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Spatial Dynamic Factor Analysis

Hedibert Freitas Lopes∗, Esther Salazar† and Dani Gamerman‡

Abstract. A new class of space-time models derived from standard dynamic fac-
tor models is proposed. The temporal dependence is modeled by latent factors
while the spatial dependence is modeled by the factor loadings. Factor analytic
arguments are used to help identify temporal components that summarize most
of the spatial variation of a given region. The temporal evolution of the factors is
described in a number of forms to account for different aspects of time variation
such as trend and seasonality. The spatial dependence is incorporated into the fac-
tor loadings by a combination of deterministic and stochastic elements thus giving
them more flexibility and generalizing previous approaches. The new structure
implies nonseparable space-time variation to observables, despite its conditionally
independent nature, while reducing the overall dimensionality, and hence com-
plexity, of the problem. The number of factors is treated as another unknown
parameter and fully Bayesian inference is performed via a reversible jump Markov
Chain Monte Carlo algorithm. The new class of models is tested against one syn-
thetic dataset and applied to pollution data obtained from the Clean Air Status
and Trends Network (CASTNet). Our factor model exhibited better predictive
performance when compared to benchmark models, while capturing important
aspects of spatial and temporal behavior of the data.

Keywords: Bayesian inference, forecasting, Gaussian process, spatial interpolation,
reversible jump Markov chain Monte Carlo, random fields

1 Introduction

Factor analysis and spatial statistics are two successful examples of statistical areas that
have been experiencing major attention both from the research community as well as
from practitioners. One could argue that the main reason for such interest is motivated
by the recent increase in availability of efficient computational schemes coupled with fast,
easy-to-use computers. In particular, Markov chain Monte Carlo (MCMC) simulation
methods (Gamerman and Lopes, 2006, and Robert and Casella, 2004, for instance) have
opened up access to fully Bayesian treatments of factor analytic and spatial models as
described, for instance, in Lopes and West (2004) and Banerjee, Carlin, and Gelfand
(2004) respectively, and their references.

Factor analysis has previously been used to model multivariate spatial data.
Wang and Wall (2003), for instance, fitted a spatial factor model to the mortality rates
for three major diseases in nearly one hundred counties of Minnesota. Christensen
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and Amemiya (2002, 2003) proposed what they called the shift-factor analysis method
to model multivariate spatial data with temporal behavior modeled by autoregressive
components. Hogan and Tchernis (2004) fitted a one-factor spatial model and enter-
tained several forms of spatial dependence through the single common factor. In all
these applications, factor analysis is used in its original setup, i.e., the common factors
are responsible for potentially reducing the overall dimension of the response vector
observed at each location. In this paper, however, the observations are univariate and
factor analysis is used to reduce (identify) clusters/groups of locations/regions whose
temporal behavior is primarily described by a potentially small set of common dynamic
latent factors. One of the key aspects of the proposed model is that flexible and spatially
structured prior information regarding such clusters/groups can be directly introduced
by the columns of the factor loadings matrix.

More specifically, a new class of nonseparable and nonstationary space-time models
that resembles a standard dynamic factor model (Peña and Poncela 2004, for instance),
is proposed

yt = µy
t
∗

+ βft + εt, εt ∼ N(0,Σ) (1)

ft = Γft−1 + ωt, ωt ∼ N(0,Λ) (2)

where yt = (y1t, . . . , yNt)
′ is the N -dimensional vector of observations (locations s1, . . . ,

sN and times t = 1, . . . , T ), µy
t
∗

is the mean level of the space-time process, ft is an
m-dimensional vector of common factors, for m < N (m is potentially several orders
of magnitude smaller than N) and β = (β(1), . . . , β(m)) is the N ×m matrix of factor
loadings. The matrix Γ characterizes the evolution dynamics of the common factors,
while Σ and Λ are observational and evolutional variances. For simplicity, it is assumed
throughout the paper that Σ = diag(σ2

1 , . . . , σ
2
N ) and Λ = diag(λ1, . . . , λm). The dy-

namic evolution of the factors is characterized by Γ = diag(γ1, . . . , γm), which can be
easily extended to non-diagonal cases (Sections 2.3 and 2.5, for instance, deal with sea-
sonal components and non-stationary common factors). Also, the above setting assumes
that observed locations remain unchanged throughout the study period but anisotopic
observation processes can be easily contemplated.

The novelty of the proposal is twofold i) at any given time the univariate measure-
ments from all observed locations, either areal or point-referenced, are grouped together
in what otherwise would be the vector of attributes in standard factor analysis and ii)
spatial dependence is introduced by the columns of the factor loadings matrix. As a con-
sequence, common dynamic factors can be thought of as describing temporal similarities
amongst the time series, such as common annual cycles or (stationary or nonstation-
ary) trends, while the importance of common factors in describing the measurements
in a given location is captured by the components of the factor loadings matrix, which
are modeled by regression-type Gaussian processes (see equation (3) below). The in-
terpretability of the common factors and factor loadings matrix, typical tools in factor
analysis, are of key importance under the new structure. As can be seen in the applica-
tion, the dynamics of time series and their spatial correlations can be separately treated
and interpreted, without forcing unrealistic simplifications. More general time series
models can be entertained, through the common factors, without imposing additional
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constraints to the current spatial characterization of the model, and vice-versa. Stan-
dard factor analysis approach to high dimensional data sets usually trades off modeling
refinement and simplicity. Therefore, this paper focuses primarily on moderate sized
problems, where Bayesian hierarchical inference is a fairly natural approach.

An additional key feature of the proposed model is its ability to encompass several
existing models, which are restricted in most cases to nonstochastic common dynamic
factors or factor loadings matrices. More specifically, when the common factors are non-
stochastic (multivariate dynamic regression or weight kernels), the well known classes
of spatial priors for regression coefficients (see Gamerman, Moreira and Rue, 2003, and
Nobre, Schmidt and Lopes, 2005, for instance) or dynamic models for spatiotemporal
data (Stroud, Müller and Sansó, 2001) fall into the class of structured hierarchical priors
introduced in Section 2. Additionally, when the factor loadings matrix is fixed, com-
pletely deterministic or a deterministic function of a small number of parameters, the
proposed model can incorporate the structures that appear in Mardia, Goodall, Redfern
and Alonso (1998), Wikle and Cressie (1999) and Calder (2007), to name a few. In this
paper, both deterministic and stochastic forms are considered in the specification of
factor loadings, which can easily incorporate external information through regression
functions.

Finally, the number of common factors is treated as another parameter of the model
and formal Bayesian procedures are derived to appropriately account for its estimation.
Thus, sub-models with different parametric dimensions have to be considered and a
customized reversible jump MCMC algorithm derived. This is an original contribution
in the intersected field of spatiotemporal models and dynamic factor analysis. The
number of common dynamic factors plays the usual and important role of data reduc-
tion, i.e. N time series are parsimoniously represented by a small set of m time series
processes. Also, different levels of spatial smoothness and different degrees of spatial
and/or temporal nonstationarity can be achieved by the inclusion/exclusion of common
factors.

The remainder of the paper is organized as follows. Sections 2 and 3 specify in
detail the components of the proposed model (equations (1) and (2)), along with prior
specification for the model parameters, as well as forecasting and interpolation strate-
gies. Posterior inference for a fixed or an unknown number of factors is outlined in
Section 4. Simulated and real data illustrations appear in Section 5 with Section 6
listing conclusions and directions of current and future research.

2 Proposed space-time model

Equations (1) and (2) define the first level of the proposed dynamic factor model. Sim-
ilar to standard factor analysis, it is assumed that the m conditionally independent
common factors ft capture all time-varying covariance structure in yt. The condi-
tional spatial dependencies are modeled by the columns of the factor loadings matrix
β. More specifically, the jth column of β, denoted by β(j) = (β(j)(s1), . . . , β(j)(sN ))′,
for j = 1, . . . ,m, is modeled as a conditionally independent, distance-based Gaussian
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process or a Gaussian random field (GRF), i.e.

