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Bayesian Diagnostic Techniques for Detecting

Hierarchical Structure

Guofen Yan∗ and J. Sedransk†

Abstract. Motivated by an increasing number of Bayesian hierarchical model
applications, the objective of this paper is to evaluate properties of several di-
agnostic techniques when the fitted model includes some hierarchical structure,
but the data are from a model with additional, unknown hierarchical structure.
Because there has been no apparent evaluation of Bayesian diagnostics used for
this purpose, we start by studying the simple situation where the data come from
a normal model with two-stage hierarchical structure while the fitted model does
not have any hierarchical structure, and then extend this to the case where the
fitted model has two-stage normal hierarchical structure while the data come from
a model with three-stage normal structure. We use exact derivations, large sample
approximations and numerical examples to evaluate the quality of the diagnostic
techniques. Our investigation suggests two promising techniques: distribution of
individual posterior predictive p values and the conventional posterior predictive
p value with the F statistic as a checking function. We show that (at least) for
large sample sizes these p values are uniformly distributed under the null model
and are effective in detecting hierarchical structure not included in the null model.
Finally, we apply these two techniques to examine the fit of a model for data
from the Patterns of Care Study, a two-stage cluster sample of cancer patients
undergoing radiation therapy.

Keywords: F statistic, model assessment, partial posterior predictive p value,
posterior predictive distribution, posterior predictive p value.

1 Introduction

Often, a model that is fitted does not account for all of the hierarchical structure actually
present. For example, the problem which motivated this study was making inference
about age specific mortality rates for all cancer for white males
(Nandram, Sedransk and Pickle 1999) and for chronic obstructive pulmonary disease
(Nandram, Sedransk and Pickle 2000). In these investigations there were hierarchical
models for the rates using the 798 Health Service Areas as the basic geographical units.
However, there are many ways to choose the geographical units and it is not at all clear
how many hierarchical levels are appropriate. In this paper we evaluate the ability of
several Bayesian methods to identify unanticipated hierarchical structure. We consider
model diagnostics rather than formal comparisons of alternative models.

∗Division of Biostatistics and Epidemiology, Department of Public Health Sciences, University of

Virginia, Charlottesville, VA, mailto:guofen.yan@virginia.edu
†Department of Statistics, Case Western Reserve University, Cleveland, OH,

mailto:jxs123@case.edu

c© 2007 International Society for Bayesian Analysis ba0008

mailto:guofen.yan@virginia.edu
mailto:jxs123@case.edu


736 Diagnostic Techniques for Hierarchical Structure

Preliminary work using the models in Nandram, Sedransk and Pickle (1999, 2000)
clearly indicated that they were too complex to yield useful analytical results about the
properties of the diagnostic techniques. Since there has been little research in this area,
starting with a much simpler specification seemed sensible. That is, we assume that the
data come from a model with a two-stage hierarchical normal structure while the fitted
model does not have this hierarchical structure. We then extend our investigation to
the case where the data come from a model with a three-stage normal structure, but
the fitted model uses only two stages. It is encouraging that many of our findings are
common to both cases, indicating that they are likely to apply to the situation where
the fitted model includes some hierarchical structure but does not account for all of the
stages actually present.

We use exact derivations, large sample approximations and numerical examples to
evaluate two promising Bayesian diagnostic techniques. Our principal example is the
Patterns of Care Study, a two-stage cluster sample of patients undergoing radiation
therapy in 1978 for cervix cancer. The variable we examine is a (transformed) score
measuring the quality of the workup received by a patient: See Calvin and Sedransk
(1991) for additional details.

Section 2 describes our proposed evaluation method, and the models and diagnostic
techniques under investigation. In Sections 3 and 4 we apply the evaluation method to
study the quality of the two Bayesian diagnostic techniques in the important situation
where the fitted model ignores hierarchical structure actually present. The results of
our analysis of the Patterns of Care data are presented in Section 5. There is further
discussion in Section 6, tying our results to the recent literature. Concluding remarks
are in Section 7.

2 Models, diagnostic techniques and evaluation method

We first study the simple situation where the data come from a normal model with
two-stage hierarchical structure while the fitted model does not have any hierarchical
structure. We then extend this so that the fitted model has two-stage normal hierar-
chical structure while the data come from a model with three-stage normal structure.

Case I: Fit the non-hierarchical model

For the first case it is assumed that the fitted model has E(yij) = µ and var(yij) = φ,
i.e.,

yij | µ, φ
iid∼ N(µ, φ) , i = 1, . . . , m , j = 1, . . . , n ; (2.1)

π(µ, φ) ∝ constant.

The data, y = {yij : i = 1, . . . , m , j = 1, . . . , n}, are assumed to come from the null
model, (2.2), or from one of two alternative models, (2.3) and (2.4).
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• Single level model

yij | µ0, φ0
iid∼ N(µ0, φ0) , i = 1, . . . , m , j = 1, . . . , n . (2.2)

• Two-level hierarchical model

yij | θi, φ0
iid∼ N(θi, φ0), (2.3)

θi | µ0, d0
iid∼ N(µ0, d0) , i = 1, . . . , m , j = 1, . . . , n .

• Two-level hierarchical model with changepoint

yij | θi, φ0
iid∼ N(θi, φ0) , j = 1, . . . , n, (2.4)

θi | µ01, d0
iid∼ N(µ01, d0) , i = 1, . . . , g ,

θi | µ02, d0
iid∼ N(µ02, d0) , i = g + 1, . . . , m .

The three models, (2.2)-(2.4), represent a range of deviations from the fitted model,
(2.1). Since it is easy to detect deviations when the fitted model and the one generating
the data are very different we emphasize situations where the fitted and actual models
are somewhat similar. The fitted model, (2.1), is appropriate for data generated from
(2.2), the null model, but not for data generated from (2.3) or (2.4): The data from
(2.2) are iid observations with mean µ0 and variance φ0. In (2.3), var(yij) = φ0 + d0,
cov(yih, yi′k) = 0 and cov(yih, yik) = d0, thus cor(yih, yik) = d0/(φ0 + d0). That is, the
between-group observations are independent while the within-group observations are
correlated. In (2.4) the data are also correlated, but some group means are clustered
with expected value µ01 while the other means are clustered with expected value µ02.
If µ01 and µ02 are far apart, the overall variation of the data will be large.

Case II: Fit the two-stage hierarchical model

For the second case the two-stage hierarchical model that is fitted is

yijk | µi, φ
iid∼ N(µi, φ),

µi | ν, γ
iid∼ N(ν, γ) , (2.5)

π(ν) ∝ constant,

i = 1, . . . , a , j = 1, . . . , m , k = 1, . . . , n .

To permit analytical results the variances, φ and γ, are assumed known unless specified
otherwise.

We consider the following two models to have generated the data y = {yijk : i =
1, . . . , a, j = 1, . . . , m, k = 1, . . . , n}: The first is the null model while the second includes
additional correlation structure.
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• Two-level hierarchical model

yijk | µi, φ0
iid∼ N(µi, φ0), (2.6)

µi | ν0, γ0
iid∼ N(ν0, γ0) .

• Three-level hierarchical model

yijk | θij , φ0
iid∼ N(θij , φ0),

θij | µi, d0
iid∼ N(µi, d0) , (2.7)

µi | ν0, γ0
iid∼ N(ν0, γ0) .

