
Bayesian Analysis (2007) 2, Number 3, pp. 529–556

Re-considering the variance parameterization in

multiple precision models

Yi He∗, James S. Hodges†, and Bradley P. Carlin‡

Abstract. Recent developments in Bayesian computing allow accurate estimation
of integrals, making advanced Bayesian analysis feasible. However, some problems
remain difficult, such as estimating posterior distributions for variance parameters.
For models with three or more variances, this paper proposes a simplex parame-
terization for the variance structure, which has appealing properties and eases the
related burden of specifying a reference prior. This parameterization can be prof-
itably used in several multiple-precision models, including crossed random-effect
models, many linear mixed models, smoothed ANOVA, and the conditionally au-
toregressive (CAR) model with two classes of neighbor relations, often useful for
spatial data. The simplex parameterization has at least two attractive features.
First, it typically leads to simple MCMC algorithms with good mixing proper-
ties regardless of the parameterization used to specify the model’s reference prior.
Thus, a Bayesian analysis can take computational advantage of the simplex param-
eterization even if its prior was specified using another parameterization. Second,
the simplex parameterization suggests a natural reference prior that is proper,
invariant under multiplication of the data by a constant, and which appears to
reduce the posterior correlation of smoothing parameters with the error precision.
We use simulations to compare the simplex parameterization, with its reference
prior, to other parameterizations with their reference priors, according to bias
and mean-squared error of point estimates and coverage of posterior 95% credible
intervals. The results suggest advantages for the simplex approach, particularly
when the error precision is small. We offer results in the context of two real data
sets from the fields of periodontics and prosthodontics.

1 Introduction

Recent developments in Bayesian computing have made it possible to analyze many
previously intractable models, but some problems remain difficult, such as estimat-
ing posterior distributions for variance parameters. This paper considers the class of
multiple-precision linear models, having linear mean structure, normal errors, and at
least three precision parameters. This class includes the conditionally autoregressive
(CAR) model with two types of neighbor relations (2NRCAR; Besag & Higdon 1999,
Reich et al 2007), crossed random-effects models (Box & Tiao 1992, Chapter 5), some
dynamic linear models (West & Harrison 1999, Chapter 4), smoothed analysis of vari-
ance (Gelman 2005a, Hodges et al 2007), some spatio-temporal models with 1 or 2 spa-
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tial neighbor relations and 1 temporal relation (2NRCAR or 3NRCAR), several linear
mixed models (Zhao et al 2006), e.g., additive mixed models and bivariate smoothing,
and, finally, many problem-specific models (e.g., Gelman & Huang 2007). To make this
discussion concrete, we use the 2NRCAR model applied to periodontal data, as follows.

In periodontics, attachment loss is used to assess cumulative damage to a patient’s
periodontium and to monitor disease progression (Darby & Walsh 1995). Attachment
loss is measured at six sites on each tooth; Figure 1 shows one patient’s data. Each
measurement site is indicated by a small circle whose shade of grey indicates measured
attachment loss, with darker shade indicating larger (worse) attachment loss. Excluding
the four “wisdom teeth” (third molars), a full mouth of 28 teeth gives 168 measurements.
If the two jaws are treated as isolated from each other, this spatial structure has at least
2 “islands”, i.e., disconnected groups of measurement sites.

Attachment loss measurements are spatially correlated, but the correlation may not
simply be a function of distance. Instead of using point-data (geostatistical) methods, it
is practical and intuitive to model attachment loss as measurements on a lattice, which
suggests conditionally autoregressive (CAR) models. However, the 168 measurement
sites have a complex topography, so more than one smoothing parameter may be needed
for adequate fidelity. We consider CAR models with two classes of neighbor relations.
Pairs of neighboring sites come in four types (Figure 2): direct neighbor (Type a), same-
side neighbors crossing the gap between teeth (Type b), opposite-side neighbors on the
same tooth (Type c), and opposite-side neighbors crossing the gap between teeth (Type
d). These four types of neighbor pairs can be grouped into two classes in various ways
(Reich et al 2007). This paper considers the classes shown in Figure 2, with solid and
dashed lines for class 1 and 2 pairs respectively (Grid A in Reich et al., 2007).

Figure 1 summarizes one patient’s data, to which we fit the 2NRCAR model, as
follows. Let y = (y1, · · · , yn)T denote the attachment loss measurements, where the
subscript indexes measurement sites, and specify this 2NRCAR model:

y|θ, τ0 ∼ N(θ, τ0In)

θ|τ1, τ2 ∝ c(τ1, τ2)
1/2exp

(

−1

2
θ′{τ1Q1 + τ2Q2}θ

)

, (1)

where τ0, τ1, and τ2 are precisions and Q1 and Q2 specify the spatial neighbor relations
smoothed by τ1 and τ2 respectively. Qk, k = 1, 2, is n × n with off-diagonal entries
qk,ij = −1 if sites i and j are class-k neighbors and 0 otherwise, and diagonal entries
qk,ii the number of site i’s class-k neighbors.

Models are often reparameterized to improve computing or interpretation, e.g., a
density with long, narrow contours can be transformed to have more circular contours.
This paper proposes an alternative parameterization for variance-structure parameters,
the simplex parameterization (Besag & Higdon 1999), and a slice sampler for MCMC
draws in this parameterization. The simplex parameterization and its associated ref-
erence prior are then compared to other parameterizations and their reference priors.
Often, the posterior for variance-structure parameters is sensitive to the prior because
the data give little information about them, e.g., because of the spatial structure
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(Reich et al 2007). Thus, reference priors for variance-structure parameters are an active
research area (e.g., Browne & Draper 2006; Gelman 2005b).

Section 2 illustrates some problems that can arise in the posterior distributions
of variance-structure parameters, motivating the simplex parameterization. Section 3
develops the new parameterization and a slice sampler for it. Section 4 uses effec-
tive sample size to compare the computing performance of MCMC algorithms aris-
ing from the simplex parameterizations and three competing parameterizations: pre-
cisions with gamma priors; standard deviations with flat priors (Gelman 2005b); and
log precision ratios (defined below; Reich et al 2007) with flat priors. Our MCMC
routine on the simplex parameterization generally outperforms MCMC routines on
other parameterizations, even for reference priors specified on those other parame-
terizations. Section 5 uses simulation studies to explore statistical properties of the
reference priors associated with each parameterization. Section 6 summarizes our find-
ings. The computer code (in R) used for the simplex parameterization is available at
http://www.biostat.umn.edu/~brad/software.html.