β(j) ∼ GRF (µβ
j

∗
, τ2

j ρφj (·)) ≡ N(µβ
j

∗
, τ2

j Rφj ), (3)

where µβ
j

∗
is a N -dimensional mean vector (see Section 2.1 for the inclusion of covari-

ates). The (l, k)-element of Rφj is given by rlk = ρφj (|sl − sk|), l, k = 1, . . . , N , for
suitably defined correlation functions ρφj (·), j = 1, . . . ,m. The parameters φjs are
typically scalars or low dimensional vectors. For example, φ is univariate when the cor-
relation function is exponential ρφ(d) = exp{−d/φ} or spherical ρφ(d) = (1−1.5(d/φ)+
0.5(d/φ)3)1{d/φ≤1}, and bivariate when it is power exponential ρφ(d) = exp{−(d/φ1)

φ2}

or Matérn ρφ(d) = 21−φ2Γ(φ2)
−1(d/φ1)

φ2Kφ2(d/φ1), where Kφ2(·) is the modified Bessel
function of the second kind and of order φ2. In each one of the above families, the range
parameter φ1 > 0 controls how fast the correlation decays as the distance between lo-
cations increases, while the smoothness parameter φ2 controls the differentiability of
the underlying process (for details, see Cressie, 1993 and Stein, 1999). The proposed
model could, in principle, accommodate nonparametric formulations for the spatial de-
pendence, such as the ones introduced by Gelfand, Kottas and MacEachern (2005), for
instance.

The proposed spatial dynamic factor model is defined by equations (1)–(3). Figure 1
illustrates the proposed model through a simulated spatial dynamic three-factor analy-
sis. The first column of the factor loadings matrix, β(1), suggests that the first common
factor is more important on the northeast end than on the southwest corner of the region.
Similarly, the second and third common factors are more important on the northeast
and northwest corners of the region. Notice, for instance, that β(1) and y12 behave quite
similarly due to the overwhelming influence of the first common factor. Additional re-
cent developments on Bayesian factor analysis can be found in Lopes and Migon (2002),
Lopes (2003), Lopes and West (2004) and Lopes and Carvalho (2007).

Several existing alternative models can be seen as particular cases of the model pro-

posed by letting τ2
j = 0, for all j and by properly specifying µβ

j

∗
by a pre-gridding

principal component decomposition (Wikle and Cressie 1999) or by a principal krig-
ing procedure (Sahu and Mardia, 2005, and Lasinio, Sahu and Mardia, 2005), for
instance. Mardia, Goodall, Redfern and Alonso (1998), for instance, introduced the
kriged Kalman filter and split the columns of β (common fields) into trend fields and
principal fields, both of which are fixed functions of empirical orthogonal functions. In
a related paper, Wikle and Cressie (1999) modeled the columns of β based on deter-
ministic, complete and orthonormal basis functions. More recently, Sansó et al. (2008)
and Calder (2007) used smoothed kernels to deterministically derive β. The modeling

of µβ
j

∗
, presented in what follows, highlights some of the features of the new model. Fi-

nally, Reich et al. (2008) present a simpler, non-spatial version of our space-time model
for known number of factors applied to human exposure to particulate matter.

The existence of a broad literature on general dynamic factor model for large scale
problems should also be mentioned. See, among others, Bai (2003) and Forni et al.
(2000). In this paper, the whole space-time dependencies are modeled through dynamic
common factors and spatially structured factor loadings matrix. This is primarily moti-
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(a) Factor loadings

f10 = (0.27, 0.11,−0.13)′ f11 = (0.30, 0.10, 0.18)′ f12 = (0.26,−0.06,−0.05)′
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(b) yt =
∑3

j=1 β(j)fjt + εt

Figure 1: Simulated data: yt follows a spatial dynamic 3-factor model. (a) Gaussian
processes for the three columns of the factor loadings matrix. (b) yt processes at t =
10, 11, 12.

vated by recent interest in the factor models literature towards hierarchically structured
loadings matrices (see Lopes and Migon, 2002, Lopes and Carvalho, 2007, Carvalho et
al. 2008, and West, 2003, to name a few).

2.1 Covariate effects

Many specifications for the mean level of both space-time process (equation 1) and
Gaussian random field (equation 3) can be entertained, with the most common ones
based on time-varying as well as location-dependent covariates. For the mean level of
the space-time process (µy

t
∗

in equation (1)), a few alternatives are i) constant mean
level model: µy

t
∗

= µy, ∀t (possibly µy = 0); ii) regression model: µy
t
∗

= Xy
t µ

y, where
Xy

t = (1N , X
y
1t, . . . , X

y
qt) contains q time-varying covariates; iii) dynamic coefficient

model: µy
t
∗

= Xy
t µ

y
t and µy

t ∼ N(µy
t−1,W ).

Similarly, covariates can be included in the factor loadings prior specification (µβ∗

j

in equation (3)) so that dependencies due to deterministic spatial variation can be
entertained. Due to the static behavior of β, only spatially-varying covariates will be
considered in explaining the mean level of the Gaussian random fields. The following

are the specifications considered in this paper: i) µβ
j

∗
= 0; ii) µβ

j

∗
= µβ

j 1N and iii)

µβ
j

∗
= Xβ

j µ
β
j , where Xβ

j is a N × pj matrix of covariates. In the last case, more
flexibility is brought up by allowing potentially different covariates for each Gaussian
random field.
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Deterministic specifications for the leadings such as smoothing kernels (Calder, 2007;
Sansó and Schmidt, 2008) or orthogonal basis (Stroud, Müller and Sansó, 2001; Wikle
and Cressie, 1999) can be accommodated in this formulation. The approach of this
paper allows an additional stochastic component that is spatially structured and is thus
potentially capable of picking more general spatial dependencies.

2.2 Spatio-temporal separability

Roughly speaking, separable covariance functions of spatiotemporal processes can be
written as the product (or sum) of a purely spatial covariance function and a purely tem-
poral covariance function. More specifically, let Z(s, t) be a random process indexed by
space and time. The process is separable if Cov(Z(s1, t1), Z(s2, t2))=Covs(u|θ)Covt(h|θ)
(or Covs(u|θ) + Covt(h|θ)), for model parameters θ ∈ Θ ⊂ <p, u = ‖s2 − s1‖ and
h = |t2 − t1|. Under the proposed model, when m = 1 and µy

t
∗

= 0, it is easy to see

that Cov(yit, yj,t+h) = (λγh)(1−γ2)−1(τ2ρ(u, φ)+µβ
i µ

β
j ), so both spatial and temporal

covariance functions are separately identified.

Cressie and Huang (1999) claim that separable structures are often chosen for con-
venience rather than for their ability to fit the data. In fact, separable covariance
functions are usually severely limited because they are unable to model space-time in-
teraction. Cressie and Huang (1999), for instance, introduced classes of nonseparable,
stationary covariance functions that allow for space-time interaction and are based on
closed form Fourier inversions. Gneiting (2002) extends Cressie and Huang’s (1999)
classes by constructions directly in the space-time domain.

It is easy to show that Cov(yit, yj,t+h) =
∑m

k=1(λkγ
h
k )(1−γ2

k)−1(τ2
kρ(u, φk)+µβ

ikµ
β
jk),

for m > 1. Therefore, an important property of the proposed model is that it leads to
nonseparable forms for its covariance function whenever the number of common factors
is greater than one.

2.3 Seasonal dynamic factors

Periodic or cyclical behavior are present in many applications and can be directly en-
tertained by the dynamic models framework embedded in the proposed model. For
example, linear combinations of trigonometric functions (Fourier form) can be used to
model seasonality (West and Harrison 1997). In fact, equations (1) and (2) encom-
pass a fairly large class of models, such as multiple dynamic linear regressions, transfer
function models, autoregressive moving average models and general time series decom-
position models, to name a few.

Seasonal patterns can be incorporated into the proposed model either through the
common dynamic factors or through the mean level. In the former, common seasonal
factors receive different weights for different columns of the factor loading matrix, so
allowing different seasonal patterns for the spatial locations. In the latter, the same
pattern is assumed for all locations. For example, a seasonal common factor of period
p (p = 52 for weekly data and annual cycle) can be easily accommodated by simply
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letting β = (β(1), 0, . . . , β(h), 0) and Γ = diag(Γ1, . . . ,Γh), where

Γl =

(
cos(2πl/p) sin(2πl/p)
− sin(2πl/p) cos(2πl/p)

)
, l = 1 . . . , h = p/2,

and h = p/2 is the number of harmonics needed to capture the seasonal behavior of the
time series (see West and Harrison, 1997, Chapter 8, for further details). In this context
the covariance matrix Λ is no longer diagonal since the seasonal factors are correlated,
i.e., Λ = diag(Λ1, . . . ,Λh) and each Λl (l = 1, ..., h) is a 2 × 2 covariance matrix.

