Figure 6 shows posterior distributions of the average treatment effects on mortality

separately for five sub-populations of infants. These boxplots also show the sensitivity

of our posterior inferences to specification of the values for the parameters ρ and ψ.

The first set of boxplots (posterior distributions of τY
1 ) indicate that, among the LBW

babies with little change in birth weight after the supplementation, there is no evidence

that F+I+A supplementations affect survival and weak evidence that the M+A might

increase the risk of death. For the F+I+A (Panel a), the second set of four boxplots

(posterior distributions of τY
2 ) suggest that, among the LBW babies with increase in

birth weight after the supplementation larger than 50 grams, there is strong evidence

that this intervention is beneficial. For M+A (Panel b), this evidence is less strong.

The third set of boxplots (posterior distributions of the τY
3 ) indicate that, among the

no-LBW babies with little change in birth weight after the supplementation, we found

no evidence that the F+I+A supplementation is associated with survival. However,

for M+A (Panel b) we found evidence that this intervention might increase the risk of

death. The fourth set of boxplots (posterior distributions of τY
4 ) suggests no evidence

of an association between both supplementations and survival. Finally, overall for the

entire population of babies (last set of boxplots), we found weak evidence that F+I+A

improves survival. Results are not sensitive to the choice of ρ and ψ.

We then estimated the posterior distribution of the proportion of infants (p) whose

survival is improved by the F+I+A supplementation. Specifically, we define the m-th

posterior sample of p as

p̂(m) =
1

N

N∑

i=1

#
(
W

(m)
i (1) −W

(m)
i (0) > 50 & W

(m)
i (0) ≤ 2500

)
,

where i is the child. We found that the posterior mean 1
M

∑M
m=1 p̂

(m) = 0.27 indicating

that 27% of the infants are in the stratum Wi(1) −Wi(0) > 50 & Wi(0) ≤ 2500.

Finally we investigate whether the predictions of principal strata are sharp enough

that, in the future, supplements might be given only to mothers whose infants are

predicted to be in the W (0) ≤ 2500, W (1) −W (0) > 50 strata. Specifically, for each

child we estimate the vector of probabilities πi = (πi1, πi2, πi3, πi4), where πij is the

probability that infant i is in the principal stratum j = 1, 2, 3, 4. That is, we estimate
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the πi2 as:

π̂i2 =
1

M

M∑

m=1

#
(
W

(m)
i (1) −W

(m)
i (0) > 50 & W

(m)
i (0) ≤ 2500

)
.

Figure 7 shows histograms of the probabilities π̂i1 + π̂i2 = P (Wi(0) ≤ 2500) (Panel

a), π̂i2/(π̂i1 + π̂i2) = P (Wi(1) − Wi(0) > 50 | Wi(0) ≤ 2500) (Panel b), and π̂i4/
(π̂i3 + π̂i4) = P (Wi(1) − Wi(0) > 50 | Wi(0) > 2500) (Panel c), respectively. The

vertical lines are placed at 0.2 and 0.8.

Predictions of children in the principal strata are reasonable sharp. In Panel (a) we

found that 45% and 33% of the children have π̂i1 + π̂i2 less than 0.2 and larger than

0.8. In Panel (b) we found that 0% and 40% of the children have π̂i2/(π̂i1 + π̂i2) less

than 0.2 and larger than 0.8. Finally in Panel (c) we found that 26% and 0.003% have

π̂i4/(π̂i3 + π̂i4) less than 0.2 and larger than 0.8.

In summary, these results indicate that F+I+A has an effect, where it most need,

of increasing the birth weight among the LBW infants and increasing their chances of

survival. Instead the M+A intervention, because it increases the birth weight among

the not-LBW, is a less ideal intervention than the F+I+A and might harm the largest

babies.

7 Discussion

A micronutrient supplementation trial is considered effective if the treatment reduces

the risk of infant mortality either directly or through increases in birth weight. Because

infant mortality is greatest among low birth weight infants (LBW), an intervention to

increase fetal growth must increase birth weight mainly among the smallest babies.

A community-based trial in Nepal has shown that a multiple micronutrient supple-

mentation increases birth weight but the limitation in the study size has to date pre-

vented us from unambiguously establishing that this translates into a mortality benefit

(Christian et al. 2003b).

Our analysis demonstrates that the standard approach of estimating a mean differ-

ence in a continuous outcome between a treatment and control group may not adequately

capture the impact of nutritional supplementation on birth weight. The ability to assess

whether the treatment effect varies across the distribution of the outcome may provide

insights into the mechanism by which the treatment affects the outcome, and ideas as to

why a surrogate outcome (such as birth weight) may not reflect the effect of treatment

on the real outcome of interest (mortality).