2 Problems with commonly-used parameterizations

For Bayesian analysis of multiple-precision models, several parameterizations have been
proposed for the variance structure, including precisions τk, standard deviations σk =

τ
−1/2
k (Gelman 2004), precision ratios rk = τk/τ0, k = 1, 2, . . . , and log precision ratios
zk = log rk (Reich et al 2004). These parameterizations are often associated with
specific reference priors. For the precision parameterization, the standard “vague” prior
is τk ∼ Gamma(ε, ε) for ε = 0.01 or 0.001. For the standard deviation parameterization,
Gelman (2005b) proposed σk ∼ Unif(0, L) for a suitable upper bound L. The precision
ratios, rk , are positive and somewhat like precisions, which suggests rk ∼ Gamma(ε, ε)
as a “vague” prior. Finally, the log precision ratios take values anywhere in the real
line, which suggests zk ∼ Unif(−L,L) for a suitable L.

These parameterizations are all subject to problems that we illustrate using the
2NRCAR model (1) and Figure 1’s data. Figure 3 suggests how the problems arise.
Specifically, for each panel in Figure 3, we re-parameterized model (1) in terms of that
panel’s parameterization, applied the reference prior described above, derived the exact
marginal posterior distribution of the smoothing parameters, and plotted its contours.
For the precision ratios (r1, r2) and log precision ratios (z1, z2), Figure 3’s panels c and
d respectively show contours of the log marginal posterior after integrating all other
parameters out of the posterior. Panels a and b show the log conditional posterior for
the precisions (τ1, τ2) and standard deviations (σ1, σ2) after integrating θ out of the
posterior and fixing τ0 = 1 and σ0 = 1, respectively. (These values of τ0 and σ0 are
typical of those estimated in calibration studies.)

The contours for (τ1, τ2), (σ1, σ2), and (r1, r2) (panels a, b, and c, respectively) are
L-shaped with two long arms and modes pressed tightly against one or both coordinate
axes. While each plot assumes a particular reference prior, the same qualitative prob-
lems are present for other reference priors. The contours of (z1, z2)’s posterior are long

http://www.biostat.umn.edu/~brad/software.html
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and narrow here (panel d) but are distinctly L-shaped for other periodontal datasets
(Reich et al 2007). Bimodal posteriors have been observed in the (r1, r2) and (z1, z2)
parameterizations (Reich et al 2007), and indeed bimodality occurs readily even in the
simplest hierarchical models (Liu & Hodges 2003).

Posterior distributions like these create predictable difficulties. First, standard
MCMC approaches tend to give chains with high lagged autocorrelations and small
effective sample sizes. For example, for the parameterizations in Figure 3 a, b, c, the
autocorrelations at lag 10 are 0.2 to 0.4. Second, the parameters can be poorly identi-
fied, that is, either they are highly correlated a posteriori, or the posterior has a large
flat mode indicating poor ability to distinguish between possible parameter values. Re-
ich et al (2007) showed that for a variety of 2NRCAR spatial structures, posteriors for
the precision parameters are either very flat or have pronounced ridges, inducing bad
MCMC convergence and mixing (Gelfand et al 1995).

Different problems affect other aspects of Bayesian analysis. The posterior corre-
lation between the error precision and the smoothing precisions is often high because
the error precision in effect specifies the data’s scale, and the data generally give much
more information about this precision than about higher-level precisions. The variance,
precision and standard deviation parameterizations are scale-dependent, so for example
if the measurement unit is changed from centimeters to millimeters, these parameters
are multiplied by 100, 0.01, and 10 respectively. This affects interpretation of hyperpa-
rameters and makes it difficult to specify a reference prior. The precision ratio and log
precision ratio parameters rk and zk are scale-invariant, i.e., invariant if the data are
multiplied by a constant, but as mentioned are prone to bimodality and highly auto-
correlated MCMC draws. Sections 4.2 and 4.3 illustrate the latter point in detail. The
simplex parameterization (Besag & Higdon 1999), which we now introduce, appears to
avoid or mitigate these difficulties.

3 The simplex parameterization and associated methods

3.1 Definition of the simplex parameterization

For a multiple-precision model with precisions (τ0, τ1, · · · , τm), define the total relative
precision

λ =

m
∑

k=1

rk =
1

τ0

m
∑

k=1

τk,

where rk = τk/τ0. Define the allocation of total relative precision as β = (β1, · · · , βm),
where

βk =
rk
λ

=
rk

∑m
j=1 rj

=
τk

∑m
j=1 τj

;

∑m
k=1 βk = 1, and β = (β1, · · · , βm) takes values in the m-dimensional simplex. The 2,

3, and 4-dimensional simplices are a line segment, equilateral triangle, and tetrahedron,
respectively.
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This parameterization has two a priori attractive features. First, it is scale-invariant,
that is, it does not change when the data are multiplied by a constant. Also, the simplex
parameter β lies in a bounded space, so a natural reference prior, the flat prior, is proper
and exchangeable. The rest of this paper uses a flat prior on β and gamma priors on λ
and τ0.

3.2 Computing strategy for the simplex parameterization

For a multiple-precision model like (1), the vector of unknown parameters is (θ, τ0, λ,β),
where θ is the mean-structure parameters, τ0 the error precision, λ the total relative
precision, and β the allocation of total relative precision. To avoid MCMC sampling
variation, we analytically integrate θ and τ0 out of the joint posterior and run a slice
sampler on the marginal posterior of (λ,β). Posterior summaries for θ and τ0 are then
obtained by Rao-Blackwellizing.

Suppose the precision parameters in the 2NRCAR model (1) have prior p(τ0, τ1, τ2).
Then the joint posterior of all the unknowns is

p(θ, τ0, τ1, τ2|y) ∝ p(τ0, τ1, τ2)p(y|θ, τ0)p(θ|τ1, τ2)
∝ p(τ0, τ1, τ2)τ

n/2
0 exp

(

−τ0
2

∑

(yi − θi)
2
)

×
n−G
∏

j=1

(τ1d1j + τ2d2j)
1/2 exp

(

−1

2
θ
′(τ1Q1 + τ2Q2)θ

)

, (2)

where G is the number of islands in the spatial map and dkj is defined as follows.
Simultaneously diagonalize the two positive semi-definite matrices Qk as B′DkB, where
B is nonsingular (Newcomb 1961), and let Dk have jth diagonal element dkj . It is easy
to see θ|y, τ0, r1, r2 ∼ N((Qr + In)−1X ′y, τ0(Qr + In)), where Qr = r1Q1 + r2Q2 and
rk = τk/τ0. After integrating out θ,

p(τ0, r1, r2|y) ∝ p(τ0, r1, r2)τ
n−G

2

0 |Qr + In|−
1
2

n−G
∏

j=1

(r1d1j + r2d2j)
1/2

× exp
(

−τ0
2

[y′y − y′(Qr + In)−1y]
)

.