It is worth noting that the seasonal factors play the role of weights for loadings
that follow Gaussian processes, so implying different seasonal patterns for different
stations. Inference for the seasonal model is done using the algorithm proposed be-
low with (conceptually) simple additional steps. For instance, posterior samples for
Λl, l = 1, . . . , h are obtained from inverted Wishart distributions, as opposed to the
usual inverse gamma distributions. In practice, fewer harmonics are required in many
applications to adequately describe the seasonal pattern of many datasets and the di-
mension of this component is typically small. For the sake of notation, the following
sections present the inferential procedures based on the more general equations (1) and
(2).

2.4 Likelihood function

It will be assumed for the remainder of the paper, without loss of generality, that

µy
t
∗

= 0 and µβ
j

∗
= Xβ

j µ
β
j . Therefore, conditional on ft, for t = 1, . . . , T , model

(1) can be rewritten in matrix notation as y = Fβ′ + ε, where y = (y1, . . . , yT )′ and
F = (f1, . . . , fT )′ are T ×N and T ×m matrices, respectively. The error matrix, ε, is of
dimension T ×N and follows a matric-variate normal distribution, i.e., ε ∼ N(0, IT ,Σ)
(Dawid, 1981 and Brown, Vannucci and Fearn, 1998), so the likelihood function of
(Θ, F, β,m) is

p(y|Θ, F, β,m) = (2π)−TN/2|Σ|−T/2etr

{
−

1

2
Σ−1(y − Fβ′)′(y − Fβ′)

}
, (4)

where Θ = (σ, λ, γ, µ, τ, φ), σ = (σ2
1 , . . . , σ

2
N )′, λ = (λ1, . . . , λm)′, γ = (γ1, . . . , γm)′,

µ = (µβ
1 , . . . , µ

β
m), τ = (τ2

1 , . . . , τ
2
m)′, φ = (φ1, . . . , φm)′, etr(X) = exp(trace(X)). The

dependence on the number of factors m is made explicit and considered as another
parameter in Section 4.1.

2.5 Prior information

For simplicity, conditionally conjugate prior distributions will be used for all parameters
defining the dynamic factor model, while two different prior structures are considered
for the parameters defining the spatial processes. The prior for the common dynamic
factors is given in (2) and completed by f0 ∼ N(m0, C0), for known hyperparameters
m0 and C0. Independent prior distributions for the hyperparameters σ and λ are as
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follows: i) σ2
i ∼ IG(nσ/2, nσsσ/2), i = 1, . . . , N ; and ii) λj ∼ IG(nλ/2, nλsλ/2),

j = 1, . . . ,m, where nσ , sσ , nλ and sλ are known hyperparameters. Remaining temporal
dependence on the idiosyncratic errors can also be considered (Lopes and Carvalho 2007
and Peña and Poncela 2006) but this was not pursued here.

For γ, many specifications can be considered. For example, i) γj ∼Ntr(−1,1)(mγ , Sγ),
where Ntr(c,d)(a, b) refers to the N(a, b) distribution truncated to the interval [c, d];
and ii) γj ∼ αNtr(−1,1)(mγ , Sγ) + (1 − α)δ1(γj), where mγ , Sγ and α ∈ (0, 1] are
known hyperparameters, δ1(γj) = 1 if γj = 1 and δ1(γj) = 0 if γj 6= 1. In the
first case, all common dynamic factors are assumed stationary. In the second case,
possible nonstationary factors are also entertained. Note that when α = 1, case i) is
contemplated. See Peña and Poncela (2004, 2006) for more details on nonstationary
dynamic factor models and Section 5 for the application.

The parameters µβ
j , φj and τ2

j , for j = 1, . . . ,m, follow one of the two prior specifi-

cations: i) vague but proper priors and ii) reference-type priors. In the first case, µβ
j ∼

N(mµ, Sµ), φj ∼ IG(2, b) and τ2
j ∼ IG(nτ/2, nτsτ/2), j = 1, . . . ,m, where mµ, Sµ, nτ

and sτ are known hyperparameters, b = ρ0/(−2 ln(0.05)) and ρ0 = maxi,j=1,...,N |si−sj |
(see Banerjee, Carlin, and Gelfand (2004) and Schmidt and Gelfand (2003), for more

details). In other words, π(µβ
j , τ

2
j , φj) = πN (µβ

j )πIG(τ2
j , φj) where

πIG(τ2
j , φj) = πIG(τ2

j )πIG(φj) ∝ τ
−(nτ +2)
j e−0.5nτ sτ /τ2

j φ−3
j e−b/φj , (5)

where the subscripts N and IG stand for the normal and inverted gamma densities,
respectively. In the second case, the reference analysis proposed by Berger, De Oliveira
and Sansó (2001) is considered, which guarantees propriety of the posterior distributions.

More specifically, πR(µβ
j , τ

2
j , φj) = πR(µβ

j |τ
2
j , φj)πR(τ2

j , φj), with πR(µβ
j |τ

2
j , φj) = 1 and

πR(τ2
j , φj) = πR(τ2

j )πR(φj) ∝ τ−2
j

{
tr(W 2

φj
) −

1

N − pj
[tr(Wφj )]

2

}1/2

, (6)

where Wφj = ((∂/∂φj)Rφj )R
−1
φj

(IN −Xβ
j (Xβ

j

′
R−1

φj
Xβ

j )−1Xβ
j

′
R−1

φj
). It is worth noticing

that πIG(τ2
j ) and πR(τ2

j ) will be quite similar for nτ near 0. They propose and rec-
ommend the use of the reference prior for the parameters of the correlation function.
The basic justification is simply that the reference prior yields a proper posterior, in
contrast to other noninformative priors. It is important to emphasize that this prior
specification defines a reference prior when conditioning on the factor loadings matrix.

3 Uses of the model

3.1 Forecasting

Forecasting is theoretically straightforward. More precisely, one is usually interested in
learning about the h-steps ahead predictive density p(yT+h|y), i.e.

p(yT+h|y) =

∫
p(yT+h|fT+h, β,Θ)p(fT+h|fT , β,Θ)p(fT , β,Θ|y)dfT+hdfT dβdΘ (7)
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where (yT+h|fT+h, β,Θ) ∼ N(βfT+h,Σ), (fT+h|fT , β,Θ) ∼ N(µh, Vh), µh = ΓhfT and

Vh =
∑h

k=1 Γk−1Λ(Γk−1)′, for h > 0. Then, if {(β(1),Θ(1), f
(1)
T ), . . . , (β(M),Θ(M), f

(M)
T )}

is a sample from p(fT , β,Θ|y) (see Section 4 below), it is easy to draw f
(j)
T+h from

p(fT+h|f
(j)
T , β(j), Θ(j)), for all j = 1, . . . ,M , such that p̂(yT+h|y) = M−1

∑M
j=1 p(yT+h|

f
(j)
T+h, β

(j),Θ(j)) is a Monte Carlo approximation to p(yT+h|y). Analogously, a sample

{y
(1)
T+h, . . . , y

(M)
T+h} from p(yT+h|y) is obtained by sampling y

(j)
T+h from p(yT+h|f

(j)
T+h, β

(j),

Θ(j)), for j = 1, . . . ,M .