All of the Bayesian model diagnostic techniques that we consider use the posterior
distribution of predicted data under the fitted model (2.1) or (2.5). In general terms
this density function is

p(ỹ|y) =

∫

p(ỹ|θ) p(θ|y) dθ (2.8)

where y are the observed data, ỹ the predicted data, θ the parameters of the fitted
model and, given θ, y and ỹ are assumed to be independent. Early work in this area
includes Box (1980), Rubin (1984) and Geisser (1993) who proposed diagnostics of this
type.

Over the last ten years there has been important research evaluating posterior pre-
dictive p values and presenting alternatives (e.g., Bayarri and Berger 2000,
Bayarri and Castellanos 2007, Hjort, Dahl and Steinbakk 2006, and
Robins, van der Vaart and Ventura 2000). An objective of this research is evaluation
of a procedure so that it has known (and desired) properties when data come from the
“null model”. For example, it is desirable that if a procedure is based on (2.1) and the
data come from (2.2), the null model, the posterior predictive p value should be uni-
formly distributed. This line of research includes evaluation of existing procedures to
investigate whether they are properly calibrated and to suggest and evaluate alternative
methods.

Since the techniques we present use posterior predictive p values, we do this evalu-
ation and show that the distribution of these p values is uniform (for moderate sample
sizes) when the data are from a null model. Specifically, we first evaluate a diagnostic
quantity, d(y), under the assumption that the actual distribution of y is consistent with
that postulated for the fitted model - to show the desired uniform distribution. Then
we evaluate d(y) assuming that the actual distribution of y is different from that of the
fitted model - to investigate the conditions under which the diagnostic will reveal the
existence (and nature) of a model different from that postulated for the fitted model.
This means, for example, for Case I where the non-hierarchical model is fitted, the
properties are evaluated under (2.2), (2.3) and (2.4).

We show in Section 6.2 why our findings are consistent with the results in
Bayarri and Berger (2000) and Robins et al. (2000).
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The two techniques that we investigate in detail are briefly described below. (This
description is for the first case; the extension to the second case is straightforward.) We
only consider diagnostic techniques that permit the use of noninformative prior distribu-
tions because this is, by far, the most common choice of prior, and introducing a general
prior would make it impossible to draw useful general results. Bayarri and Castellanos
(2007) comment that:“ i) it might not be desired to carefully quantify a prior in these
earlier stages of the analysis, since the model might well not be appropriate and hence
the effort is wasted; ii) most importantly, model checking with informative priors can
not separate inadequacy of the prior from inadequacy of the model.”

Given the structure of the models in (2.2)-(2.4) and (2.6)-(2.7) we emphasize di-
agnostic techniques that are potentially useful for detecting incorrect specification of
the variance (covariance) structure. First, consider the ensemble of N = mn individual
posterior predictive p values

pij = P (ỹij ≤ yij | y) ; i = 1, . . . , m , j = 1, . . . , n (2.9)

evaluated under (2.1) (with a corresponding definition for pijk evaluated under (2.5)).
Also, define

p∗ij = P (ỹij ≤ yij | y(ij)) (2.10)

where y(ij) denotes all of the data except for unit ij. Gelfand, Dey and Chang (1992)
suggest that the set of N values of p∗ij in (2.10) will be approximately uniformly dis-
tributed if the fitted model is the same as the model generating the data - with depar-
tures from uniformity indicating a lack of fit.

Our data models, (2.2)-(2.4), do not include outliers because we want to focus on
detection of unanticipated hierarchical structure, not on detection of outliers: Including
outliers in our models would make our conclusions much less clear. Since we do not
include outliers in y, using pij in (2.9) rather than p∗ij in (2.10) yields essentially the
same results, as one may expect; see Yan (2003). Thus, we prefer to use (2.9) rather
than (2.10) which permits us to obtain clearer analytical results.

In applications, using (2.10) is likely to be preferable to (2.9): Stern and Cressie
(2000), considering posterior predictive model checks for disease mapping models, pro-
pose posterior predictive inference using cross-validation, as, e.g., in (2.10). This is es-
pecially important in disease mapping where there may be true extrema, corresponding
to local “hot spots.” They propose several methods to reduce the computational burden
associated with calculation of quantities such as (2.10) while Marshall and Spiegelhalter
(2003) suggest an approximation and compare it with the alternatives given by
Stern and Cressie (2000).

The second class of techniques uses the checking function T (ỹ) or the discrepancy
measure D(ỹ, θ) to obtain the posterior predictive p values

P (T (ỹ) ≥ T (y) | y) (2.11)

and

P (D(ỹ, θ) ≥ D(y, θ) | y) . (2.12)
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An extreme p value leads to the conclusion that the fitted model is not consistent with
the observed data. These techniques are described in detail in
Gelman, Carlin, Stern and Rubin (2004) and Gelman, Meng and Stern (1996).

Our most important finding is that using the set of individual posterior predictive p
values is effective in detecting unanticipated hierarchical structure. Conversely, looking
at each individual p value separately will not detect unanticipated hierarchical struc-
ture. In addition, the graphical displays are easy to interpret because the distribution
of the set of individual p values is uniform (at least for moderate sample sizes) under
the null model. Our results also support comments in the literature (e.g., Gelman et al.
2004, Sinharay and Stern 2003) that the choice of test quantity, T (ỹ), or discrepancy
measure, D(ỹ, θ), is critical: Some natural choices are not effective in detecting hierar-
chical structure. By contrast, use of the F statistic as a test quantity is effective, and
is appropriately calibrated.

Note that we are subjecting the diagnostic techniques to a stringent test because
the fitted models ((2.1), (2.5)) and corresponding models assumed to have generated
the observed data ((2.3), (2.7)) differ only mildly in their covariance structure.

In Sections 3 and 4 we evaluate the quality of the two Bayesian diagnostic techniques
for the two cases described above.

3 Distribution of the set of individual posterior predictive
p values

3.1 Numerical examples

We first present numerical examples for Case I to illustrate this method. We generated
data y = {yij : i = 1, . . . , m, j = 1, . . . , n} from (2.2), (2.3) and (2.4) with m = 10,
n = 50 for N = 500, and m = 5 and n = 10 for N = 50. The means and variances are
defined below. For data generated from (2.2), the single level model, the mean µ0 is 20
and the variance φ0 is 12. For data from (2.3), the two-level model, the parameters are
different from the single level model only in the covariances - to permit fair comparisons
of the two models. Thus, µ0 is still 20 and φ0 + d0 = 12. We considered two cases,
one taking φ0 = 10, d0 = 2 to represent weak within-cluster correlation (correlation =
1/6) and the other taking φ0 = 1, d0 = 11 to represent strong correlation (correlation
= 11/12). For data from (2.4), the two-level model with changepoint, φ0 = d0 = 6,
µ01 = 25, µ02 = 5. For N = 500, g = 5 while for N = 50, g = 3.

For each of the eight cases (two sample sizes, four models) we generated several data
sets. For each data set we calculated {pij : i = 1, . . . , m , j = 1, . . . , n} where pij is
defined in (2.9). Each set of N values of pij is evaluated under the assumption that the
fitted model, (2.1), holds.