Then if τ0’s prior is Gamma(a0, b0), with mean a0

b0
, integrate out τ0 to give

p(r1, r2|y) ∝ p(r1, r2)

n−G
∏

j=1

(r1d1j + r2d2j)
1/2|Qr + In|−

1
2R−b,

where R = b0 + 1
2

[

y′y − y′(Qr + In)−1y
]

, and b = a0 + n−G
2 . Now change to the

simplex parameterization λ = r1 + r2 and β = r1/λ, giving

p(λ, β|y) ∝ p(λ, β)λ
n−G

2 |I + λQβ |−
1
2

n−G
∏

j=1

(β(d1j − d2j) + d2j)
1
2R−b,
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where R = b0 + 1
2 (y′y − y′(I + λQβ)−1y), Qβ = βQ1 + (1− β)Q2, and the Jacobian is

implicit in the change of variables in the prior, from p(r1, r2) to p(λ, β). B is orthogonal
if and only if Q1Q2 is symmetric, in which case

p(λ, β|y) ∝ p(λ, β)

n−G
∏

j=1

(

λγj

1 + λγj

)
1
2



b0 +
1

2





∑

j

λγj

1 + λγj
y∗2

j









−b

, (3)

where y∗ = By and γj = β(d1j − d2j) + d2j , so (3) depends on λ and γj only through
λγj

1+λγj
.

For this problem, we propose a slice sampler with one auxiliary variable. A slice
sampler can be more efficient than an ordinary Metropolis-Hastings algorithm, e.g., Neal
(1997, 2003), Tierney & Mira (1999). Generally, the slice sampler can be described as
follows (Damien et al 1999). Suppose an MCMC has stationary distribution π(λ,β) ∝
p(λ,β)l(λ,β). Introduce an auxiliary random variable U with a conditional uniform
distribution U |β, λ ∼ Unif(0, l(λ,β)). Then (λ,β, U) has joint distribution

f(λ,β, u) ∝ p(λ,β)I{u<l(λ,β)}(λ,β, u).

The slice sampler is then a special case of the Gibbs sampler:

1. Initialize β(0), λ(0);

2. Generate U |(λ,β) from a uniform distribution:
U t|(λt−1,βt−1) ∝ Unif(0, l(λt−1,βt−1)).

3. Generate β|(u, λ) from p(λ,β) restricted to l(λ,β) > u:
βt|(λt−1, U t) ∝ p(λ,β)I(l(λt−1,β) > U t).

4. Generate λ|(u,β) from p(λ, β) restricted to l(λ,β) > u:
λt|(βt, U t) ∝ p(λ,β)I(l(λ,βt) > U t).

Repeat steps 2-4; after convergence, (βt, λt) are samples from the stationary distribution
π(λ,β).

A natural p(λ,β) is p(λ,β) = p1(λ)p2(β), where p1 is a gamma density and p2

is uniform on the simplex, a special case of the Dirichlet distribution. With this
choice, candidate βj can be generated as Xj/

∑m
j=1Xj , where X1, · · · , Xm are indepen-

dent exponential variates. An informative prior for β can be Dirichlet(α1, · · · , αm),
from which samples can also be generated using draws from gamma distributions. For

the 2NRCAR model, l(λ,β) = λ
n−G

2

∏n−G
j=1 (βd1j + (1 − β)d2j)

1
2 |I + λQβ |−

1
2R−b and

p(λ, β) = 1
Γ(aλ)λ

aλ−1e−bλλI(β ∈ [0, 1]).

The posterior distributions of θ and τ0 can be estimated by Rao-Blackwellizing
(Casella & Robert 1996). For posterior samples (λt,βt), t = 1, 2, · · · ,M , θ’s posterior
density can be estimated as

p(θ|y) =

∫

p(θ|λ,β,y)p(λ,β|y)dλdβ ≈ 1

M

M
∑

t=1

p(θ|λt,βt,y), (4)



He, Y., Hodges, J. S. and Carlin, B. P. 535

where p(θ|λt,βt,y) is θ’s conditional posterior given (λt,βt). For the normal-error
model (1), θ|λ,β,y is multivariate-t with center (P t)−1y, scale (P t)−1Rt/b and 2b
degrees of freedom, where Rt = b0 + 1

2

[

y′y − y′(P t)−1y
]

, and P t = λtB′(βtD1 + (1 −
βt)D2)B + In. Thus θ’s posterior mean and variance are estimated by

E(θ|y) = E(E(θ|λ,β,y)) ≈ 1

M

M
∑

t=1

E(θ|λt,βt,y) =
1

M

M
∑

t=1

µt
θ = µ̄θ

V ar(θ|y) = E(V ar(θ|y, λ,β)) + V ar(E(θ|y, λ,β))

≈ 1

M

[

M
∑

t=1

Σt
θ +

M
∑

t=1

(µt
θ − µ̄θ)(µt

θ − µ̄θ)′
]

, (5)

where µt
θ

and Σt
θ

are the posterior mean and variance of p(θ|λt,βt,y), respectively.

Similarly, τ0|λt, βt,y is gamma distributed with shape b and rate Rt, so posterior sum-
maries for τ0 can be obtained analogously.

4 MCMC algorithm performance in the different param-
eterizations

4.1 Effective sample size (ESS)

Effective sample size (ESS) is commonly used to assess MCMC mixing (e.g., Carlin &
Louis 2000, Chapter 5; Sargent et al 2000; Chen et al 2000; Ridgeway & Madigan 2003).
The ESS of a sampled quantity is defined (Kass et al 1998) as

ESS =
M

1 + 2
∑∞

l=1 ρl
, (6)

where M is the number of MCMC samples for that quantity and ρl is the estimated
lag l autocorrelation of the samples. ESS can be interpreted as the size of an indepen-
dent, identically distributed sample giving information equivalent to the autocorrelated
MCMC sample. In practice ρl is estimated with error, and past a certain l the ρ̂l are
dominated by noise (Gilks et al 1996; Chapter 3). To avoid summing noise, Geyer (1992)
proposed the initial convex sequence estimator, which requires a sequence of empirical
Γm estimates that are positive, monotone, and convex, where Γm is the sum of two
lagged autocovariances γ2m and γ2m+1. The natural estimator of the lagged autoco-

variance is the empirical autocovariance γ̂l = 1
M

∑M−l
t=1 (Xt−X̄)(Xt+l−X̄), where {Xt}

is the sequence of MCMC samples. Priestley (1981, p. 323) suggests using this “biased”
estimate with divisor M rather than the “unbiased” estimate with divisor M − l. De-
fine m∗ as the largest integer such that Γ̂m is a positive, monotonely decreasing, and
convex sequence in m. Then the ESS in (6) sums only estimated autocorrelations ρ̂l for
l ≤ 2m∗.
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4.2 Periodontal data analyzed using 2NRCAR

This section compares MCMC algorithms specified in each of four parameterizations,
for the 2NRCAR model applied to Figure 1’s data. For each parameterization, the data
were analyzed three times, using three different prior distributions, each a reference prior
for one of the parameterizations. This is an unusual simulation study design; the point is
that one may prefer inferences using a reference prior specified on one parameterization,
while it is advantageous to specify the MCMC algorithm on a different parameterization.