In this paper, we develop a counterfactual model to evaluate the efficacy of mi-

cronutrient supplementation trials in developing countries. We focus on whether the

supplementation increases birth weight and ultimately survival differently among the

smaller and the larger babies, and whether the supplementation improves survival

largely through its positive effect on birth weight or it improves survival even without
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affecting the birth weight. This analysis demonstrates that inference about counter-

factual treatment effects in the middle of the birth weight distribution are relatively

robust to unverifiable assumptions about the joint distribution of the counterfactuals.

However, in our previous work (Dominici et al. 2005b), we have provided evidence that

inference about counterfactual treatment effects on birth weights at the tails of the birth

weight distribution are sensitive to these unverifiable assumptions.

The posterior distributions of all the parameters are evaluated by using Bayesian

inferences with data-augmentation methods

(Tanner and Wong 1987; Tanner 1991; Albert and Chib 1993; Chib and Greenberg 1998).

A nice feature of this approach is that we can evaluate the posterior distributions of

the quantities of interest taking into account uncertainty in the imputation of the the

missing counterfactuals, missing data and measurement error. In addition, we can ex-

plore the sensitivity of the posterior inferences to unverifiable assumptions about the

joint distribution between the observed and the counterfactual variables.

For estimating percentile-specific effects of the treatment on birth weights, we devel-

oped and compared three modelling approaches for the difference in quantile functions:

1) model A assumes that (Wi(0),Wi(1)) is jointly normal with marginal means that

depend on the mother’s covariate profile, and we fit this model accounting for the un-

certainty in the imputation of the missing birth weights and in the prediction of the

birth weights for the infants that were measured after 72 hours; 2) Model B assumes

that Wi(0),Wi(1) is jointly normal but with marginal means (µ0, µ1) that do not de-

pend on the mother’s covariates, and we fit this model by relying on one “working” data

set where the missing data and the measurements made after 72 hours where replaced

by predicted values from a regression model (9); and 3) Model C which simply assumes

that the quantile function difference is a smooth function of the percentiles. Missing

data were imputed by use of multiple imputation. These three models provided very

similar results on the average treatment effects.

In summary, we have provided an inferential framework for estimating treatment

effects in counterfactual models in a randomized trial with a continuous post-treatment

variable. By comparing population with counterfactual parameter estimates, carrying

out sensitivity analyses, and implementing principal stratification, we have characterized

the amount of evidence supporting the scientific questions of interest and their sources

of uncertainty.

We found that the treatment effects varied across the birth weight distribution for

F+I+A but not for M+A. In fact, there was a constant treatment effect of the M+A of

about 90 grams. For F+I+A, the average treatment effect was 100 grams at the lower

end of the distribution. In environments like rural Nepal, it may be more important to

selectively affect the lower rather than the upper part of the birth weight distribution.

In fact, impacting the upper part of the distribution may be harmful to the mother and

infant.

We found the multiple micronutrient supplement to be associated with a slightly

elevated risk of early infant mortality, especially among the no-LBW infants, although

with large statistical uncertainty. This was despite the significant increase in birth



18 Effect of micronutrient supplementation on neonatal survival

weight. The risk of birth asphyxia as a cause of neonatal mortality also appeared to

be higher in the group receiving the multiple micronutrient supplement. On the other

hand, folic acid plus iron was associated with an overall reduction of infant mortality

among LBW-infants. Given an improvement in birth weight at the lower end of the

distribution, this intervention may have produced improved survival overall, while the

multiple micronutrient appeared to have no impact on survival because deaths averted in

the smaller infants were negated by higher mortality at the upper end of the distribution.

The estimation of treatment effects by percentile of the birth weight distribution

has public health significance. We have carried out additional analyses to investigate

whether predictions of infants in principal strata are reasonably sharp. For the F+I+A

we found that 33% of the infant have a probability of being low birth weight larger than

0.80 and that 40% of the low birth weight infants have a probability Wi(1)−Wi(0) > 50

larger than 0.80. Therefore from a public health perspective, this approach can also help

identify whether a targeted, rather than universal supplementation program would be

more effective and efficient in achieving a nutritional goal for a population. We can use

covariate information to predict those mothers who are likely to have larger infants and

to exclude them from intervention programs.