Figures 1 and 2 are Q-Q plots (using the uniform as the reference distribution) of
the pij for typical data sets, where Figure 1 is for N = 500 and Figure 2 for N = 50.
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N = 500

Figure 1: Q-Q plots of estimated distributions of individual posterior predictive p values
vs. the uniform distribution

The four plots in each Figure correspond to the four models used to generate the data.
For N = 500, the Q-Q plots show concordance between the fitted model, (2.1), and
the single level model, (2.2), and the two-level model, (2.3), with small within-cluster
correlation (1/6). That is, the distribution of the set of individual p values is uniform.
There is clear evidence of lack of fit when the data are generated from (2.3) with large
correlation (11/12) and (2.4). For the small sample, N = 50, the conclusions are similar.

3.2 Theoretical development

In (2.9), consider y as a random variable. If the distribution of yij is the same as the
distribution of ỹij conditional on y, pij = P (ỹij ≤ yij |y) is a uniform random variable,
and a set of the pij should act like a uniformly distributed random sample. Conversely,
if these two distributions are substantially different, then the set of pij should not look
uniformly distributed.
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Figure 2: Q-Q plots of estimated distributions of individual posterior predictive p values
vs. the uniform distribution



Yan and Sedransk 743

The basic result that we need is that, under the fitted model, (2.1), the distribution
of ỹ given y is multivariate t, i.e.,

ỹ | y ∼ tN−3

[

ȳ1N ,
(

IN + N−11N1′N
) N − 1

N − 3
S2

]

(3.1)

with E(ỹij |y) = ȳ, var(ỹij |y) = {(N2 − 1)/N(N − 5)}S2 and cov(ỹih, ỹi′k | y) =
cov(ỹih, ỹik | y) = {(N − 1)/N(N − 5)}S2 where IN is a N × N identity matrix, 1N is
a N × 1 vector of 1’s and S2 is the sample variance.

3.2.1 Case I: Fit the non-hierarchical model

We consider two situations: the data are generated from (2.2), the single level model
(consistent with the fitted model, (2.1)), and (2.3), the two-level hierarchical model.
We do not consider (2.4), the two-level model with changepoint, because it is apparent
from our numerical work (e.g., Figures 1 and 2) that deviations such as this can easily
be detected. Applying our evaluation method we next present our investigation of the
ensemble of p values (see (2.9)) by comparing the distributions of the yij with those of
the ỹij conditional on y, averaging over the actual distribution of y. That is, for the
first situation, the moments of the yij use (2.2) and the moments of the ỹij are obtained
from (3.1) and then averaged over (2.2). For the second situation, replace (2.2) with
(2.3).

The rationale for this evaluation approach is to ensure that conclusions from applying
our procedure (i.e., “accept” the null model, “reject” the null model) are appropriate.
We need to know how the procedure behaves under the null model so that we are unlikely
to conclude that (2.2), the single level model, is not concordant with the observed data
when, in fact, it is. The importance of such calibration has been documented in, e.g.,
Bayarri and Berger (2000) and Robins et al. (2000). Similarly, we need to know how the
procedure behaves under the two-level model, (2.3). If (2.3) is the appropriate model is
it likely that our procedure will detect this?

First, assume (2.2). Then, by definition

E(yij |µ0, φ0) = µ0, var(yij |µ0, φ0) = φ0, and all of the yij are independent . (3.2)

The moments in (3.2) are to be compared with the moments of ỹij conditional on y, taken
over the distribution of y in (2.2). For example, the first moment is E(y|µ0,φ0) E(ỹij |y)
which we denote by E(ỹij |µ0, φ0). Then

E(ỹij |µ0, φ0) = E(y|µ0,φ0) E(ỹij |y) = E(y|µ0,φ0) ȳ = µ0 . (3.3)

Similarly, the variance of ỹij is denoted by var(ỹij |µ0, φ0) and

var(ỹij |µ0, φ0) = E(y|µ0,φ0) var(ỹij |y) + var(y|µ0,φ0) E(ỹij |y)

= [(N2 − 1)/N(N − 5)]φ0 + φ0/N . (3.4)



744 Diagnostic Techniques for Hierarchical Structure

For any two units,

cov(ỹih, ỹi′k|µ0, φ0) = E(y|µ0,φ0)cov(ỹih, ỹi′k|y) + cov(y|µ0,φ0)[E(ỹih|y), E(ỹi′k|y)]

= [(N − 1)/N(N − 5)]φ0 + φ0/N . (3.5)

For large N it is clear from (3.2)-(3.5) that the distribution of y and that of ỹ
are normal with the same moments. Thus, the set of individual p values is uniformly

distributed under the null model, (2.2). For large N a Q-Q plot of the pij should be
consistent with a uniform distribution, as we have seen in our examples (Section 3.1).

If the alternative model, (2.3), generates the data

E(yij |µ0, φ0, d0) = µ0, var(yij |µ0, φ0, d0) = φ0 + d0, (3.6)

cov(yih, yi′k|µ0, φ0, d0) = 0, cov(yih, yik|µ0, φ0, d0) = d0 .

Proceeding as above it can be shown, after algebraic manipulation, that the moments
of ỹij under (2.3) are

E(ỹij |µ0, φ0, d0) = E(y|µ0,φ0,d0) E(ỹij |y) = E(y|µ0,φ0,d0) ȳ = µ0 , (3.7)

var(ỹij |µ0, φ0, d0) =
(N2 − 1)

N(N − 5)

(

φ0 +
N − n

N − 1
d0

)

+
φ0 + nd0

N
,

cov(ỹih, ỹik|µ0, φ0, d0) = cov(ỹih, ỹi′k|µ0, φ0, d0)

=
N − 1

N(N − 5)

(

φ0 +
N − n

N − 1
d0

)

+
φ0 + nd0

N
.

Now consider the two cases

i. N → ∞, m → ∞ and n is fixed. Then

lim
m,N→∞

var(ỹij | µ0, φ0, d0) = φ0 + d0 , (3.8)

lim
m,N→∞

cov(ỹih, ỹi′k | µ0, φ0, d0) = lim
m,N→∞

cov(ỹih, ỹik | µ0, φ0, d0) = 0 .

ii. N → ∞, n → ∞ and m is fixed. Then

lim
n,N→∞

var(ỹij | µ0, φ0, d0) = φ0 + d0 , (3.9)

lim
n,N→∞

cov(ỹih, ỹi′k|µ0, φ0, d0) = lim
n,N→∞

cov(ỹih, ỹik|µ0, φ0, d0) = d0/m .

Comparing (3.6) with (3.7), (3.8) and (3.9), the expected values agree, the variances
agree, but the covariances are different. Clearly, it is the ensemble of values of the pij

that may permit us to distinguish the alternative model, (2.3), from the null model,
(2.2).
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Under case (i),

cor(yih, yik | µ0, φ0, d0) = d0/(d0 + φ0) vs. cor(ỹih, ỹik | µ0, φ0, d0)
.
= 0 ,

cor(yih, yi′k | µ0, φ0, d0) = 0 vs. cor(ỹih, ỹi′k | µ0, φ0, d0)
.
= 0 .

Under case (ii),

cor(yih, yik|µ0, φ0, d0) =
d0

d0 + φ0
vs. cor(ỹih, ỹik|µ0, φ0, d0)

.
=

d0

m(d0 + φ0)
, (3.10)

cor(yih, yi′k|µ0, φ0, d0) = 0 vs. cor(ỹih, ỹi′k|µ0, φ0, d0)
.
=

d0

m(d0 + φ0)
, (3.11)

where the symbol
.
= denotes equality in the limit with the conditions given in (i) and

(ii), respectively, on the previous page.