3.2 Interpolation

The interest now is in interpolating the response for Nn locations where the response
variable y has not yet been observed. More precisely, let yo denote the vector of ob-
servations from locations in S and yn denote the (latent) vector of measurements from
locations in Sn = {sN+1, . . . , sN+Nn}. Also, let β(j) = (βo′

(j), β
n′

(j))
′ be the j-column of

the factor loadings matrix β with βo
(j) corresponding to yo and βn

(j) corresponding to yn,

respectively. Interpolation consists of finding the posterior distribution of βn (Bayesian
kriging),

p(βn|yo) =

∫
p(βn|βo,Θ)p(βo,Θ|yo)dβodΘ. (8)

where p(βn|βo,Θ) =
∏m

j=1 p(β
n
(j)|β

o
(j), µ

β
j , τ

2
j , φj). Standard multivariate normal results

can be used to derive, for j = 1, . . . ,m, the distribution of p(βn
(j)|β

o
(j), µ

β
j , τ

2
j , φj). Con-

ditionally on Θ,

(
βo

(j)

βn
(j)

)
∼ N

[(
Xβo

j

Xβn

j

)
µβ

j , τ
2
j

(
Ro

φj
Ro,n

φj

Rn,o
φj

Rn
φj

)]

where Rn
φj

is the correlation matrix of dimension Nn between ungauged locations, Ro,n
φj

is a matrix of dimension N × Nn where each element represents the correlation be-
tween gauged location i and ungauged location j, for i = 1, . . . , N and j = N +
1, . . . , N+Nn. Therefore, βn

(j)|β
o
(j),Θ ∼ N(Xβn

j µβ
j +Rn,o

φj
Ro

φj

−1(βo
(j)−X

βo

j µβ
j ); τ2

j (Rn
φj
−

Rn,o
φj
Ro

φj

−1Ro,n
φj

)) and the usual Monte Carlo approximation to p(βn|yo) is p̂(βn|yo) =

L−1
∑L

l=1 p(β
n|βo(l),Θ(l)), where {(βo(1),Θ(1)), . . . , (βo(L),Θ(L))} is a sample from p(βo,

Θ|y) (see Section 4 below). If βn(l) is drawn from p(βn|βo(l),Θ(l)), for l = 1, . . . , L, then
{βn(l), . . . , βn(L)} is a sample from p(βn|yo). As a by-product, the expectation of non-

observed measures yn can be approximated by Ê(yn|yo) = L−1
∑L

l=1 β
n(l)f (l).

4 Posterior inference

Posterior inference for the proposed class of spatial dynamic factor models is facilitated
by Markov Chain Monte Carlo algorithms designed for two cases: (1) known number m
of common factors and (2) unknown m. In the first case, standard MCMC for dynamic
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linear models are adapted, while reversible jump MCMC algorithms are designed for
when m is unknown.

Conditional on m, the joint posterior distribution of (F, β,Θ) is

p(F, β,Θ|y) ∝
T∏

t=1

p(yt|ft, β, σ)p(f0|m0, C0)
T∏

t=1

p(ft|ft−1, λ, γ)

×

m∏

j=1

p(β(j)|µ
β
j , τ

2
j , φj)p(γj)p(λj)p(µ

β
j )p(τ2

j , φj)

N∏

i=1

p(σ2
i ) (9)

which is analytically intractable. Exact posterior inference is performed by a customized
MCMC algorithm. The common factors are jointly sampled by means of the well known
forward filtering backward sampling (FFBS) algorithm (Carter and Kohn 1994, and
Frühwirth-Schnatter 1994). All other full conditional distributions are multivariate
normal distributions or inverse gamma distributions, except the parameters character-
izing the spatial correlations, φ, which are sampled based on a Metropolis-Hastings step.
The full conditional distributions and proposals, where applicable, are detailed in the
Appendix.

4.1 Unknown number of common factors

Inference regarding the number of common factors is obtained by computing poste-
rior model probabilities (PMP), well-known for playing an important role in modern
Bayesian model selection, comparison and averaging. On the one hand, a unique,
most probable factor model can be selected and data analysis continued by focusing
on interpreting both dynamic factors and spatial loadings. Such flexibility permits
the identification, for instance, of spatial clusters of similar cyclical behavior. On the
other hand, when interpolation and forecasting are of primary interest, and the iden-
tification/interpretation of common factors of secondary interest, PMP play the role
of weighting forecasting observations at gauged or ungauged locations and many other
functionals that appear in all competing models. This is done, for example, by Bayesian
model averaging (Raftery, Madigan and Hoeting, 1997 and Clyde, 1999).

The selection/estimaton of the number of common factors is central in the factor
analysis literature. The spatial and the temporal components of the spatial dynamic
factor model can be conditionally separated and modeled by properly choosing it. In
other words, location-specific residual spatial and/or temporal correlations are mini-
mized. Bayesian model search, via RJMCMC algorithm, automatically penalizes over-
and under-parametrized factor models.

Lopes and West (2004) introduced a modern fully Bayesian treatment the number
of common factor in standard normal linear factor analysis by means of a customized
reversible jump MCMC (RJMCMC) scheme. Their algorithm builds on a preliminary
set of parallel MCMC outputs that are run over a set of pre-specified number of factors.
These chains produce a set of within-model posterior samples for Ψm = (Fm, βm,Θm)
that approximate the posterior distributions p(Ψm|m, y). Then, posterior moments
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from these samples were used to guide the choice of the proposal distributions from
which candidate parameter would be drawn. This section adapts and generalizes their
approach to the proposed spatial dynamic factor model. For the spatial dynamic factor
model, the overall proposal distribution is

qm(Ψm) =

m∏

j=1

fN(f(j);Mf(j)
, aVf(j)

)fN (β(j);Mβ(j)
, bVβ(j)

)fN (γj ;Mγj , cVγj )

×

m∏

j=1

fIG(λj ; d, dMλj )fN (µj ;Mµj , eVµj )fIG(φj ; f, fMφj ) (10)

×

m∏

j=1

fIG(τ2
j ; g, gMτj )fIG(σ2

j ;h, hMσj ),

where a, b, c, d, e, f , g and h are tuning parameters and Mx and Vx are sample means
and sample variances based on the preliminary MCMC runs. The choice of the tuning
constants depend on the form of the posterior distributions. For example, we recommend
values lower than 1 for a, b, c and e used in proposal normal distributions, and values
greater than 1.5 for d, f, g and g used in proposal inverse gamma distributions. By
letting p(y,m,Ψm) = p(y|m,Ψm)p(Ψm|m)Pr(m) and by giving initial values for m and
Ψm, the reversible jump algorithm proceeds similar to a standard Metropolis-Hastings
algorithm, i.e., a candidate model m′ is drawn from the proposal q(m,m′) and then,
conditional on m′, Ψm′ is sampled from qm′(Ψm′). The pair (m′,Ψm′) is accepted with
probability

α = min

{
1,
p(y,m′,Ψm′)

p(y,m,Ψm)

qm(Ψm)q(m′,m)

qm′(Ψm′)q(m,m′)

}
. (11)

A natural choice for initial values are the sample averages of Ψm based on the
preliminary MCMC runs. Throughout this paper it is assumed that Pr(m) = 1/M ,
where M is the maximum number of common factors. It should be emphasized that
the chosen proposal distributions qm(Ψm) are not generally expected to provide glob-
ally accurate approximations to the conditional posteriors p(Ψm|m, y). Nonetheless,
the closer qm(Ψm) and p(Ψm|m, y) are, the closer acceptance probability is to α =
min{1, p(y|m′)/p(y|m) × q(m′,m)/q(m,m′)}, which can be thought of as a stochastic
model search algorithm (George and McCulloch, 1992). We argue, based on our empir-
ical findings, that such quasi-independent proposal scheme is sound since each marginal
proposal is already in the neighborhood of interest within a particular factor model.
The scheme will essentially formalize the posterior model probabilities as the limits of
visiting frequencies.

The above RJMCMC algorithm can be thought of as a particular case of the
Metropolised Carlin and Chib method (Godsill 2001, and
Dellaportas, Forster, and Ntzoufras 2002), where the proposal distributions generating
both new model dimension and new parameters depend on the current state of the chain
only through m. This is true here as well where proposal distributions based on initial,
auxiliary MCMC runs are used. A more descriptive name is independence RJMCMC,
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analogous to the standard terminology for independence Metropolis-Hastings methods
(see Gamerman and Lopes, 2006, Chapter 7). Finally, standard model selection criteria,
formal or informal, exist and are more extensively discussed in the applications of Sec-
tion 5. All our empirical findings suggest the RJMCMC as a reasonable model selection
criterion and, for instance, the only one capable of sound factor model averaging.