Currently, recommendations exist for supplementing women with iron-folic acid dur-

ing pregnancy in developing countries. The Nepal study (Christian et al. 2003a) demon-

strates that beyond reducing anemia, iron can result in an improvement in birth weight

primarily through moving the lower tail of the birth weight distribution to the right.

Presumably, this effect is mediated through improving the iron status of those pregnant

women who are the most iron deficient. These data from Nepal reveal that when eval-

uating public health interventions it is important to be, at the very least, cognizant of

the different beneficial effects of an intervention depending on where in the distribution

the program participants fall and that an overall effect size may: 1) under-estimate

the maximum likely benefit in the most malnourished individuals; and 2) incorrectly

assume benefits where none exist and potentially mask harm in the more well-nourished

individuals.

Appendix

List of full conditionals in the Gibbs sampling

• missing birth weights: [Wi(0) | Yi(0),xi,η2] for i ∈ I0mis and [Wi(1) | Yi(1),xi,η2]

for i ∈ I1mis. These are not available in closed form and we implement a metropo-

lis step;

• birth weights for the measurements made after the 72 hours:

[Wi(1) | Witi
(1), ti, Yi(1),η3] for i ∈ M1 and from [Wi(0) | Witi

(0), ti, Yi(0),η3]

for i ∈M0 respectively. These are not available in closed form and we implement

a metropolis step;

• missing counterfactuals for the birth weights: [Wi(0) | Wi(1), Yi(0), Yi(1),η2] for
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i ∈ I1 and from [Wi(1) |Wi(0), Yi(0), Yi(1),η2] for i ∈ I0. These are not available

in closed form and we implement a metropolis step;

• missing counterfactuals for the mortality indicators: [Yi(0) | Yi(1),Wi(1),Wi(0),η1]

for i ∈ I1 and from [Yi(1) | Yi(0),Wi(1),Wi(0),η1] for i ∈ I0. These are not avail-

able in closed form and we implement a metropolis step;

• we generate γ0 from the full conditional distribution:

N

(
1

N
× (
∑

i

ti(Witi
(Zi) − γ1t1);

1

N
× τ2

)
;

• we generate γ1 from the full conditional distribution:

N

(
1∑
i t

2
i

× (
∑

i

ti(Witi
(Zi) − γ0);

1∑
i t

2
i

× τ2

)
;

• we generate τ2 from the full conditional distribution:

IG

(
N/2 − 1;

1

2

∑

i

(Witi
(Zi) − γ0 − γ1ti)

2

)
;

• we generate α0 from the full conditional

Np

(
[
∑

i

x
′

ixi]
−1 ×

∑

i

x
′

iWi(0);V0

)
, where V0 =

[
1

σ2
0

∑

i

x
′

ixi

]−1

;

• we generate α1 from the full conditional

Np

(
[
∑

i

x
′

ixi]
−1 ×

∑

i

x
′

iWi(1);V1

)
, where V1 =

[
1

σ2
1

∑

i

x
′

ixi

]−1

;

• the full conditionals of σ2
0 and σ2

1 are not available in closed form. We implement

a metropolis step where the proposal distribution is log-normal with mean equal

to the logarithm of the current value of the parameter and known variance;

• the full conditional of β is not available in closed form. We implement a metropolis

step where the proposal distribution is multivariate normal with mean equal to

the current value of the parameter and covariance matrix obtained by fitting the

logistic regression model (6) to the data.
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Table 1: Descriptive statistics: type of micronutrient supplementation, sample size (N),

average birth weight; percent deaths, percent missing birth weights, percent weights

measured after the 72 hours. The average birth weights are calculated based upon one

imputed data set. The average birth weights obtained by excluding the babies with

missing data and measured after the 72 hours are within parentheses.

Treatment N average bw % missing % deaths % bw

(grams) among the missing after 72 hours

Iron + Folate + vit A 766 2640 (2750) 7.0 34 10

Multiple + vit A 870 2654 (2784) 6.7 39 12.1

vit A 866 2573 (2714) 8.0 39 12.7

Table 2: Descriptive statistics: type of micronutrient supplementation, sample size (N),

average birth weight and (standard deviation). The average birth weights are obtained

by excluding the babies with missing data and by replacing the birth weights measured

after the 72 hours with their predicted values at time zero.

Treatment N average bw (standard deviation)

Iron + Folate + vit A 766 2640 (465)

Multiple + vit A 870 2654 (458)

vit A 866 2573 (467)
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Table 3: Definition of parameters of scientific interest for estimating the effects of mi-

cronutrient supplementation on birth weight and on infant mortality as a function of

birth weight percentiles. The subscripts i and i
′

indicate two different infants.