For small d0/φ0 (i.e., small correlation), the two distributions (i.e., those of y and ỹ)
are not very different, in which case one would expect a set of the individual posterior
p values, {pij = P (ỹij ≤ yij |y)}, to be uniformly distributed. For large d0/φ0, the
two distributions are very different, and the distribution of the pij will be less uniform.
These results are consistent with our numerical results; i.e., the distribution looked
uniform when d0/φ0 is small and less uniform when d0/φ0 is large. It is also apparent
from (3.10) and (3.11) that it is easier to detect departures from the null model when
m is small. This is so because there are many more observations with i 6= i′ than with
i = i′. These results suggest that this technique is more effective to detect inadequate
fit of the non-hierarchical model to data with two-stage structure when there is large
within-cluster correlation and a small number of clusters.

3.2.2 Case II: Fit the two-stage hierarchical model

We proceed exactly as in Case I by first finding the posterior predictive distribution
of ỹ given y assuming the fitted model, (2.5). Then we compare the moments of y
and ỹ assuming the null model, (2.6). Finally, we compare the moments of y and ỹ
assuming the three-stage model in (2.7). These derivations are given in Appendix A.
The results are similar to those reported for Case I where a non-hierarchical model
was fitted and the data were from a two-stage model, suggesting that these conclusions
hold more generally. These results suggest that Q-Q plots, such as those in Figures 1
and 2, should be useful diagnostics with departures from the 45 degree line indicating
nonconcordance between the actual and fitted distributions, thus a lack of fit of the
fitted model.

4 Conventional posterior predictive p values

4.1 General checking functions

We next investigate for Case I the posterior predictive p values defined by (2.11) and
(2.12). We first consider an ensemble of checking functions, T (y), and discrepancy
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measures, D(y, θ), that are general in nature; i.e., not motivated by the fitted distri-
bution, (2.1), and alternative distributions, (2.3) and (2.4). For T (y) we use the five
quantities: minimum (i.e., min {yij : i = 1, . . . , m , j = 1, . . . , n}), median, maximum,
mean and standard deviation. Defining the discrepancy measure for the (ij)th unit as
dij = [yij − E(yij |µ, φ)]/SD(yij |µ, φ), we use the same five quantities (applied to the
{dij : i = 1, . . . , m , j = 1, . . . , n}) as the choices for D(y, θ). Here E(yij |µ, φ) = µ and
SD(yij |µ, φ) = φ1/2, the moments of the sampling distribution in (2.1).

We have tested this technique using simulated data sets constructed as in Section
3.1. For small N (e.g., N = 50) none of these choices was effective, and for large N
(e.g., N = 500) only a few were effective. These results support the view that the
performance of the posterior predictive p value depends critically on the choice of the
checking function (e.g., Gelman et al. 2004, Sinharay and Stern 2003).

We next show that with the choice of the F statistic as the checking function the
associated posterior predictive p value is very effective for detecting hierarchical struc-
ture and also has the desired property of uniformity under the null model. This is to be
expected when the investigator correctly guesses the nature of the hierarchical structure
not included in the fitted model. However, we present results for Case II in Section 4.2
which suggest that use of the F statistic may also be beneficial when the hierarchical
structure not included in the fitted model is not anticipated.

4.2 F statistic as a checking function

4.2.1 Case I: Fit the non-hierarchical model

We now consider as a checking function, the usual F statistic,

F (y) =

∑i=m
i=1 n(ȳi − ȳ)2/(m − 1)

∑i=m
i=1

∑j=n
j=1 (yij − ȳi)2/(N − m)

(4.1)

where ȳi =
∑n

j=1 yij/n. The posterior predictive p value is

P (F (ỹ) ≥ F (y) | y) . (4.2)

As in Section 3.2 we apply our evaluation method to compare the distribution of
F (ỹ) given y with that of F (y) when (2.2) and (2.3) generate the data. When the
data are from the non-hierarchical model, (2.2), F (y) ∼ Fm−1,N−m. For large N ,
ỹ|y ∼ N(ȳ1N , S2IN ) from (3.1), and F (ỹ)|y ∼ Fm−1,N−m. Hence, the p value in (4.2)
is uniformly distributed under the null model, as is appropriate for this case.

If the data are from the hierarchical alternative, (2.3), F (y) ∼ kFm−1,N−m where
k = (nd0 + φ0)/φ0, but still F (ỹ)|y ∼ Fm−1,N−m. Then the p values in (4.2) will be
small if k � 1. This will occur if d0/(φ0/n) is large.

Our simulation study uses the same specifications as in Section 3.1 together with
additional ones with different correlations. The results show that F (y) is a powerful
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checking function. As expected, the p values are moderately large (i.e., far from 0) when
the data are from (2.2). The p values are almost always small (i.e., near 0) when: (a)
N is large (e.g., N = 500) even if the correlation is as small as 1/6, (b) N is small (e.g.,
50) and the data are from (2.4) or (2.3) with moderate correlation (e.g., > 0.50). Thus,
if one anticipates clustering of the data such as (2.3) and (2.4), use of the F statistic as
the checking function is a very effective diagnostic procedure.

4.2.2 Case II: Fit the two-stage hierarchical model

For the second case assume the fitted model (2.5) but with ν, φ and γ unknown and
with any prior. We first consider the checking function

F (y) =
n

∑a
i=1

∑m
j=1(ȳij. − ȳi..)

2/a(m − 1)
∑a

i=1

∑m
j=1

∑n
k=1(yijk − ȳij.)2/am(n − 1)

. (4.3)

which is motivated by the three-stage alternative, (2.7).

It is easily shown that the posterior predictive p value in (4.2) using this F checking
function is uniformly distributed (see Appendix B.1) when the data are from the two-
stage model in (2.6). When the data are from the three-stage model, (2.7), it is easily
shown (Appendix B.1) that the posterior predictive p value will be small if d0/(φ0/n)
is large, a result analogous to that for Case I (Section 4.2) when (2.1) is fitted and the
data are from (2.3). This result suggests that using F defined in (4.3) as the checking
function is a useful technique to detect a lack of fit of the two-stage model if the data
in fact have the three-stage structure.

Now, consider the alternative F statistic

F ∗(y) =
mn

∑a
i=1(ȳi.. − ȳ...)

2/(a − 1)
∑a

i=1

∑m
j=1

∑n
k=1(yijk − ȳi..)2/a(mn − 1)

, (4.4)

which does not take account of the three-stage model in (2.7).

Assuming the fitted model is (2.5) with φ and γ known, the posterior predictive
distribution of F ∗(ỹ) given y cannot be obtained in an analytical form. Thus, we com-
pare expected values; i.e., E{F ∗(y)} with Ey E(F ∗(ỹ)|y), and also must approximate
E(F ∗(ỹ)|y) as the ratio of the expected values of the numerator and denominator of
(4.4).