The four parameterizations are simplex, log precision ratios (z1, z2), precisions
(τ0, τ1, τ2), and standard deviations (σ0, σ1, σ2). The three reference priors are as follows:
for the simplex parameterization, we put a Gamma(0.01, 0.01) prior on λ, and on β, a
uniform distribution on the unit interval; for the parameterization with three precisions,
we gave each precision a Gamma(0.01, 0.01) prior; and for the parameterization with
three standard deviations, we gave each standard deviation a uniform prior on the
interval (0, 10). For each parameterization, for each prior, 10000 MCMC draws were
made with 5000 discarded for burn-in. Table 1 describes the MCMC algorithm for
each parameterization. Except for the simplex parameterization, the algorithms were
Metropolis-Hastings with normal candidate draws for the working parameters (Table
1), centered on the current draw. For each working parameter, the sample standard
deviation of the 5000 burn-in draws was used as the standard deviation of the candidate
draws in the subsequent 5000 retained iterations. A dynamic search procedure (see the
Appendix) was used to accelerate the slice sampler.

Table 2 shows effective sample size (ESS) for the four parameterizations and three
priors. The simplex parameterization has the largest ESS for two priors, and roughly
the same ESS as (z1, z2) for the flat prior on (σ0, σ1, σ2). The simplex parameterization’s
sample autocorrelations decrease quickly as lag increases and generally vanish by lag 10,
while the alternatives have much larger autocorrelations at all lags (data not shown).
As currently programmed, the simplex parameterization’s slice sampler usually runs
more slowly than the other algorithms, so it has a smaller advantage in ESS per second
of run time (Table 3), and is roughly tied with the log precision ratio parameterization
(z1, z2).

Section 2 suggested that the simplex parameters (λ, β) might have smaller posterior
correlations with the error precision τ0, compared to other parameterizations’ smoothing
parameters. This was true for the present dataset, with the prior distribution having
little effect. For each parameterization, we report the posterior correlation only for the
parameter having the largest absolute correlation. In the simplex parameterization, β
had the largest absolute posterior correlation with τ0, about 0.33 for all three priors.
The analogous results for the other three parameterizations were: (z1, z2), 0.53 for z1;
precisions, 0.53 for τ1; and standard deviations, 0.76 for σ1. Contrary to our expectation,
(z1, z2) — which, like the simplex parameterization, is invariant when the data are
multiplied by a constant — gave the same maximum absolute posterior correlations as
did the precision parameterization.

Figure 4 shows a contour plot of the log marginal posterior arising from the simplex
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parameterization and its reference prior. While this is not especially like a bivariate
normal density, it does seem rather less irregular than the analogous contour plots for
the other parameterizations (Figure 3).

4.3 Smoothed ANOVA (SANOVA) model

The smoothed ANOVA model used here was introduced by Sargent & Hodges (1997)
and fully developed in Hodges et al (2007; see also Smith 1973, Gelman 2005a). Suppose
the experimental design has one error term, c design cells, and n replications per cell.
Parameterize each effect so the design matrix has orthogonal columns. Group the L
columns for main effects, including the intercept, into a matrix A1, and the N columns
for interactions into a matrix A2, and scale A1 and A2 so A′

1A1 = cnIL and A′
2A2 =

cnIN ; A′
1A2 = 0. The SANOVA model is

y = A1Θ1 +A2Θ2 + ε, (7)

where y is the cn-vector of observed outcomes, ε ∼ N(0,Γ1), the grand mean and main
effects in Θ1 have an improper flat prior, the interactions in Θ2 have a N(0,Γ2) prior,
ε and [Θ1|Θ2] are independent a priori, and the two covariance matrices Γ1 and Γ2 are
specified as Γ1 = 1

τ0
Icn and Γ−1

2 = diag(φ1, · · · , φN ). For a set of distinct smoothing
precisions (τ1, · · · , τs), s ≤ N , define a deterministic assignment function j(k) that
specifies groups of φk within which φk = τj(k), and let nj be the number of φk mapping
to τj . The joint posterior after integrating out Θ is

f(τ0, r|Y ) ∝ π(τ0, r)τ
cn−L

2

0 exp(−1

2
τ0W (r))

s
∏

j=1

(

rj
rj + cn

)nj/2

, (8)

where rj =
τj

τ0
and W (r) = y′y − 1

cny′A1A
′
1y − y′A2diag((cn+ rj(k))

−1)A′
2y.

This model has s smoothing precisions τ1, · · · , τs, so the simplex parameter β is s-
dimensional. If τ0 has a gamma prior G(a0, b0), with mean a0

b0
, then τ0’s full conditional

posterior is also gamma. After integrating out τ0, (λ,β) has marginal posterior

f(λ,β|Y ) ∝ π(λ,β)
s

∏

j=1

[

1 +
cn

λβj

]−nj/2

R−b, (9)

where R = b0+ 1
2y′y− 1

2cny′A1A
′
1y− 1

2y′A2diag((cn+λβj(k))
−1)A′

2y and b = a0+ cn−L
2 .

Hodges & Sargent (2001, Section 6) applied smoothed ANOVA to a 23 factorial
experiment testing a material’s tensile strength (Lai & Hodges 1999). The three design
factors were the type of mold, presence of pigment, and type of cure, with n = 6
replications per cell. The dataset is in Hodges & Sargent (2001). We used this dataset
to compare MCMC routines for different parameterizations and priors, as in Section
4.2’s comparison for the 2NRCAR model, and using the same priors as in Section 4.2.
For all three priors, the MCMC on the simplex parameterization has by far the largest
ESS (Table 4) and the smallest autocorrelations (data not shown). The MCMC on the
simplex parameterization also has the largest ESS/sec for two of the three priors (Table
5). Overall, the smoothed ANOVA results are consistent with the 2NRCAR results.
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5 Statistical performance of each parameterization’s ref-
erence prior

5.1 2NRCAR model

To reduce computing time, we simulated periodontal measurements on upper and lower
jaws with 5 teeth each, for 60 total measurements in one “patient”. The two neighbor
classes are as in Figure 2. This simulation experiment’s design considered three factors:
(1) true error precision τ0; (2) the true degree of smoothness in the two classes of neigh-
bor pairs, (τ1, τ2); and (3) the 4 parameterizations, each with its associated reference
prior (Table 6). Table 7 gives the specific true values of (τ0, τ1, τ2).