5 Applications

This section exemplifies the proposed spatial factor dynamic model in two situations.
In the first case, space-time data is simulated from the model structure and customized
MCMC and reversible jump MCMC algorithms implemented. In the second case, the
levels of atmospheric concentrations of sulfur dioxide is investigated under the pro-
posed model. The data were obtained from the Clean Air Status and Trends Network
(CASTNet) and are weekly observed at 24 monitoring stations from 1998 to 2004.

5.1 Simulated study

Initially, a total of 25 locations were randomly selected in the [0, 1]× [0, 1] square. Then,
for t = 1, . . . , T = 100, 25-dimensional vectors yt are simulated from a dynamic 3-factor
model, where i) Γ = diag(0.6, 0.4, 0.3) and Λ = diag(0.02, 0.03, 0.01), ii) the columns of
the factor loadings matrix follow Gaussian processes with Matérn correlation functions

with φ = (0.15, 0.4, 0.25), κ = 1.5 and τ = (1.00, 0.75, 0.56), and iii) µβ
j

∗
= Xβµβ

j ,

µβ
1 = (5, 5, 4)′, µβ

2 = (5,−6,−7)′, µβ
3 = (5,−8, 6)′ and Xβ contains a constant term and

locations longitudes and latitudes, and iv) σ2
i were uniformly simulated in the interval

(0.01, 0.05), for i = 1, . . . , 25. The last 10 observations were left out of the analysis
for comparison purposes. Figure 1 presents the surfaces for β(1), . . . , β(3) as well as
some values of ft and yt. For i = 1, . . . , 25, the prior distribution for σ2

i is IG(ε, ε)
with ε = 0.01. For j = 1, . . . , 3, λj ∼ IG(ε, ε), γj ∼ N(0.5, 1.0), τ2

j ∼ IG(2, 0.75) and
φj ∼ IG(2, b) for b = max(dist)/(−2 ln(0.05)) and max(dist) is the largest distance

between locations, and µβ
j normally distributed with mean equal to the true value and

variance equal to 25.

Models with up to five common factors were entertained. Comparisons were based
on posterior model probabilities (PMP), as well as commonly used information crite-
ria, such as the AIC (Akaike 1974) and the BIC (Schwarz 1978), and goodness of fit
statistics. Virtually all criteria point to the 3-factor model as the best model (see Table
1). Nonetheless, posterior model probabilities for factor models with m = 2 and m = 4
common factors are not negligible and could improve forecast and interpolation in a
Bayesian model averaging set up.

For illustrative purposes, suppose that the 3-factor model is chosen for further anal-
ysis. Conditioning on m = 3, i.e. the true number of common factors, the MCMC
algorithm outlined in Section 4 was run for a total of 50,000 iterations and posterior
inference was based on the last 40,000 draws using every 10th member of the chains (a
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Figure 2: Simulated data: Interpolation of the first two columns of the factor loadings
matrix. True surfaces are the left contour plot on each panel, while interpolated ones
are the right contour plot on each panel.

total of 4,000 posterior draws). Two chains were generated starting at different points
of the parametric space. Convergence was analyzed through standard diagnostic tools.
As an initial indication that the dynamic factor model is correctly capturing the right
structure, all parameters are well estimated and all true values fall within the marginal
95% credibility intervals (Tables 2 and 3). It can be seen that most credibility intervals
are not quite symmetrically around the posterior means, suggesting that (asymptotic)
normal approximations would fail to properly account for model and parameter uncer-
tainties. The model’s goodness of fit is also evidenced by noticing the accuracy when
estimating both the factor loadings matrix (see Figure 2) and the common dynamic
factors (figure not provided).

The above results are encouraging and suggest that our procedure is able to correctly
select the order of the factor model. Salazar (2008) performed several simulations under
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m AIC BIC MSE MAE MSEP PMP

2 1127.9 2643.3 0.11195 0.23822 2.3145 0.394
3 -1005.5 1196.2 0.029108 0.13397 2.3030 0.437
4 27589.7 30477.6 0.31112 0.41101 2.2565 0.101
5 42183.2 45757.3 0.46835 0.52360 2.2614 0.068

Table 1: Simulated data: Model comparison criteria. Akaike’s information
criterion - AIC; Schwartz’s information criterion - BIC; Mean Squared Error
- MSE = N−1T−1

∑N
i=1

∑T
t=1(yit − µ̂it)

2; Mean Absolute Error - MAE =

N−1T−1
∑N

i=1

∑T
t=1 |yit − µ̂it|; MSE based on the last 10 predicted values - MSEP ;

and Posterior Model Probability - PMP. Best models for each criterium appear in italic.

Percentiles

θ True E(θ)
√
V ar(θ) 2.5% 50% 97.5%

γ1 0.60 0.504 0.091 0.325 0.504 0.687
γ2 0.40 0.491 0.095 0.303 0.492 0.671
γ3 0.30 0.416 0.100 0.209 0.417 0.623
λ1 0.02 0.028 0.010 0.014 0.026 0.053
λ2 0.03 0.019 0.004 0.011 0.018 0.028
λ3 0.01 0.016 0.005 0.009 0.015 0.028

Table 2: Simulated data: Posterior summaries for the parameters characterizing the
common factor’s dynamics.

various spatial and temporal conditions and settings, with the great majority exhibiting
good performance. In particular posterior model probabilities invariably selected the
correct factor models orders.

5.2 SO2 concentrations in eastern US

Spatial and temporal variations in the concentration levels of sulfur dioxide, SO2, across
24 monitoring stations are examined through the proposed spatial dynamic factor model
(see Figure 3). Weekly measurements in µg/m3 are collected by the Clean Air Status
and Trends Network (CASTNet), which is part of the Environmental Protection Agency
(EPA) of the United States. Measurements span from the first week of 1998 to the 30th
week of 2004, a total of 342 observations. The performance of the model’s spatial
interpolation is assessed based on stations BWR and SPD, which are left out of the
analysis. Similarly, the model’s forecasting performance is assessed based on the last
30 weeks, from the 1st week of 2004 to the 30th week of 2004. In summary, a total of
T = 312 measurements on N = 22 stations are used in the analysis that follows.

Figure 4(a) shows the time series for the logarithm of SO2 levels for four stations.
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Percentiles

θ True E(θ)
√
V ar(θ) 2.5% 50% 97.5%

µ11 5.00 4.44 0.89 2.78 4.43 6.21
µ21 5.00 3.44 0.90 1.74 3.41 5.23
µ31 4.00 4.10 0.85 2.44 4.09 5.76
τ2
1 1.00 1.13 0.99 0.32 0.86 3.53
φ1 0.15 0.20 0.08 0.10 0.19 0.40
µ12 5.00 6.12 0.60 4.80 6.15 7.21
µ22 -6.00 -6.00 0.80 -7.62 -5.99 -4.49
µ32 -7.00 -7.51 0.86 -9.25 -7.45 -5.93
τ2
2 0.75 0.51 0.91 0.11 0.30 2.29
φ2 0.40 0.24 0.08 0.12 0.23 0.43
µ13 5.00 4.53 0.58 3.39 4.52 5.67
µ23 -8.00 -7.68 0.88 -9.43 -7.68 -6.01
µ33 6.00 5.09 0.95 3.28 5.08 6.98
τ2
3 0.56 0.44 0.40 0.15 0.34 1.36
φ3 0.25 0.18 0.06 0.09 0.17 0.33

Table 3: Simulated data: Posterior summary for the spatial process parameters charac-
terizing the columns of the factor loadings matrix.