The results, given in Appendix B.2, suggest that: (a) When the data are from the
two-stage hierarchical model in (2.6) (i.e., both the fitted and actual data models are
two-stage), the p value, P{F ∗(ỹ) ≥ F ∗(y)|y}, will not be extreme, and (b) When the
data are from the three-stage model in (2.7), F ∗, which is not influenced by the three-
stage cluster structure, will be an effective checking function when φ0 or d0 is large (as
long as mn is not too large).
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5 Analysis of Patterns of Care Study Data

The Patterns of Care Study is a sample survey to evaluate the quality of care received by
cancer patients undergoing radiation therapy. The sample design is stratified, two-stage
cluster sampling: Within each stratum a simple random sample of radiation therapy
facilities is selected and then within each facility a simple random sample of patients
undergoing radiation therapy within a specified time period is chosen. This is done for
each of several disease sites. There are two scores measuring the quality of the patient’s
workup and therapy; each score, Y , is scaled so that 0 ≤ Y ≤ 1. The analysis in
Calvin and Sedransk (1991) shows that for the workup score for cervix cancer in the
1978 survey W = Y 3 transforms Y to approximate normality. It is also clear that the
stratification effect is negligible, so the alternative models to be entertained are (2.2)
and (2.3) with Wij (jth patient in facility i) as the dependent variable. We now present
our analysis of the two diagnostic techniques for the transformed workup score in the
1978 survey.

Fitting the non-hierarchical model, (2.1), the Q-Q plot in Figure 3a (using the uni-
form reference distribution) of the pij from (2.9) clearly shows a substantial departure
from the uniform distribution and, thus, the fitted non-hierarchical model is inconsis-
tent with the data. We then fit a two-stage model similar to (2.3), with the stages
corresponding to patients and facilities; i.e.,

yij | θi, φ
iid∼ N(θi, φ), (5.1)

θi | µ, d
iid∼ N(µ, d)

with independent, locally uniform priors on φ, µ, and d. The Q-Q plot in Figure 3b
shows no apparent deviation from this fitted model. Thus, the model in (5.1) appears
to be concordant with these data.

We have also evaluated the posterior predictive p value in (4.2). Fitting the non-
hierarchical model, (2.1), and using the F statistic in (4.1) as the checking function, the
posterior predictive p value is near 0 (see Figure 4a), clearly indicating that the data
cluster within facilities and that the fitted, non-hierarchical model is inappropriate.
Fitting the two-stage hierarchical model, (5.1), using the same F checking function
yields a posterior predictive p value of 0.5 (see Figure 4b), suggesting that this two-
stage hierarchical model is appropriate.

6 Discussion

6.1 Challenges in checking hierarchical structure

It is difficult to distinguish actual hierarchical structure (e.g., (2.3)) from the absence of
such structure (e.g., (2.2)). One way to see this is to study properties of the posterior
distribution of the scale parameter φ under the fitted model when the observed data, y,
are generated from the hierarchical model, (2.3). Assuming (2.1) it is straightforward
to show that E(φ|y) = (N − 1)S2/(N − 5) where S2 is the sample variance. Assuming
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Figure 3: Patterns of Care Study: Q-Q plots of estimated distributions of individual
posterior predictive p values vs. the uniform distribution for the transformed workup
score. Plot (a) results from fitting the non-hierarchical model, (2.1) and plot (b) results
from fitting the two-stage hierarchical model, (5.1).
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Figure 4: Patterns of Care Study: Estimated posterior predictive distributions of the
F checking function for the transformed workup score. Plot (a) results from fitting the
non-hierarchical model, (2.1) and plot (b) results from fitting the two-stage hierarchical
model, (5.1). The observed value of F (y), (4.1), is indicated by a dashed line and also
by ‘Obs’ in the title. The posterior predictive p value, (4.2), is shown in the title.
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that the data are from (2.3), it can be shown that

E(φ|µ0, φ0, d0) = E(y|µ0,φ0,d0)E(φ|y) =
(N − 1)

(N − 5)

[

φ0 +
(N − n)

(N − 1)
d0

]

.

As N, m → ∞, E(φ) → φ0 +d0, and the distribution of ỹij converges to N(µ0, φ0 +d0).
That is, any posterior predictive assessment using the fitted model, (2.1), will reflect
the true variation in data from the hierarchical model, (2.3). That is, the additional
variability in (2.3) relative to (2.2) will not be revealed.

To be successful a general diagnostic technique (i.e., one not motivated by a specific
alternative model) must reveal the different correlation structures of, for example, (2.2)
and (2.3). We have shown in Sections 3 and 5 that the technique of individual posterior
predictive p values does this.

Two papers that study diagnostics for hierarchical models are Sinharay and Stern
(2003) and Bayarri and Castellanos (2007), but neither address the problem of detect-
ing missing hierarchical structure in the fitted model. Sinharay and Stern (2003) fit a
model similar to (2.3) and investigate the postulated normal assumption at the second
stage. They investigate posterior predictive assessment as in (2.11) and (2.12), and
use simulations (patterned on the SAT coaching example; see, e.g., Gelman et al. 2004,
Section 5.5) to study the properties associated with several checking and discrepancy
measures. Similarly, Bayarri and Castellanos (2007) assume a two-stage hierarchical
normal model as the null model and investigate departures from it such as different
distributions at the second stage. They investigate the performance of several p values,
including the one in (2.11) and the corresponding partial posterior predictive p value
(Bayarri and Berger 2000).

6.2 Partial posterior predictive p value and evaluation

Bayarri and Berger (2000) have criticized the “double use” of data in a posterior predic-
tive p value, and have suggested as a practical alternative the partial posterior predictive
p value. With our notation the partial posterior predictive p value of Bayarri and Berger
(2000) is

P
{

T (ỹ) ≥ T (y) | y \ T (y)
}

=

∫

P
{

T (ỹ) ≥ T (y) | θ
}

p
{

θ|y \ T (y)
}

dθ , (6.1)

where, by definition, p{θ|y\T (y)} ∝ h1(y|θ)h2(θ)/h3{T (y)|θ}. Both Bayarri and Berger
(2000) and Robins et al. (2000) have pointed to the need for calibration of a “p value,”
i.e., its properties under the “null model.” Theoretical results in Bayarri and Berger
(2000) and Robins et al. (2000) indicate that (at least) for large samples, the distribution
of the partial posterior predictive p value is uniform under the null model while the
distribution of the (conventional) posterior predictive p value may not be.

We have shown that the set of individual posterior predictive p values is uniformly
distributed under the null models (2.2) and (2.6), and that the posterior predictive p
value (with the F statistic as checking function) is also uniformly distributed under
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(2.2) and (2.6). These results are consistent with those described above: First, let
T (yij) = yij in (2.11), so the individual posterior predictive p value is

P (ỹij ≥ yij | y) =

∫

P (ỹij ≥ yij | θ) p1(θ|y) dθ .

From (6.1), the corresponding individual partial posterior predictive p value is

P (ỹij ≥ yij | y \ yij) =

∫

P (ỹij ≥ yij | θ) p2(θ|y \ yij) dθ .

However, under a fitted model such as (2.1), p2(θ|y \ yij) is essentially the same as
p1(θ|y) because the total sample size is assumed to be, at least, reasonably large and
there are no outliers in our specification (see Section 2).

Taking T (y) = F (y) with F (y) defined in (4.1) it is easy to show that under the
null model, (2.2), p(θ|y \ F (y)) = p(θ|y) because F (y) ∼ Fm−1,N−m. Similarly, if
T (y) = F (y) with F (y) defined by (4.3), it is easy to show that p(θ|y \ F (y)) = p(θ|y)
under the null model, (2.6), because F (y) ∼ Fa(m−1), am(n−1). Thus, the posterior
predictive p values with T (y) = F (y) are the same as the partial posterior predictive p
values.