For each design cell, the 1000 simulated datasets were drawn as follows. By the
spectral decomposition, τ1Q1 + τ2Q2 = Γ′ΛΓ, where Γ is an orthogonal matrix and Λ
is diagonal. Then θ∗ = Γθ has density

p(θ∗) ∝ exp(−1

2
θ∗′Λθ∗) = exp(−1

2
θ∗′

n−GΛn−Gθ∗
n−G)

where the subscript n − G indicates the first n − G rows and/or columns. Thus, the
first n−G elements of θ∗ were drawn from independent normal distributions, for G = 2
islands in the “mouth”. The last 2 elements of θ∗ have flat priors under p(θ∗) and
were drawn from a uniform on (−10, 10). Then the sample of true θ were obtained as
θ = Γ′θ∗.

For the simplex and log precision ratio (Z) parameterizations, MCMC samples were
drawn from the marginal posterior after integrating out θ and τ0, and the posterior
mean and interval coverage were estimated by Rao-Blackwellizing. For the precision
and SD parameterizations, MCMC samples were drawn from the marginal posterior
after integrating out only θ. For the simplex parameterization, we used the slice sampler
(Section 3.2) with starting values βk = 1

s , where s is the number of smoothing precisions,
and for the other parameterizations we used adaptive Metropolis algorithms as described
in Section 4. Trace plots were checked for a sample of artificial datasets and in all cases
indicated sampler convergence.

The parameterization/reference prior combinations (henceforth, “methods”) were
compared according to their results on the standard deviation scale, i.e., σk = 1/

√
τk,

the same scale as the data, using bias and MSE of posterior means as point estimates,
and coverage of equal-tailed 95% credible intervals. (The Appendix gives equations for
Rao-Blackwellizing the Z and simplex parameters in the standard deviation scale.) To
remove effects that obscure comparisons, we report bias as a percent of the true value
and we scale MSE according to the true error variance.

Figure 5 displays scaled bias, scaled MSE, and 95% interval coverage for the four
methods. All methods have small biases for the error standard deviation σ0 except the
Z method in case 3, where the posterior mean overestimates σ0 by about 30%. By
contrast, the Z method consistently underestimates σ1, while the other methods have
small biases. For σ2, all methods have larger bias and the SD method performs worst,
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overestimating substantially in all cases. For all methods and cases, the MSEs for σ0

and σ1 are small. The Z method has the largest MSE for σ1. For σ2, all methods’
MSEs vary a lot, but the simplex method consistently gives the smallest MSE and the
SD method the largest. Finally, all methods give coverage close to 95% for σ0 and σ1

except for Z, which gives low coverage. For σ2, the precision and simplex methods
give coverage 95% or higher for all cases, while the Z and SD methods had quite low
coverage for some cases.

5.2 SANOVA model

This simulation experiment used artificial data from a 23 design with n = 6 replications
per cell, as in Hodges et al’s (2007, section 3) simulation study. The three design factors
were: (1) the true error precision τ0 (note that increasing n and τ0 have the same effect);
(2) the number of truly present interactions (1 or 3); and (3) the four parameterizations
with associated reference priors, described in Table 6. Two further cases were simulated
to examine the effect of multiplying the data by a constant. Table 7 gives the design
values for the 8 cases considered.

We again generated 1000 simulated datasets for each “case”. The design matrix for
the 23 mean structure was orthogonal, so without loss of generality the true grand mean
and main effects θ1, θ2, θ3, θ4 were set to zero. If an interaction term was present, its
θk was set to 1, otherwise to zero. The interaction terms were a priori exchangeable
and each was smoothed by its own smoothing precision, so as in Hodges et al. (2007,
Section 3), we need only consider how many interactions are truly present, not which
ones.

The four methods were compared according to their performance for three groups
of parameters: the four interaction θk, k = 5, · · · , 8; the error precision τ0; and the
eight cell means cj , j = 1, · · · , 8. For each group of parameters, the methods were
compared according to bias and MSE of posterior means as point estimates, and coverage
probability of the 95% equal-tail credible interval, with one exception: cell-mean bias
is a simple linear function of bias of the interaction θk and is thus omitted. By design,
all methods give identical bias and MSE for the grand mean and main effects, so they
are not considered further. We follow Hodges et al (2007) in calling truly present
interactions “target interactions” and truly absent interactions “null interactions”. By
the simulation design’s exchangeability, all target interactions have the same true bias,
MSE, and coverage for a given method, as do all null interactions, so we present average
bias and MSE for the targets and for the nulls. For the interactions θk and cell means
cj , we scaled bias and MSE as percents of the true error standard deviation 1√

τ0
and the

true error variance 1
τ0

, respectively. Similarly, for the estimates of the error precision
τ0, we report bias and square root of MSE as percents of τ0.

Figure 6 displays the bias and MSE of posterior mean estimates of the interaction θk,
and coverage of their 95% posterior intervals. For the target interactions, the number
of truly present interactions has little effect on bias or MSE. Compared to the simplex
method, the SD method has smaller bias (Figure 6a). In general, the SD method
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performs better than the precision method, which in turn performs better than the
Z method. For the null interactions, all methods are essentially unbiased and the Z
method has the smallest MSE (Figure 6b). As for 95% posterior intervals (Figure 6c,d),
for the target interactions, the simplex and SD methods give coverage much closer to the
nominal 95% than the Z and precision methods, which are too low for cases with small
error precision. For the null interactions, the simplex and SD methods have about 95%
coverage while coverage for the other two methods is too high. Broadly speaking, for
the interaction θk, the simplex method gives good performance that improves relative
to the other methods as the error precision decreases.

Figure 7 shows scaled bias and MSE for the error precision τ0 (panels a,b), and
MSE and coverage probability for the cell means (panels c,d). For τ0, the SD method
outperforms the others in both bias and MSE (Figure 7a,b). The 95% CI coverage is
close to the nominal 95% for all methods and cases (data not shown). For the cell
means, Figure 7c,d show the scaled MSE (as a percent of 1

τ0
) and 95% interval coverage

averaged over the 8 cells. The simplex and SD methods perform similarly. When 1
target interaction is present, these methods have higher bias than the other two, but
when 3 target interactions are present, they have smaller bias. Coverage of 95% credible
intervals is close to the nominal 95% for all methods, except for the Z method for small
error precisions when 3 target interactions are present.