Percentile-specific Effects on Birth Weight

Average TEW = E[Wi(1) −Wi(0)]

p-specific ∆W
p = Q1(p) −Q0(p)

Percentile-specific Effects on Infant Mortality

Average TEY = E[Yi(1) − Yi(0)]

p-specific ∆Y
p = E[Yi(1) | F1(Wi(1)) = p] −E[Yi(0) | F1(Wi(0)) = p]

P-Stratification 



τY
1 = E[Yi(1) − Yi(0) given Wi(0) ≤ 2500 & Wi(1) −Wi(0) ≤ 50]

τY
2 = E[Yi(1) − Yi(0) given Wi(0) ≤ 2500 & Wi(1) −Wi(0) > 50]

τY
3 = E[Yi(1) − Yi(0) given Wi(0) > 2500 & Wi(1) −Wi(0) ≤ 50]

τY
4 = E[Yi(1) − Yi(0) given Wi(0) > 2500 & Wi(1) −Wi(0) > 50]
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Figure 1: Top: Differences between empirical quantile functions of the birth weights for

the treated and control groups. Panel (a) shows the quantile differences for the groups

F+I+A versus A. Panel (b) shows the quantile differences for the groups M+A versus

A. The red dots denote quantile differences of birth weights including the ones measured

after the 72 hours. The black dots denote quantile differences obtained from a “working

data set” where the birth weight measurements taken after the 72 hours where replaced

by their predicted values at time zero (details on this prediction model are provided

in Section 2). The dotted horizontal line is placed at the average difference of the

birth weights between the two groups. Bottom: estimated log-odds of death as smooth

function of the birth weight with 95% confidence bands and plotted in correspondence

to the observed range of birth weights in the two groups.
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Figure 2: Birth weights plotted versus time of measurements. Red dots denote birth

weights measured under the treatment and green dots denote birth weights measured

under the control. The segments connect the observed measurements to the Bayesian

posterior means of the predicted measurements at time zero for a random subset of the

data.
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Figure 3: Marginal posterior distributions of the average treatment effect for the coun-

terfactual model TEW = E(Wi(1) −Wi(0)] under two model specifications. Panel (a)

shows the results for F+I+A compared to vit A and Panel (b) shows the results for

M+A compared to vit A. The red curve denotes the posterior distribution of the av-

erage causal treatment effect obtained under a Bayesian model that accounts for the

uncertainty in the imputation of the missing data, the estimation of the birth weights at

time zero, and the mother’s covariates (Model A). The green curve denotes the posterior

distribution obtained under a Bayesian model that uses one imputed data set and that

does not account for the mother’s covariates (Model B).
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Figure 4: Marginal posterior distributions of the percentile-specific treatment effects

on birth weight under Models A, B, and C denoted with red, green and blue smooth

lines, respectively. The black dots are the differences in empirical quantile functions for

a “working data set”. The grey polygon denotes the 95% posterior confidence bands

under Model A. At the far rights are shown posterior inferences and 95% uncertainty

intervals of the average treatment effect for the three models.
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Figure 5: Posterior means and 95% posterior regions of the percentile-specific effects of

treatment on mortality (∆Y
p ) as a smooth function of the percentiles under Models A

and B.
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Figure 6: Posterior distributions of the average effects of treatment on mortality under

Model A. Results are shown for different values of ρ and ψ. The four boxplots witin

each the five sub-populations denote the posterior distribution for the following four

scenarios of (ρ, ψ) : (0.9, 1.5), (0.9, 25), (0.5, 1.5), (0.9, 25). The posterior distributions

are shown separately for five sub-populations of infants: 1) LBW infants for whom

there is an effect of treatment on birth weight smaller than 50 grams; 2) LBW infants

for whom there is an effect of treatment on birth weight larger than 50 grams; 3) not-

LBW for whom there is an effect of treatment on birth weight smaller than 50 grams;

4) not-LBW for whom there is an effect of treatment on birth weight larger than 50

grams; and 5) all infants.
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Figure 7: Panel (a): histogram of the probabilities π̂i1 + π̂i2 = P (Wi(0) ≤ 2500). Panel

(b): histogram of the probabilities π̂i2/(π̂i1 + π̂i2) = P (Wi(1) −Wi(0) > 50 | Wi(0) ≤
2500). Panel (c):histogram of the probabilities π̂i4/(π̂i3 + π̂i4) = P (Wi(1) −Wi(0) >
50 |Wi(0) > 2500). The vertical lines are placed at 0.2 and 0.8.