Visually, the four time series exhibit seasonal behavior with an apparent annual cycle
with higher values in winter. This seasonality can be explained in general terms as a
result of higher rates of summertime oxidation of SO2 to other atmospheric pollutants.
Also, there seems to be a slight decrease in the time series trends over the years, probably
due to implementation of EPA’s Acid Rain Program in the eastern United Stated in
1995 (Phase I) and 2000 (Phase II). The logarithmic transformation normalizes the
series quite reasonably (see Figure 4(b)) and will be retained hereafter. Calder (2007),
for instance, also used log transformation to normalize the same SO2 data. Nonetheless,
before proceeding, a correction procedure that accounts for the effect of the curvature of
the earth, commonly present when dealing with spatially distributed data, is applied to
the data. Latitudes and longitudes were converted to the universal transverse Mercator
(UTM) coordinates and the converted coordinates are measured in kilometers from the
western-most longitude and the southern-most latitude observed in the data set. Four
classes of spatial dynamic factor models are considered:

i) SSDFM(m,h): seasonal spatial dynamic model withm regular factors and h seasonal

factors, µy
t
∗

= 0 and µβ
j

∗
= µβ

j 1N ;

ii) SDFM(m)-cov: spatial dynamic m-factor model, common seasonal pattern, µy
t
∗

=

Xyµy
t with Xy = (1N , lon, lat, lon

2, lon× lat, lat2, 1N , 0) and µβ
j

∗
= µβ

j 1N ;

iii) SDFM(m)-cov-GP: spatial dynamic m-factor model, common seasonal pattern,
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Figure 3: CASTNet data: Location of the monitoring stations. Stations SPD and BWR
were left out for interpolation purposes.

µy
t
∗

= Xyµy
t withXy = (1N , 1N , 0) and µβ

j

∗
= Xβµβ

j withXβ = (1N , lon, lat, lon
2,

lon× lat, lat2);

iv) SSDFM(m,h)-cov-GP: seasonal spatial dynamic m-factor model, h seasonal fac-

tors, µy
t
∗

= 0 and µβ
j

∗
= Xβµβ

j with Xβ = (1N , lon, lat, lon
2, lon× lat, lat2).

The last two columns of Xy for models ii) and iii) correspond to the design matrix
associated with the seasonal coefficients (see also Section 2.3). In those models, a
common seasonal structure is considered for all monitoring stations. In model iv, this
assumption is relaxed with station-specific loadings.

Each model was tested with a maximum number of factors (never larger than 6) and
h = 1 harmonic component with cycles of 52 weeks. Models with more factors were
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analyzed but results are not reported when additional parameters are not statistically
relevant. The correlation functions of the Gaussian processes are all Matérn, except
SSDFM(m,h) which is also fitted with an exponential correlation function.

For comparison purpose, the following two benchmark spatio-temporal models were
considered:

i) SGSTM: standard geostatistical spatio-temporal model, yt = µy
t
∗

+ νt + εt, εt ∼
N(0, σ2IN ), µy

t
∗

= Xµt, µt|µt−1 ∼ N(Gµt−1,W ), νt ∼ GP (0, τ2Rφ) with X =
(1N , lon, lat, lon

2, lon× lat, lat2, 1N , 0N ).

ii) SGFM(m): standard geostatisticalm-factor model, yt = βft+µ
y
t
∗
+νt+εt, βj,j = 1,

βj,k = 0 (k > j = 1, . . . ,m), µy
t
∗
, νt and εt as in SGSTM.

In SGSTM the temporal variation is explained, like in our proposal, through µy
t
∗
,

while the spatial variation is explained, unlike our proposal, through (temporally) inde-
pendent geostatistical components νt. SGFM is an elaboration of SGSTM that incorpo-
rate dynamic factors. In SGFM the temporal variation is explained, like in our proposal,
through µy

t
∗
, while the spatial variation is explained, unlike our proposal, through a dy-

namic factor term βft, the difference being the absence of spatial dependence in the
factor loadings β.

Relatively vague prior distributions were used for most parameters. More specifically,
σ2s are IG(0.01, 0.01), λs are IG(0.01, 0.01), γs areNtr(−1,1)(0, 1), Λs are IW (0.01I2, 2).
Additionally, the mixture prior for γ, with α = 0.5, was implemented to allow for non-
stationary common factors. Reference priors were used for the parameters of Gaussian
processes with exponential correlation function. For the remainder models, the smooth-
ness parameter, κ, of Matérn correlation functions was set as follows. First, standard
normal linear m-factor models are fitted, for m = 1, 2, 3, and estimates of the columns of
the factor loading matrices are used to model GP with reference priors. Then, the Bayes
factor for a model with smoothness parameter κ equal to 7 (for κ in {1, . . . , 10}) was
selected in most cases (see Berger et al. 2001 for further details). This value is assumed
for all entertained models. The prior specification for the remainder parameters of the
Gaussian processes are as follows: τ 2s are IG(2, 1), φs are IG(2, b) and µβs are N(a, 1),
with b = max(dist)/(−2 ln(0.05)), max(dist) is the largest distance between locations,
and a is the absolute mean of observations.

The MCMC algorithm was run as in Section 5.1 but with a burn-in of 25000 draws.
Competing models can be compared based on their posterior model probabilities (PMP),
as well as their sum of square errors (SSE) and sum of absolute errors (SAE). Addition-
ally, mean square errors (MSE) based on forecast and interpolated values were used for
model comparison. From Table 4, it can be seen that between models with highest PMP
in each class, the model SSDFM(4,1)-cov-GP has the best performance. Additionally,
Table 4 shows the results for the benchmark models. It shows that the these standard
models are outperformed in terms of forecasting in time and interpolation in space de-
spite having a better fit. The results seem to indicate that the structure imposed by



776 Spatial Dynamic Factor Analysis

0.5
1.5

2.5

MC
K

1.5
2.5

3.5

QA
K

1.0
2.0

3.0

BE
L

−1
0

1
2

3

1998 1999 2000 2001 2002 2003 2004

CA
T

Time

(a) log (SO2)

−3 −2 −1 0 1 2 3

0.
5

1.
5

2.
5

MCK

Theoretical Quantiles

Sa
m

pl
e 

Q
ua

nt
ile

s

−3 −2 −1 0 1 2 3

1.
5

2.
5

3.
5

QAK

Theoretical Quantiles

Sa
m

pl
e 

Q
ua

nt
ile

s

−3 −2 −1 0 1 2 3

1.
0

2.
0

3.
0

BEL

Theoretical Quantiles

Sa
m

pl
e 

Q
ua

nt
ile

s

−3 −2 −1 0 1 2 3

−1
0

1
2

3

CAT

Theoretical Quantiles

Sa
m

pl
e 

Q
ua

nt
ile

s

(b) Normal Q-Q Plot

Figure 4: CASTNet data: (a) Time series of weekly log (SO2) concentrations at MCK,
QAK, BEL and CAT stations. (b) Normal Q-Q plot for time series plotted in (a).
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Figure 5: CASTNet data: Sharpness diagram for SSDFM(2,1)-Exp, SSDFM(2,1)-
Matérn, SDFM(4)-cov, SDFM(4)-cov-GP, SSDFM(4,1)-cov-GP, SGSTM and SGFM(4)
forecasts of weekly log(SO2). The box plots show percentiles of the width of the 90%
central prediction intervals.

our models is in fact required to improve predictions. Interpolation was not performed
for SGFM because of the absence of spatial structure in the factor loadings.

Further evaluation of the predictive performance can be made using criteria proposed
by Gneiting, Balabdaoui, and Raftery (2007). The main criteria suggested there are
sharpness and scoring rules. Sharpness is evaluated through the width of the prediction
intervals; the shorter, the sharper. Table 5 and Figure 5 show different measures of
sharpness. They point to model SSDFM(4,1)-cov-GP as the sharpest. Scoring rules were
also considered, as they can address calibration and sharpness simultaneously. The mean
score S(F, y) = N−1H−1

∑N
i=1

∑H
h=1 S(Fi,T+h, yi,T+h) can be used to summarize them

for any strictly proper scoring rule S. The smaller S(F, y), the better. In particular, the
logarithm score (LS) and the continuous ranked probability score (CRPS) are suggested
by Gneiting, Balabdaoui, and Raftery (2007). LS is the negative of the logarithm of the
predictive density evaluated at the observation. For each yi,T+h, the CRPS is defined
as

CRPS(Fi,T+h, yi,T+h) = EF |ŷi,T+h − yi,T+h| −
1

2
EF |ŷi,T+h − ỹi,T+h|,

where ŷi,T+h and ỹi,T+h are values from p(yT+h|y). This is a convenient representation
because p(yT+h|y) is easily approximated by a sample based on MCMC output (see
Gschlößl and Czado 2005 for more details). LS and CRPS values for the five best
models are also presented in Table 5 and again rank SDFM(4,1)-cov-GP model as the
top model, with lowest LS and CRPS.
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Model m SSE SAE MSEP MSEI PMP