5.3 Crossed random effect model

The crossed random effect model (10) has error precision τ0 and two smoothing preci-
sions τ1 and τ2 for rows and columns respectively in the two-way layout, as follows:

yijk = µ+ αi + γj + εijk i = 1, · · · , I ; j = 1, · · · , J ; k = 1, · · · ,K, (10)

where αi ∼ N(0, τ1), γj ∼ N(0, τ2), and εijk ∼ N(0, τ0) for unknown τ0, τ1, τ2. This
simulation experiment’s design had three factors: (1) the true error precision τ0; (2) the
true τ1 and τ2, considering equal and unequal smoothness in rows and columns; and (3)
the four parameterizations with their reference priors, described in Table 6.

Each of the 1000 artificial datasets per simulation design cell had 5 row levels (αi, i =
1, · · · , 5), 5 column levels (γj , j = 1, · · · , 5), and 5 replicates (εijk , k = 1, · · · , 5).
Without loss of generality, the grand mean µ was set to zero. We generated artificial
datasets as follows: Generate row effects α1, · · · , α5, column effects γ1, · · · , γ5, then
in each of the 25 cells, add 5 random normal errors to give 125 total observations.
The algorithms and outcome measures in this simulation study are the same as for the
2NRCAR simulation study (Section 5.1).

Figure 8 shows bias and MSE of posterior means as point estimates and 95% credible
interval coverage, for the three standard deviations σ0, σ1, and σ2. For the error standard
deviation σ0, all methods are essentially unbiased and have small MSE. However, bias
is complex for the two smoothing standard deviations σ1 and σ2. The simplex method
has much smaller bias than the SD method for most cases (Figure 8a), but otherwise
it is difficult to generalize. For MSE (Figure 8b), the simplex method is lower than
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the alternatives except for cases 3 and 6 for σ2. For coverage of 95% intervals (Figure
8c), all methods are consistently close to the nominal 95% for σ0. For σ1 and σ2,
the simplex, precision, and SD methods perform similarly and fairly well, while the Z
method performs worse, particularly for σ2.

6 Discussion

We have developed a parameterization for multiple-precision models, first mentioned
for 2NRCAR by Besag & Higdon (1999). Based on Sections 4 & 5, the simplex param-
eterization appears to have two advantages. First, it gives simple MCMC algorithms
with good mixing properties for various reference priors. Thus Bayesian analyses may
benefit from this parameterization even for priors specified in another parameteriza-
tion. Second, β has a proper natural reference prior that is invariant when the data
are multiplied by a constant; λ has the same invariance property. Section 5 showed
that compared to other proposed reference priors, this prior yields posterior means with
generally good bias and mean squared error, and 95% credible intervals with close to
nominal coverage, for the range of cases considered. Its worst performance was for
smoothed ANOVA in Section 5.2. If one were designing a software package solely to
do smoothed ANOVA, these results suggest that the simplex parameterization — with
the reference prior used here — might not be the best choice for a prior distribution.
However, if one were seeking an all- purpose off-the-shelf prior, these results are not so
discouraging: while the simplex parameterization was not the best prior for smoothed
ANOVA, it did not lose badly to the other priors, while each of the other priors did
perform poorly for at least one example.

The obvious question is: can we improve the statistical performance of the simplex
parameterization? The first consideration in this vein is the reference prior. The allo-
cation parameter β has a natural reference prior, but the total relative precision λ does
not. Sections 4 & 5 used the conventional “vague” Gamma(0.01,0.01) prior, which, with
50th and 90th percentiles 4×20−29 and 0.0015 respectively, is in fact quite informative.
Other priors for λ may improve statistical or computing performance, though we do not
yet have a firm basis for proposing an alternative. One simple alternative would be a
log-normal prior. In preliminary results from a simulation study of smoothed ANOVA,
giving λ a lognormal prior with a large variance seems to improve coverage of poste-
rior 95% intervals compared to the gamma prior considered here, but otherwise the
operating characteristics are similar.

It seems pertinent that λ is unitless or, put another way, that λ has the same scale
for all problems. Thus, for the smoothed ANOVA and crossed random-effects models,
it should be possible to determine universally-applicable large and small values of λ,
and perhaps use that information to specify, say, a uniform prior for λ. The 2NRCAR
example is more complicated in a manner that is beyond the present paper’s scope, but
it might be possible to extend this general idea.

Some literature on priors for hierarchical models (e.g., Daniels 1999; Gustafson et.
al. 2007) suggests that a prior may be judged by the relative weight it gives to informa-



542 Variance parameterization in multiple precision models

tion arising from the data (governed by the error precision τ0) and information arising
from the model (governed by the smoothing parameters τk). One way to implement
this idea is to consider, in our notation, τk/

∑s
j=0 τj for k = 0, . . . , s. The simplex

parameterization lends itself readily to this suggestion. The error precision’s fraction of
total precision is easily shown to be 1/(1+λ), which is readily computed in the context
of MCMC. As for the smoothing precisions τk, k = 1, . . . , s, their aggregate fraction of
total precision is λ/(1+λ), and τk’s fraction of total precision is βkλ/(1+λ), also easily
computed using MCMC. A flat prior on β treats τk, k = 1, . . . , s, exchangeably; priors
on λ might be compared according to how they weigh τ0 against individual τk or the
ensemble of τks.

The simplex parameterization extends straightforwardly in two ways. First, it ex-
tends immediately if any of the models presented here is extended by adding one or
more random effects parameterized by variances or precisions. For example, the 2NR-
CAR model (1) can be extended to a spatio-temporal model for multiple dental visits
by adding a third class of neighbor pairs representing two consecutive observations at a
given measurement site. This adds a third smoothing precision, which can be handled in
the obvious manner. A second extension is for models with many smoothing precisions
that naturally fall into, say, two groups. In such a model, a separate simplex parameter
pair (λ, β) can be used for each of the groups of smoothing precisions.

Although the simplex parameterization is applicable to a broad class of models (Sec-
tion 1), extension to models with covariance matrices would be desirable. The approach
of Barnard et al (2000), in which the covariance matrix is decomposed into standard
deviations and correlations, is one possible extension, where the simplex parameteri-
zation would be applied to the vector of standard deviations, after standardizing the
regressors to put them all on the same scale.