Hjort et al. (2006) have recently proposed a method for calibrating posterior predic-
tive p values. This research, though, assumes proper prior distributions which is both
restrictive for practical applications and less desirable at the model checking stage (see
Bayarri and Castellanos 2007, Section 1).

7 Conclusion

We have presented methodology to evaluate Bayesian diagnostic techniques that are
based on the posterior distribution of predicted data, ỹ, under a fitted model, i.e., the
distribution with density p(ỹ|y) in (2.8). Assuming that the diagnostic quantity, d(y), is
a function only of the observed data, y, we first investigate d(y) under the assumption
that the actual distribution of y is consistent with that postulated for the fitted model
- to show the desired uniform distribution. Then we investigate d(y) assuming that the
actual distribution of y is different from that of the fitted model - to investigate the
conditions under which the diagnostic will reveal the existence (and nature) of a model
different from that postulated for the fitted model. This approach can also be used to
evaluate discrepancy measures, D(y, θ), which are functions of the observed data and
parameters.

We have evaluated the ability of several Bayesian diagnostic techniques to detect
hierarchical structure that is not accounted by the fitted model. Because there has
been no apparent research of this type, we have started with the simple, yet important
situation where the data come from a model with two-stage hierarchical structure while
the fitted model does not have this structure. We then extended this analysis to the
case where the fitted model is a two-stage hierarchical model while the data come from
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a model with three stages. Since the results in the two cases are similar we expect that
conclusions we have reached will apply to the situation where the fitted model includes
some hierarchical structure but does not account for all of the stages actually present.

A general technique that we can recommend to detect hierarchical structure that is
not included in the fitted model is to check the distribution of the ensemble of individual
posterior predictive p values. Be careful, though, because looking at each individual p
value separately will not detect unanticipated hierarchical structure.

If one has a structured situation, such as a set of hospitals (as illustrated by the
Patterns of Care Study), evaluating the posterior predictive p value using the F statistic
motivated by a specific alternative model should give a clear idea if the alternative model
is appropriate. Our results for F ∗ for Case II in Section 4.2 suggest that the F statistic
may also be useful in situations where the clustering of units is not clear a priori. All
of these methods are effective in detecting hierarchical structure missing from the fitted
model, and also are properly calibrated under the null model.
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Appendix A Results for individual posterior predictive p

values in Section 3.2:
Case II, fitting the two-stage hierarchical model

Define ȳi =
∑

j

∑

k yijk/mn, ȳ = (ȳ1, . . . , ȳa)′, ȳ... =
∑

i ȳi/a, λ = γ/(γ + φ/mn), 1b is
a vector of b 1’s and Ib is the b × b identity matrix. Assuming the fitted model, (2.5),
the posterior predictive distribution of ỹ, given y, is

ỹ|y ∼ N
(

ν(y), D(y)
)

(A.1)

where

ν(y) =
(

Ia ⊗ 1mn

)(

λȳ + (1 − λ)ȳ...1a

)

,

D(y) = λ(φ/mn)(Ia ⊗ 1mn1′mn) + (1 − λ)(φ/amn)(1amn1′amn) + φIamn .



754 Diagnostic Techniques for Hierarchical Structure

Assume, first, that the data come from the two stage hierarchical model in (2.6), the
null model. Then E(yijk) = ν0, var(yijk) = φ0 + γ0, cov(yijk , yijk′ ) = cov(yijk , yij′k) =
γ0 and cov(yijk , yi′jk) = 0. Making the assumption that φ = φ0 and γ = γ0, it is
straightforward to show that for any value of a, and for large m or n the moments
of ỹ (i.e., the moments from (A.1) averaged over the two stage hierarchical model in
(2.6)) agree with the moments of y given above. Thus, for large N = anm, the set of

individual p values is uniformly distributed under the null model, (2.6), and a Q-Q plot
of the pijk would be expected to be consistent with a uniform distribution.

Now, assuming the data coming from the three-stage model in (2.7)

E(yijk |φ0, d0, γ0, ν0) = ν0 ,

var(yijk |φ0, d0, γ0, ν0) = φ0 + d0 + γ0,

cor(yijk , yijk′ |φ0, d0, γ0, ν0) = (d0 + γ0)/(φ0 + d0 + γ0), (A.2)

cor(yijk , yij′k|φ0, d0, γ0, ν0) = γ0/(φ0 + d0 + γ0),

cor(yijk , yi′jk |φ0, d0, γ0, ν0) = 0 .

After algebraic manipulation the moments of ỹ under (2.7) can be shown to be

E(ỹ|φ0, d0, γ0, ν0) = 1amnν0 , (A.3)

var(ỹ|φ0, d0, γ0, ν0) = λ
(

φ/mn)(Ia ⊗ 1mn1′mn

)

+
(

1 − λ
)(

φ/amn
)(

1amn1′amn

)

+ φIamn +
(

φ0/mn + d0/m + γ0

)

λ2
(

Ia ⊗ 1mn1′mn

)

+
(

φ0/amn + d0/am + γ0/a
)(

1 − λ2
)(

1amn1′amn

)

. (A.4)

See a sketch of the proof in Appendix C.1.

Clearly, the expected values in (A.2) and (A.3) agree. Now, for any value of a,

lim
m→∞

var(ỹ|φ0, d0, γ0, ν0) = φIamn + γ0 (Ia ⊗ 1mn1′mn) (A.5)

and

lim
n→∞

var(ỹ|φ0, d0, γ0, ν0) = φIamn +
(

d0/m + γ0

)

(Ia ⊗ 1mn1′mn) . (A.6)

To provide a clear comparison of (A.5) and (A.6) with (A.2) we make the conservative

assumption that φ = φ0 + d0. (If φ 6= φ0 + d0 there will be greater differences between
the predicted and observed values.) Then

lim
m→∞

var(ỹijk |φ0, d0, γ0, ν0) = φ0 + d0 + γ0 ,

lim
m→∞

cor(ỹijk , ỹijk′ |φ0, d0, γ0, ν0) = γ0/(φ0 + d0 + γ0) , (A.7)

lim
m→∞

cor(ỹijk , ỹij′k|φ0, d0, γ0, ν0) = γ0/(φ0 + d0 + γ0) ,

lim
m→∞

cor(ỹijk , ỹi′jk |φ0, d0, γ0, ν0) = 0 .
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and

lim
n→∞

var(ỹijk |φ0, d0, γ0, ν0) = φ0 + d0 + γ0 + d0/m ,

lim
n→∞

cor(ỹijk , ỹijk′ |φ0, d0, γ0, ν0) = (γ0 + d0/m)/{φ0 + d0 + γ0 + d0/m} ,

lim
n→∞

cor(ỹijk , ỹij′k|φ0, d0, γ0, ν0) = (γ0 + d0/m)/{φ0 + d0 + γ0 + d0/m} ,

lim
n→∞

cor(ỹijk , ỹi′jk |φ0, d0, γ0, ν0) = 0 . (A.8)

With the conservative assumption that φ = φ0 + d0 and large values of m the two
distributions in (A.2) and (A.7) are not very different if d0/γ0 is small, in which case the
distribution of individual p values is expected to be approximately uniform. However, for
large n and small m there are differences in three of the four terms (compare (A.2) and
(A.8)). These differences depend on the magnitudes of d0/γ0 and d0/m: The difference
between the second expression in (A.8) and the comparable expression in (A.2) is large
if d0/γ0 is large, especially if m is moderately large. The difference between the third
expression in (A.8) and the comparable term in (A.2) is large if d0/γ0 is large but m is
small.