SSDFM(m, 1)-Exp. 1 733.58 1651.8 0.76 0.15 0.43
2 594.30 1477.5 0.22 0.16 0.56
3 799.13 1738.2 0.23 0.13 0.01

SSDFM(m, 1)-Matérn 1 733.66 1651.2 0.58 0.15 0.37
2 632.45 1539.6 0.25 0.19 0.54
3 802.20 1734.2 0.27 0.15 0.09

SDFM(m)-cov 1 544.63 1418.0 0.368 0.167 0.13
2 473.29 1306.0 0.237 0.178 0.18
3 420.12 1217.6 0.249 0.171 0.20
4 375.10 1150.0 0.271 0.160 0.33
5 621.26 1486.1 0.245 0.130 0.09
6 547.83 1412.7 0.251 0.147 0.07

SDFM(m)-cov-GP 1 856.25 1811.8 0.384 0.127 0.04
2 636.97 1549.0 0.638 0.167 0.13
3 502.54 1348.5 0.308 0.148 0.26
4 462.57 1276.6 0.260 0.192 0.30
5 536.13 1425.6 0.498 0.213 0.16
6 543.13 1415.9 0.304 0.216 0.11

SSDFM(m, 1)-cov-GP 1 753.86 1673.3 0.651 0.153 0.00
2 570.13 1450.7 0.288 0.161 0.23
3 484.78 1320.2 0.255 0.149 0.31
4 450.95 1276.1 0.229 0.158 0.40
5 573.15 1446.4 0.218 0.165 0.06

SGSTM - 177.26 883.6 0.341 0.172 -
SGFM(m) 4 264.18 1069.7 0.322 - -

Table 4: CASTNet data: Model comparison criteria. Sum Squared Error -
SSE =

∑N
i=1

∑T
t=1(yit − µ̂it)

2; Sum Absolute Error - SAE =
∑N

i=1

∑T
t=1 |yit −

µ̂it|; Predictive MSE (based on the last 30 weeks, 2004:01 to 2004:30) - MSEP =

N−1H−1
∑N

i=1

∑H
h=1(yi,T+h−E(yi,T+h|y))

2; Interpolation MSE (based on 312 measure-

ments for stations BWR and SPD) - MSEI = N−1
n T−1

∑Nn

i=1

∑T
t=1(yN+i,t −E(yi,t|y))

2,
and Posterior Model Probability - PMP. Best models for each criterium appear in italic.
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Model LogS CRPS AW90

SSDFM(2, 1)-Exp 11.286 0.762 3.517
SSDFM(2, 1)-Matérn 11.567 0.650 2.906
SDFM(4)-cov 21.049 1.734 7.486
SDFM(4)-cov-GP 11.463 0.813 3.619
SSDFM(4, 1)-cov-GP 10.045 0.644 2.855
SGSTM 43.875 2.577 13.066
SGFM(4) 43.814 2.524 12.955

Table 5: CASTNet data: Forecast evaluation. Average logarithmic score (LogS), av-
erage continuous ranked probability score (CRPS) and average width of 90% central
prediction intervals (AW90).

Table 5 clearly separates the models proposed in one group and the benchmark
models in another group. The within-group variation, for instance, is substantially
smaller than the between-group variation showing stability of our proposed method-
ology across a wide range of models. The improvement in the results is substantial
throughout. These figures seem to jointly indicate the SDFM(4,1)-cov-GP model and
so, the remainder of the analysis is conducted under this specification. Table 6 presents
the results about the temporal variation of the factors. They present a wide variety of
autoregressive dependence, ranging from no dependence or white noise (1st factor) to
indications of non-stationarity (4th factor). The 1st factor is common across locations
and should not be confused with the idiosyncratic errors that are different for every
location. The other factors exhibit significant temporal dependence.

Factors may be identified according to their relative weight in the explanation of the
data variability. On average the larger proportion of the data variability is associated
with the 4th and the seasonal factors. They respectively account for 21% and 15% of
the data variability. The 3rd factor appears after that with around 11% followed by the
1st factor with 4% and the 2nd factor with 3%.

The fourth common factor represents the grand mean as it is fairly common in
factor analysis applications (see Rencher 2002 for more details). It accounts for the
global time-trend variability of the series (see Figure 6). The first three factors are
rather noisy but of limited variation, while the seasonal common factor is capturing
the time series annual cycles. The fourth common factor, however, exhibits a rather
nonstationary behavior, which is emphasized by the posterior density of γ4 being fairly
concentrated around one.

In order to verify the presence of a nonstationary factor, the mixture prior for γ was
implemented with p̂(γ1 = 1|y) = p̂(γ2 = 1|y) = p̂(γ3 = 1|y) = 0 and p̂(γ4 = 1|y) =
0.41 observed. In other words, the first three factors are stationary, while the fourth
common factor is stationary with roughly 60% posterior probability. Additionally, the
SSDFM(4,1)-cov-GP model with γ4 = 1.0 was analyzed and compared to its stationary
counterpart and results (not shown here) show higher SSE, SAE and MSE based on
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Percentiles

θ E(θ)
√
V ar(θ) 2.5% 50% 97.5%

γ1 0.009 0.069 -0.122 0.010 0.147
γ2 0.186 0.069 0.053 0.185 0.319
γ3 0.354 0.091 0.175 0.356 0.522
γ4 0.997 0.002 0.992 0.997 1.000
λ1 0.005 0.003 0.002 0.004 0.011
λ2 0.003 0.001 0.001 0.002 0.005
λ3 0.002 0.002 0.001 0.002 0.007
λ4 0.002 0.001 0.001 0.002 0.003
λ5 0.004 0.003 0.001 0.002 0.012
λ6 0.002 0.001 0.001 0.001 0.003

Table 6: CASTNet data: Posterior summaries for the parameters characterizing the
common factors’ dynamics in the SSDFM(4,1)-cov-GP model.

forecasted values.

Table 7 present posterior summaries for the regression and remaining spatial depen-
dence of the factor loadings. Latitude and longitude are important to describe their
mean levels, but not their square and interaction terms. They imply that the posterior
mean for correlation of factor loadings that are distant by 100 kilometers are 0.050,
0.063, 0.151, 0.051 and 0.061, respectively.

Figure 7 presents the mean surfaces for the columns of the factor loadings matrix β
obtained by interpolation (Bayesian kriging, see Section 3.2). Loadings for the fourth
factor are shown to be higher in the center of the interpolated area, mainly around
station QAK in Ohio. Simple exploratory data analysis indicates that the highest values
of SO2 concentrations were measured at QAK, confirming the role of the fourth factor
as a grand mean. Another interesting finding is that the loadings for the seasonal (fifth)
factor are smaller in the highly industrialized state of Ohio and its behavior is quite the
opposite to the fourth (grand mean) factor. The loadings for the first and third factors
seem to be higher at the southwestern corner of the area of study and the second factor
promotes a divide between east and west with higher values at the latter region. The
intuitive combination of the temporal characterization of the common dynamic factors
and the spatial characterization of the columns of the factor loadings matrix is one of
the key features of the proposed model inherited from traditional factor analysis.

Forecasting and interpolation results are presented in Figure 8, which exhibits en-
couraging out-of-sample properties of the model, with data points being accurately
forecast and interpolated for several steps ahead and out-of-sample monitoring stations,
respectively. It is worth noting that none of the 95% credibility intervals, either based
on forecasting or interpolation, are symmetric. The interpolation exercise seems to pro-
duce better fit mainly because of the presence of the neighboring structure amongst
monitoring stations. The forecasting exercise relies exclusively on previous observa-
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1st column 2nd column
Mean Median 95% C.I. Mean Median 95% C.I.