Appendix

6.1 Rao-Blackwellizing on the standard deviation scale

In Section 5, the four parameterizations with their associated priors were compared ac-
cording to point-estimate and interval-coverage performance on the standard deviation
scale, with Rao-Blackwellizing done as follows. Suppose τ0|λ, β,y ∼ Gamma(b, R), then

p(τ0|y) ≈ 1
M

∑M
t=1Gamma(τ0|bt, Rt). Changing variables to σ0 = τ

−1/2
0 and including
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the Jacobian, p(σ0|y) ≈ 1
M

∑M
t=1 2σ−3

0 Gamma(σ−2
0 |bt, Rt), so

E(σ0|y) ≈ 1

M

M
∑

t=1

∫

2σ−2
0 Gamma(σ−2

0 |bt, Rt)dσ0

=
1

M

M
∑

t=1

∫

τ
− 1

2

0 Gamma(τ0|bt, Rt)dτ0

=
1

M

M
∑

t=1

E(τ
− 1

2

0 |bt, Rt) =
1

M

M
∑

t=1

Γ(bt − 1
2 )

Γ(bt)
(Rt)

1
2

Similarly, noting that σ1 = r
− 1

2

1 τ
− 1

2

0 and σ2 = r
− 1

2

2 τ
− 1

2

0 ,

E(σ1|λ, β,y) = r
− 1
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− 1

2
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2
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6.2 Dynamic search for the slice sampler

In the simplex parameterization’s slice sampler (Section 3.2), to accept one sample,
generally a large number of samples need to be drawn from p(λ, β). The slice sampler
can be accelerated by improving this acceptance rate. The following dynamic search is
one approach for a low-dimensional parameter space; we show it for a scalar β.

1. Choose grid points for λ, β by a preliminary analysis, say, λ1 < · · · < λΩ and
β1 < · · · < βΠ.

2. Calculate lij = l(λi, βj |y) at these grid points (λi, βj).

3. At the tth MCMC cycle, given λt and U t, β is conditionally uniform on {l(λt, β) >
U t}. Thus, β can be generated from a uniform distribution on (aβ , bβ) ⊃ {l(λt, β) >
U t}, chosen as follows.

(a) From the pre-selected grid for λ, find the two λi that bracket λt. Call them
Lλ and Uλ.

(b) Find the bounds of β, (a∗β , b
∗
β) among (Lλ, β

j) and (Uλ, β
j) such that

l(Lλ, β|y) > U t and l(Uλ, β|y) > U t.

(c) Extend both ends of the interval (a∗β , b
∗
β) until l(λt, a∗β |y) ≤ U t and

l(λ0, b∗β|y) ≤ U t, giving (aβ , bβ).
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4. Draw β from Unif(aβ, bβ), until l(λt, β|y) > U t.

The pre-processing steps 1 and 2 are done before the MCMC draws. The interval
(aβ , bβ) is in general much narrower than the original (0, 1), so the acceptance rate is
improved.

We present this accelerator as part of a proof of principle and do not claim it can be
used generally. Obviously the efficiency of our slice sampler can and should be improved.
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Simplex (z1, z2)
Slice sampler adaptive

Algorithm with 1 uniform Metropolis w/
auxiliary variable Normal candidate

Working par. (λ,β) (z1, z2)
Initial values (4, 0.2) (1, 1)
Initial tuning — 0.5

constants
(τ0, τ1, τ2) (σ0, σ1, σ2)
adaptive adaptive

Algorithm Metropolis w/ Metropolis w/
Normal candidate Normal candidate

Working par. (log τ0, log τ1, log τ2) (logσ0, logσ1, logσ2)
Initial values (1, 2, 1) (1, 2, 1)
Initial tuning — 0.2

constants

Table 1: Description of algorithms for the 2NRCAR model

Parameterization used in MCMC algorithm
Prior (λ,β) (r1, r2) (τ1, τ2, τ0) (σ1, σ2, σ0)
λ ∼ Gamma(0.01, 0.01) λ: 573 log(r1): 577 log(τ1): 275 log(σ1): 379
β ∼ uniform on simplex β: 1009 log(r2): 531 log(τ2): 591 log(σ2): 672

log(τ0): 301 log(σ0): 359
Gamma(0.01, 0.01) for λ: 1037 log(r1): 640 log(τ1): 261 log(σ1): 261
τ0, τ1 and τ2 β: 1035 log(r2): 713 log(τ2): 697 log(σ2): 253

log(τ0): 248 log(σ0): 418
flat for SDs λ: 1389 log(r1): 648 log(τ1): 175 log(σ1): 265
σ0, σ1, σ2 β: 860 log(r2): 651 log(τ2): 406 log(σ2): 156

log(τ0): 215 log(σ0): 234

Table 2: Effective sample size (ESS) comparison of various parameterizations for the CAR model with
two classes of neighbor relations.
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Parameterization used in MCMC algorithm
Prior (λ,β) (r1, r2) (τ0, τ1, τ2) (σ0, σ1, σ2)
λ ∼ Gamma(0.01, 0.01) λ: 0.43 log(r1): 0.94 log(τ1): 0.17 log(σ1): 0.24
β ∼ uniform on simplex β: 0.75 log(r2): 0.87 log(τ2): 0.36 log(σ2): 0.43

log(τ0): 0.18 log(σ0): 0.23
Gamma(0.01, 0.01) for λ: 0.59 log(r1): 1.02 log(τ1): 0.17 log(σ1): 0.16
τ0, τ1 and τ2 β: 0.59 log(r2): 1.14 log(τ2): 0.44 log(σ2): 0.26

log(τ0): 0.16 log(σ0): 0.16
flat for SDs λ: 0.78 log(r1): 1.04 log(τ1): 0.11 log(σ1): 0.29
σ0, σ1, σ2 β: 0.48 log(r2): 1.05 log(τ2): 0.26 log(σ2): 0.17

log(τ0): 0.14 log(σ0): 0.26

Table 3: Effective sample size per second (ESS/sec) comparison of various parameterizations for the
CAR model with two classes of neighbor relations.