Appendix B Results for the F statistic in Section 4.2:
Case II, fitting the two-stage hierarchical model

B.1 Results for the F checking function in (4.3)

Assume the fitted model (2.5) but with ν, φ and γ unknown and with any prior. Consider
the F statistic

F (y) =
n

∑a
i=1

∑m
j=1(ȳij. − ȳi..)

2/a(m − 1)
∑a

i=1

∑m
j=1

∑n
k=1(yijk − ȳij.)2/am(n − 1)

. (B.1)

Since the distribution of F (ỹ), given µ = (µ1, . . . , µa) and φ, is Fa(m−1), am(n−1),
it follows that the posterior predictive distribution of F (ỹ) given y is Fa(m−1), am(n−1).
When the data are from the two-stage hierarchical model in (2.6), the null model,
F (y) ∼ Fa(m−1), am(n−1). Thus, the posterior predictive p value in (4.2) using this F
checking function is uniformly distributed.

When the data are from the three-stage model, (2.7), F (y) ∼ {(φ0 + nd0)/φ0}
Fa(m−1), am(n−1). Since F (ỹ)|y ∼ Fa(m−1), am(n−1), the posterior predictive p value in
(4.2) will be small if d0/(φ0/n) is large. This result suggests that using F defined in
(B.1) as the checking function is a useful technique to detect a lack of fit of the two-stage
model if the data in fact have the three-stage structure. Note that this is the same result
obtained in Case I (Section 4.2) when (2.1) is fitted and the data are from (2.3).
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B.2 Results for the F ∗ checking function in (4.4)

Consider the alternative F statistic,

F ∗(y) =
mn

∑a
i=1(ȳi.. − ȳ...)

2/(a − 1)
∑a

i=1

∑m
j=1

∑n
k=1(yijk − ȳi..)2/a(mn − 1)

, (B.2)

which does not take account of the three-stage model in (2.7).

Assuming the fitted model is (2.5) with φ and γ known, the posterior predictive
distribution of F ∗(ỹ) given y cannot be obtained in an analytical form. Thus, we
compare expected values; i.e., E{F ∗(y)} with Ey E(F ∗(ỹ)|y).

First, we find the posterior predictive expectation E(F ∗(ỹ)|y). Approximating
E(F ∗(ỹ)|y) as the ratio of the expected values of the numerator and denominator of
(B.2), it can be shown, after extensive algebraic manipulation, that

E(F ∗(ỹ)|y)
.
= (λ + 1) + (λ2/φ) MSµ(y) (B.3)

where λ = γ/(γ + φ/mn) as in (A.1) and MSµ(y) is the numerator of (B.2). See a
sketch of the proof in Appendix C.2.

Now assume that the data are from the two-stage hierarchical model in (2.6). Then
F ∗(y) ∼ {(mnγ0 + φ0)/φ0}F(a−1), a(mn−1) with (ignoring terms of O(1/amn))

E{F ∗(y)|φ0, γ0} .
= (mnγ0 + φ0)/φ0 . (B.4)

Assuming φ = φ0 and γ = γ0, defining λ0 = γ0/(γ0 + φ0/mn), it can be shown that
(B.3) averaged over (2.6) is

E(y|φ0,γ0) E(F ∗(ỹ)|y)
.
= (λ0 + 1) + (λ2

0/φ0)(mnγ0 + φ0) = (mnγ0 + φ0)/φ0. (B.5)

The equality of (B.4) and (B.5) suggests that when the fitted and actual data models
are both two-stage, the p value, P{F ∗(ỹ) ≥ F ∗(y)|y}, will not be extreme.

Next, assume that the data are from the three-stage hierarchical model, (2.7). Then
it can be shown that

F ∗(y) ∼
{

(φ0 + nd0 + mnγ0)(mn − 1)

(m − 1)(φ0 + nd0) + m(n − 1)φ0

}

F(a−1), a(mn−1) . (B.6)

See a sketch of the proof in Appendix C.3.

Assuming a(mn − 1)/{a(mn − 1) − 2} .
= 1 and (m − 1)/m

.
= 1,

E{F ∗(y)|φ0, d0, γ0} .
=

{

φ0 + d0 + mnγ0

φ0 + d0

}

+

{

(n − 1)d0

φ0 + d0

}

. (B.7)

Proceeding in a conservative manner by letting φ = φ0 +d0 and γ = γ0, it can be shown
that (B.3), with averaging over the three-stage model, (2.7), is

E(y|φ0,d0,γ0) E(F ∗(ỹ)|y) =

{

φ0 + d0 + mnγ0

φ0 + d0

}

+

{

(n − 1)d0

φ0 + d0

} {

m2n2γ2
0

(mnγ0 + d0 + φ0)2

}

. (B.8)
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Comparing (B.7) and (B.8), the second term in (B.8) is smaller than the comparable
term in (B.7) and the difference will be large when φ0 or d0 is large (as long as mn
is not too large). Even under these conservative assumptions (i.e., φ = φ0 + d0 and
γ = γ0) it appears that F ∗ is an effective checking function. Note that F ∗ is a “general”
F -type checking function, i.e., not influenced by the three-stage cluster structure in the
alternative model. Thus, the properties obtained here suggest that F -type checking
functions will be effective in checking the fit of hierarchical models that do not account
for all of the actual hierarchical stages.

Appendix C Sketch of proofs of (A.4), (B.3) and (B.6)

C.1 Proof of (A.4)

The variance of ỹ under the sampling distribution, (2.7), is

var(ỹ|φ0, d0, γ0, ν0) = E(y|φ0,d0,γ0,ν0) var(ỹ|y) + var(y|φ0,d0,γ0,ν0) E(ỹ|y)

= E(y|φ0,d0,γ0,ν0) D(y) + var(y|φ0,d0,γ0,ν0)ν(y) . (C.1)

Using (A.1), the first term is

E(y|φ0,d0,γ0,ν0) D(y) = λ(φ/mn)(Ia ⊗ 1mn1′mn) + (1 − λ)(φ/amn)1amn1′amn + φIamn .

Writing ȳ... = 1′a ȳ/a, the second term is

var(y|φ0,d0,γ0,ν0)ν(y) = var(y|φ0,d0,γ0,ν0)

{

(Ia ⊗ 1mn)
(

λȳ + (1 − λ)ȳ...1a

)

}

= var(y|φ0,d0,γ0,ν0)

{

(Ia ⊗ 1mn)
(

Iaλ + (1 − λ)1a1′a/a
)

ȳ
}

= var(y|φ0,d0,γ0,ν0)A ȳ (C.2)

where A = (Ia⊗1mn)
(

Iaλ+(1−λ)1a1
′
a/a

)

. Since var(ȳ|φ0, d0, γ0, ν0) = var(ȳ1, . . . , ȳa)
′

= (φ0/mn + d0/m + γ0) Ia,

var(y|φ0,d0,γ0,ν0)A ȳ = AA′ (φ0/mn + d0/m + γ0) .

