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Comments on Article by Celeux et al.

Ming-Hui Chen∗

I would like to congratulate the authors for developing a major extension of the

deviance information criterion (DIC) introduced by Spiegelhalter et al. (2002) in the

setting of missing data models. Recently, DIC is becoming increasingly popular for

model assessment and model comparison. One of the main reasons for this is that DIC

is well defined under improper priors as long as the resulting posteriors are proper and

it is generally easy to compute.

Missing data models are routinely encountered in practice. There are several chal-

lenges posed by missing data. First, it is very difficult to reconstruct missing data. In

most cases, the lost information due to missing data is not easy to recover. Second, it

is more challenging to develop a measure of model complexity, which is a key issue in

developing a model comparison criterion. Computation is another obstacle in dealing

with such models. I am glad to see that the authors tackle this difficult problem and

propose several natural extensions of DIC for these models.

Other Bayesian criterion based tools for model assessment and model comparison

are available but not mentioned in the article. The Conditional Predictive Ordinate

(CPO) statistic has been widely used in the statistical literature under various contexts.

A detailed discussion of the CPO statistic and its applications to model assessment

can be found in Geisser (1993), Gelfand and Dey (1994), and Gelfand et al. (1992).

As shown in Gelfand and Dey (1994), asymptotically the CPO statistic has a similar

dimensional penalty as AIC. In this perspective, the CPO statistic may be similar

to DIC. The L measure criterion is another useful tool for model comparison. The L

measure is constructed from the posterior predictive distribution of the data, and can be

written as a sum of two components, one involving the means of the posterior predictive

distribution and the other involving the variances. The L measure was introduced

by Ibrahim and Laud (1994) for normal linear models and Gelfand and Ghosh (1998)

for generalized linear models. The theoretical properties were examined in detail by

Ibrahim et al. (2001). Chen et al. (2004) proposed the weighted L measure, which is a

natural extension of the L measure. Both the CPO statistic and the L measures are

well defined under improper priors. Thus, these criteria are similar to the DIC in this

sense.

To examine performance of various DICs, I consider a small simulation study using a

binary regression model with probit link. Suppose yi takes values 0 or 1 with probability

pi = P (yi = 1|β, xi) = Φ(β0 + β1xi1 + β2xi2 + β3xi3 + β4xi4), (1)

where Φ is the standard normal cumulative distribution function, xi = (1, xi1, . . . , xi4)
′

is a 5×1 vector of covariates, which includes an intercept, and β = (β0, β1, . . . , β4). The
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model (1) can be rewritten via the latent variable approach of Albert and Chib (1993).

Specifically, we define

yi =

{
1 if zi ≥ 0,
0 if zi < 0,

(2)

and

zi = x′
iβ + εi, εi ∼ N(0, 1). (3)

Then, the joint distribution of yi and zi is given by

f(yi, zi|β, xi) =
[
yi1{zi≥0} + (1− yi)1{zi<0}

]
× 1√

2π
exp{− (zi − xiβ)2

2
}. (4)

Since the zi’s are not observed, (2) and (3) can be viewed as a missing data model.

For each simulated dataset, n independent binary responses (yi’s) are generated

with success probability pi given in (1) for i = 1, 2, . . . , n, where (xi1, xi2, xi3, xi4) are

independently and identically distributed random vectors from a multivariate normal

distribution with means (0, 0, 0, 0), variances (16, 9, 0.3, 3), and a correlation matrix




1 0.6 0 0

0.6 1 0.8 0

0 0.8 1 0.6
0 0 0.6 1


 .

I consider β = (−1.0, 3.0, 0,−1.5, 0)′, β = (−1.0, 3.0, 2.0, −1.5, 0)′ and

β = (−1.0, 3.0, 2.0,−1.5, 1)′, which correspond to the true models (x1, x3), (x1, x2, x3),

and (x1, x2, x3, x4), respectively. Sample size is taken to be n = 200 and for each β, I

generate 200 independent datasets. For each simulated dataset, I fit 24−1 = 15 models,

so that each model includes an intercept. For each model, an improper uniform prior

for β, i.e., π(β) ∝ 1, is used. In this simulation study, I compare the following criteria:

DIC1, DIC4, DIC5, DIC7, AIC, BIC, and L measure (L(ν)). DIC1 is constructed from

the distribution f(yi|β, xi) in (1) while DIC4, DIC5, and DIC7 are constructed from the

latent variable model defined by (2) and (3). Also, AIC and BIC are given by

AIC = −2 logL(β̂|D) + 2p, BIC = −2 logL(β̂|D) + p log(n),

where p is the dimension of β, L(β̂|D) is the likelihood function evaluated at the maxi-

mum likelihood estimate β̂, and D = ((yi, xi), i = 1, 2, . . . , n) denotes the observed data.

For the model (1), the L measure with a quadratic loss introduced by Gelfand and Ghosh

(1998) takes the form

L(ν) =

n∑

i=1

µi(1− µi) + ν

n∑

i=1

(µi − yi)
2,

where µi = E[Φ(x′
iβ)|D)] and 0 < ν ≤ 1. The performance evaluation criterion is a 0-1

loss function, the loss being 0 if the true model is selected and 1 otherwise. Table 1

shows the results.
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True model DIC1 DIC4 DIC5 DIC7 AIC BIC L(0.5)

(x1, x2, x3, x4) 96 1 0 19 83 23 142

(x1, x2, x3) 78 2 0 30 74 32 60

(x1, x3) 89 25 0 25 101 108 26

Table 1: Frequencies of Ranking the True Model as Best Based on 200 Datasets

From Table 1, we saw that no single measure is dominant in all three cases. The

L measure performed better when the true model becomes more complex and BIC

performed better when the true model is more parsimonious. In all three cases, DIC1

and AIC performed reasonably well. However, DIC4, DIC5, and DIC7 had much worse

performance than DIC1. This result is not surprising at all as little information is

available in the observed data D regarding latent variables zi’s. In fact, the binary

response yi is determined only by sign of zi while not by actual value of zi. Thus, a

variation of DIC constructed from the distribution of missing data would have a little

power in selecting the true model.

Throughout the article, most attention has been paid to computational applicability

or simplicity while less effort has been put on examining power of the measure being

proposed. The above small simulation study suggests that the best DIC may be DIC1,

which is constructed from the distribution of observed data. My first question to the

authors is: When or for which missing data models would the proposed variations

of DIC constructed from the joint distribution of observed and missing data perform

better or at least not much worse than DIC1? My second question: Would DIC be

more preferable over other criterion based measures such as CPO or L measure in the

presence of missing data? My third question is: For certain missing data models, would

it be better to construct DIC from either the marginal distribution
∫

f(y|z, θ)dz or

the conditional distribution f(y|z, θ) while treating both z and θ as parameters similar

to the one proposed by Huang et al. (2005) in the setting of missing covariates data

models?
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