Parameterization used in MCMC algorithm
Prior (λ,β) r τ σ

λ ∼ Gamma(0.01, 0.01) λ: 1615 log(r1): 336 log(τ0): 280 log(σ0): 313
β ∼ uniform on simplex β: 3965 log(r2): 231 log(τ1): 244 log(σ1): 194

4617 log(r3): 294 log(τ2): 227 log(σ2): 169
4971 log(r4): 331 log(τ3): 219 log(σ3): 343

log(τ4): 230 log(σ4): 329
Gamma(0.01, 0.01) for λ: 2498 log(r1): 210 log(τ0): 436 log(σ0): 287
τ0, τ1, τ2, τ3, τ4 β: 4110 log(r2): 365 log(τ1): 336 log(σ1): 172

5000 log(r3): 244 log(τ2): 198 log(σ2): 240
5000 log(r4): 370 log(τ3): 321 log(σ3): 204

log(τ4): 149 log(σ4): 137
flat for SDs λ: 4614 log(r1): 638 log(τ0): 484 log(σ0): 453
σ0, σ1, σ2, σ3, σ4 β: 4657 log(r2): 752 log(τ1): 506 log(σ1): 591

4576 log(r3): 626 log(τ2): 503 log(σ2): 470
5000 log(r4): 655 log(τ3): 629 log(σ3): 516

log(τ4): 500 log(σ4): 199

Table 4: Comparison of effective sample size (ESS) in SANOVA model
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Parameterization used in MCMC algorithm
Prior (λ,β) r τ σ

λ ∼ Gamma(0.01, 0.01) λ: 152.5 log(r1): 60.1 log(τ0): 46.0 log(σ0): 50.7
β ∼ uniform on simplex β: 374.4 log(r2): 41.3 log(τ1): 40.1 log(σ1): 31.4

436.0 log(r3): 52.6 log(τ2): 37.3 log(σ2): 27.4
469.4 log(r4): 59.2 log(τ3): 36.0 log(σ3): 55.6

log(τ4): 37.8 log(σ4): 53.3
Gamma(0.01, 0.01) for λ: 215.3 log(r1): 36.6 log(τ0): 75.2 log(σ0): 50.8
τ0, τ1, τ2, τ3, τ4 β: 354.3 log(r2): 63.6 log(τ1): 57.9 log(σ1): 30.4

431.0 log(r3): 42.5 log(τ2): 34.1 log(σ2): 42.5
431.0 log(r4): 64.5 log(τ3): 55.3 log(σ3): 36.1

log(τ4): 25.7 log(σ4): 24.2
flat for SDs λ: 36.5 log(r1): 80.1 log(τ0): 61.2 log(σ0): 57.9
σ0, σ1, σ2, σ3, σ4 β: 36.8 log(r2): 94.4 log(τ1): 64.0 log(σ1): 75.5

36.2 log(r3): 78.5 log(τ2): 63.6 log(σ2): 60.0
39.5 log(r4): 82.2 log(τ3): 79.5 log(σ3): 65.9

log(τ4): 63.2 log(σ4): 25.4

Table 5: Comparison of effective sample size per second (ESS/sec) in SANOVA model

Table 6: Parameterization and associated reference priors

Method Parameter Prior Integrate out τ0?
Simplex βk = τk

∑

τj
; λ ∼ Gamma(0.01, 0.01), Yes

λ =
∑

τj

τ0
β ∼ Unif on the simplex

Precision τ0, τ1, · · · , τs τk ∼ Gamma(0.01, 0.01), k = 0, · · · , s No
SD σ0 = 1√

τ0
, σk ∼ Unif(0, 100), k = 0, · · · , s No

σk = 1√
τk

except SANOVA σk ∼ Unif(0, 10)

Z zk = log( τk

τ0
) zk ∼ Unif(−15, 15), k = 1, · · · , s Yes

Table 7: Design values in the simulation studies

2NRCAR SANOVA Crossed RE
Case τ0 τ1 τ2 τ0 θ1 θ2 θ3 θ4 θ5 θ6 θ7 θ8 τ0 τ1 τ2

1 1 1 1 1 0 0 0 0 1 0 0 0 1
4 1 1

2 1 1 1
4

1
4 0 0 0 0 1 0 0 0 1

4
1
16

1
16

3 1 1
4

1
4

1
16 0 0 0 0 1 0 0 0 1

4
1
16 1

4 1 1
4 1 1 0 0 0 0 1 1 1 0 1

16 1 1
5 1

4 1 1 1
4 0 0 0 0 1 1 1 0 1

16
1
16

1
16

6 1
4 1 1

4
1
16 0 0 0 0 1 1 1 0 1

16
1
16 1

7 1
4

1
4

1
4

1
100 0 0 0 0 10 0 0 0 1

100
1
25

1
25

8 1
4

1
4 1 1 0 0 0 0 10 0 0 0 – – –
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Figure 1: Attachment loss measurements for one patient. The maxilla is the upper jaw, the mandible
is the lower jaw, the gray boxes are teeth, the small number counting from the center of each jaw is
the tooth number. Small circles indicate the six measurement sites per tooth.
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Figure 2: Neighbor types in periodontal measurements. Letters a-d specify neighbor types. Solid and
dotted lines indicate the two classes of neighbors considered in this paper.
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Figure 3: 2NRCAR model: Logarithm posterior contour plots with contours at 1 log intervals for
four parameterizations with their own reference priors: τ0, τ1, τ2 ∼ Gamma(0.01, 0.01), σ0, σ1, σ2 ∼

Unif(0, L), r1, r2 ∼ Gamma(0.01, 0.01), z1, z2 ∼ Unif(−15, 15). The contours for (τ0, τ1, τ2) and
(σ0, σ1, σ2) are drawn for the slice τ0 = 1 and σ0 = 1, respectively.
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Figure 4: 2NRCAR model: Log posterior contour plot with contours at 1 log intervals, for the simplex
parameterization with its reference prior.
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Figure 5: 2NRCAR simulation: Standard deviation bias (as a percent of true standard deviation) and
MSE (divided by the true error variance 1

τ0
). (a) scaled bias for σ0, σ1, and σ2; (b) scaled MSE for

σ0, σ1, and σ2; (c) 95% interval coverage for σ0, σ1, and σ2.
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Figure 6: SANOVA simulation: Average bias and MSE as percents of 1√
τ0

and 1

τ0
respectively, for

θk for truly present interactions (a), and truly absent interactions (b). Within each figure, the upper
curves are MSE and the lower curves are biases. 95% interval coverage probability for θk for truly
present interactions (c), and truly absent interactions (d).
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Figure 7: SANOVA simulation: (a) error precision bias as a percent of τ0; (b) square root of MSE as
a percent of τ0; (c) average cell mean MSE (as a percent of 1

τ0
); (d) average cell mean 95% interval

coverage probability.
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Figure 8: Crossed RE simulation: standard deviation bias (as a percent of true standard deviation)
and MSE (divided by the true error variance 1

τ0
). (a) scaled bias for σ0, σ1, and σ2; (b) scaled MSE

for σ0, σ1, and σ2; (c) 95% interval coverage for standard deviations σ0, σ1, and σ2.