Using (Ia ⊗ 1mn)1a = 1amn,

AA′ =
{

(Ia ⊗ 1mn)
(

Iaλ + (1 − λ)1a1′a/a
)

}{

(

Iaλ + (1 − λ)1a1′a/a
)

(Ia ⊗ 1′mn)
}

=
{

λ(Ia ⊗ 1mn) + (1 − λ)1amn1′a/a
}{

λ(Ia ⊗ 1′mn) + (1 − λ)1a1′amn/a
}

= λ2(Ia ⊗ 1mn1′mn) + 2λ(1 − λ) 1amn1′amn/a + (1 − λ)2 1amn1′amn/a

= λ2(Ia ⊗ 1mn1′mn) + (1 − λ2) 1amn1′amn/a .

Thus, (C.2) is

var(y|φ0,d0,γ0,ν0) ν(y) = (φ0/mn + d0/m + γ0)A A′

= (φ0/mn + d0/m + γ0)
{

λ2(Ia ⊗ 1mn1′mn) + (1 − λ2) 1amn1′amn/a
}

.
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Now, (C.6) is

var(ỹ|φ0, d0, γ0, ν0) = λ(φ/mn)(Ia ⊗ 1mn1′mn) + (1 − λ)(φ/amn)1amn1′amn

+ φIamn + (φ0/mn + d0/m + γ0)λ
2(Ia ⊗ 1mn1′mn)

+ (φ0/amn + d0/am + γ0/a)(1 − λ2)1amn1′amn .

C.2 Proof of (B.3)

Write F ∗(y) in (B.2) as

F ∗(y) =
MSµ(y)

{SSθ(y) + SSE(y)}/a(mn− 1)
(C.3)

where MSµ(y) = SSµ(y)/(a − 1) and SSµ(y) = mn
∑a

i=1(ȳi.. − ȳ...)
2, SSθ(y) =

∑a
i=1

∑m
j=1 n(ȳij. − ȳi..)

2, and SSE(y) =
∑a

i=1

∑m
j=1

∑n
k=1(yijk − ȳij.)

2. Approximat-
ing E(F ∗(ỹ)|y) as the ratio of the expected values of the numerator and denominator,
we obtain

E(F ∗(ỹ)|y)
.
=

Eỹ|y MSµ(ỹ)

Eỹ|y

{

SSθ(ỹ) + SSE(ỹ)
}

/a(mn − 1)
. (C.4)

When the fitted model is (2.5), conditioning on φ and µ = (µ1, . . . , µa), SSθ(ỹ)/φ
∼ χ2

a(m−1), and independently, SSE(ỹ)/φ∼χ2
am(n−1). Hence,

{
(

SSθ(ỹ) + SSE(ỹ)
)

/φ} | µ, φ ∼ χ2
a(mn−1) .

It then follows that the denominator of (C.4) is

Eỹ|y
SSθ(ỹ) + SSE(ỹ)

a(mn − 1)
= Eµ,ν|yEỹ|µ

SSθ(ỹ) + SSE(ỹ)

a(mn − 1)
= Eµ,ν|y φ = φ . (C.5)

To find the numerator of (C.4), we write

Eỹ|y (a − 1)MSµ(ỹ) = Eỹ|y

a
∑

i=1

mn(ȳi.. − ȳ...)
2 = Eỹ|y mn

(

a
∑

i=1

ȳ2
i.. − aȳ2

...

)

= Eỹ|y

{

ỹ′
(

(Ia ⊗ 1mn1′mn/mn) − 1amn1′amn/amn
)

ỹ
}

= Eỹ|y (ỹ′ A ỹ) = tr{A D(y)} + ν(y)′A ν(y) , (C.6)

where A = {(Ia ⊗ 1mn1′mn/mn) − 1amn1′amn/amn}, D(y) and ν(y) are given in (A.1).
It can be shown that

A D(y) =
{

(Ia ⊗ 1mn1′mn/mn) − 1amn1′amn/amn
}

×
{

λ(φ/mn)(Ia ⊗ 1mn1′mn) + (1 − λ)(φ/amn)(1amn1′amn) + φIamn

}

= λ(φ/mn)(Ia ⊗ 1mn1′mn) + (1 − λ)(φ/amn) 1amn1′amn + φ(Ia ⊗ 1mn1′mn/mn)

−λ(φ/amn)1amn1′amn − (1 − λ)(φ/amn)(1amn1′amn) − (φ/amn) 1amn1′amn .
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After algebraic manipulation,

tr{A D(y)} = φ(a − 1)(λ + 1) . (C.7)

The second term in (C.6) is

ν(y)′A ν(y) =
{

(λȳ + (1 − λ)ȳ...1a)
′(Ia ⊗ 1′mn)

}{

(Ia ⊗ 1mn1′mn/mn)

− 1amn1′amn/amn
}{

(Ia ⊗ 1mn)(λȳ + (1 − λ)ȳ...1a)
}

= mn(λȳ + (1 − λ)ȳ...1a)′(Ia − 1a1
′
a/a)(λȳ + (1 − λ)ȳ...1a) .

Letting B = Ia − 1a1
′
a/a,

ν(y)′A ν(y) = mnλ2ȳ′Bȳ + mn(1 − λ)2ȳ2
...1

′
aB1a + mnλ (1 − λ)ȳ′Bȳ...1a

+ mnλ (1 − λ)ȳ...1
′
aBȳ

= mnλ2ȳ′Bȳ + 0 + 0 + 0 ,

where the second, third and fourth terms are zero because 1′
aB = 0 and ȳ′Bȳ...1a = 0.

Hence,

ν(y)′A ν(y) = mnλ2ȳ′
(

Ia − 1a1′a/a
)

ȳ = λ2
a

∑

i=1

mn(ȳi.. − ȳ...)
2

= λ2(a − 1)MSµ(y) . (C.8)

Using (C.7) and (C.8), (C.6) is

Eỹ|y (a − 1)MSµ(ỹ) = φ(a − 1)(λ + 1) + λ2(a − 1)MSµ(y) .

Thus, the numerator of (C.4) is

Eỹ|y MSµ(ỹ) = φ(λ + 1) + λ2MSµ(y) . (C.9)

Finally, (C.5) and (C.9) yield the posterior predictive expectation in (C.4)

Eỹ|y F ∗(ỹ)
.
= (λ + 1) + (λ2/φ)MSµ(y) .

C.3 Proof of (B.6)

When the data are from the three-stage model, (2.7), note that

E
{

SSθ(y) + SSE(y)
}

/a(mn − 1)

=
{

a(m − 1)E MSθ(y) + am(n − 1)E MSE(y)
}

/a(mn − 1)

=
{

a(m − 1)(nd0 + φ0) + am(n − 1)φ0

}

/a(mn − 1) ,

where SSθ(y) and SSE(y) are given in (C.3). Hence,

SSθ(y) + SSE(y)
{

a(m − 1)(φ0 + nd0) + am(n − 1)φ0

}

/a(mn − 1)
∼ χ2

a(mn−1) .
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Also, it can be shown that

(a − 1)MSµ(y)/(φ0 + nd0 + mnγ0) ∼ χ2
a−1 .

Since the above two terms are independent, it follows immediately that

F ∗(y) =
MSµ(y)

{

SSθ(y) + SSE(y)
}

/a(mn− 1)

∼
{ (φ0 + nd0 + mnγ0)(mn − 1)

(m − 1)(φ0 + nd0) + m(n − 1)φ0

}

F(a−1),a(mn−1) .
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