µβ
1j 1.56 1.56 [0.61,2.49] 1.55 1.53 [0.62,2.52]

µβ
2j 0.79 0.78 [0.00,1.71] 0.72 0.69 [-0.07,1.67]

µβ
3j 0.92 0.91 [0.04,1.85] 1.06 1.05 [0.24,1.97]

µβ
4j -0.12 -0.12 [-0.27,0.01] -0.17 -0.16 [-0.33,-0.04]

µβ
5j 0.07 0.07 [-0.17,0.32] 0.03 0.03 [-0.18,0.24]

µβ
6j -0.31 -0.30 [-0.55,-0.08] -0.14 -0.14 [-0.35,0.04]

τ2
j 6.18 5.08 [1.52,18.20] 3.96 3.17 [0.96,11.00]
φj 32.70 32.32 [21.47,46.97] 35.51 35.06 [22.53,51.21]

3rd column 4th column
Mean Median 95% C.I. Mean Median 95% C.I.

µβ
1j 1.74 1.75 [0.77,2.68] 1.32 1.32 [0.62,2.00]

µβ
2j 1.07 1.06 [0.14,2.08] 0.20 0.18 [-0.15,0.61]

µβ
3j 1.04 1.08 [-0.30,2.17] 0.76 0.76 [0.31,1.27]

µβ
4j -0.16 -0.15 [-0.35,0.00] -0.04 -0.04 [-0.09,0.00]

µβ
5j 0.13 0.12 [-0.15,0.45] 0.03 0.03 [-0.03,0.11]

µβ
6j -0.16 -0.16 [-0.41,0.08] -0.12 -0.11 [-0.22,-0.03]

τ2
j 14.10 8.41 [0.91,48.80] 0.43 0.36 [0.16,1.07]
φj 52.79 54.38 [24.09,77.46] 33.04 32.87 [21.17,46.82]

5th column
Mean Median 95% C.I.

µβ
1j 1.62 1.62 [0.85,2.36]

µβ
2j 0.09 0.06 [-0.25,0.59]

µβ
3j 0.19 0.17 [-0.26,0.75]

µβ
4j 0.00 0.00 [-0.06,0.03]

µβ
5j 0.00 0.00 [-0.07,0.07]

µβ
6j -0.03 -0.02 [-0.12,0.05]

τ2
j 0.45 0.35 [0.14,1.29]
φj 35.14 34.73 [21.22,51.95]

Table 7: CASTNet data: Posterior summary for the spatial process parameters char-
acterizing the columns of the factor loadings matrix in the SSDFM(4,1)-cov-GP model.
C.I. stands for credibility interval.
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tions, so the credibility intervals are more conservative. The predictive performance of
our models is superior when compared to benchmark spatio-temporal models. Finally,
Figure 9 presents the mean surfaces of SO2 levels for nine weeks in 2003. It is clear that
some parts of the map are more affected by the seasonal factor (see, for instance, the
region around stations SAL in Indiana and PSU in Pennsylvania) while other parts are
less affected (see, for instance, the region around station QAK). The top half of the area
with time-varying portions in the east-west direction defines the region with the highest
levels of SO2 throughout the year, indicating that the proposed model is capable of
accommodating both spatial and temporal nonstationarities in a nonseparable fashion.

6 Conclusions

This paper introduces the spatial dynamic factor model, which is a new class of nonsep-
arable and nonstationary spatiotemporal models that generalizes several of the existing
alternatives. It uses factor analysis ideas to frame and exploit both the spatial and the
temporal dependencies of the observations. The spatial variation is brought into the
modeling conditionally through the columns of the factor loadings matrix, while the time
series dynamics are captured by the common dynamic factors. One of the main contri-
butions of the paper is the exploration of factor analysis arguments in spatio-temporal
models in order to explicitly model spatial and temporal components. The model takes
advantage of well established literature for both spatial processes and multivariate time
series processes. The matrix of factor loadings plays the important role of weighing the
common factors in general factor analysis and is here incumbent of modeling spatial
dependence. Similarly, the common factors follow time series decomposition processes,
such as local and global trends, cycle and seasonality.

Conditional on the number of factors, posterior inference is facilitated by a cus-
tomized MCMC algorithm that combines well established schemes, such as the forward
filtering backward sampling algorithm, with standard normal and inverse gamma up-
dates. Inference across models, i.e. the selection of the number of common factors, is
performed by a computationally and practically feasible reversible jump MCMC algo-
rithm that builds proposal densities based on short and preliminary MCMC runs. The
true number of factors was given the highest posterior model probability and the pa-
rameters of the modal model were accurately estimated, including the dynamic common
factors and the spatial loading matrix.

The applications exploited the potential of the proposed model both as an interpo-
lation tool and as a forecasting tool in the spatiotemporal context. The factor model
structure allowed direct incorporation of exogenous, predetermined variables into the
analysis to help explaining both at the level of the response and at the level of the factor
loadings matrix. It also was able to capture the local behavior of SO2 as well as its
different temporal components for different locations. The comparison with benchmark
models support our initial claim that the proposed spatial dynamic factor model has
superior performance when based on a host of predictive measures. It reinforces the
need for more complex structures, such as those proposed in our paper, to adequately
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address issues associated with real data analysis. Standard models are not capable of
handling the spatio-temporal heterogeneity present in environmental application. We
anticipate that the same is true in many other areas of applications.

The flexibility of the spatial dynamic factor model is promising and a few gen-
eralizations are currently under investigation, such as time-varying factor loadings to
dynamically link the latent spatial processes (Lopes 2000, Lopes and Carvalho 2007 and
Gamerman, Salazar, and Reis 2007). Another interesting direction is to allow binomial
and Poisson responses by replacing the first level normal likelihood by an exponential
family representation. In this case, the spatial dynamic factors would be used to model
transformations of mean functions. Finally, non-diagonal idiosyncratic covariance ma-
trix and more general dynamic factor structures can be considered to incorporate, for
example, remaining spatial correlation and AR(p) structures, respectively. One can ar-
gue that the availability of well known and reliable statistical tools coupled with highly
efficient, and by now well established, MCMC schemes and plenty of room for extensions
will make this area of research flourish in the near future.

Appendix

The full conditional distribution of all parameters in model (9) are listed here. Namely,
the idiosyncratic variances, σ, the common factor dynamics, γ, the common factors’
variances, λ, the loadings means, µ, the spatial hyperparameters, τ 2

j and φj , the factor
loadings matrix, β, and the common factors, ft, for t = 1, . . . , T . Throughout this
appendix [θ] and p(θ| . . .) denote, respectively, the full conditional distribution and full
conditional density of θ conditional on all other parameters. Also, for m× n and s× t
matrices A and B, the Kronecker product A ⊗ B is the ns × nt matrix that inflates
matrix A by multiplying each of its components by the whole matrix B.

Idiosyncratic variances From the likelihood presented in Section 2.4, it can be shown

that yi|F, σ
2
i , βi ∼ N(Fβi, σ

2
i I), i = 1, . . . , N , where yi is the ith column of y, βi is the

ith row of β. Therefore, [σ2
i ] ∼ IG((T + nσ)/2, ((yi − Fβi)

′(yi − Fβi) + nσsσ)/2).

Common factors variances [λj ] ∼ IG((T −1+nλ)/2, (
∑T

t=2(fjt−γjfj,t−1)
2 +nλsλ)/2).

Loadings means [µj ] ∼ N(m∗
µj
, S∗

µj
), m∗

µj
= S∗

µj

[
τ−2
j β′

(j)R
−1
φj

1N +mµS
−1
µ

]
and S∗−1

µj
=

τ−2
j 1′NR

−1
φj

1N +S−1
µ .

Factor loadings The factor loadings matrix is jointly sampled. To that end, Equation
(1) is rewritten as yt = f∗

t β
∗ + εt, where f∗

t = f ′
t ⊗ IN and β∗ = (β′

(1), . . . , β
′
(m))

′

are N × Nm and Nm × 1 matrices, where A ⊗ B denotes the Kronecker product of
matrices A and B. Similarly, the prior distribution of β∗ is β∗ ∼ N(µβ∗ ,Σβ∗), where
µβ∗ = µ ⊗ 1N , Σβ∗ = Σβ ⊗ Rφ and Σβ = diag(τ2

1 , . . . , τ
2
m). From standard Bayesian

multivariate regression (Box and Tiao (1973)), it can be shown that [β∗] ∼ N(µ̃β∗ , Σ̃β∗),
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where Σ̃−1
β∗ =

∑T
t=1 f

∗
t
′Σ−1f∗

t + Σ−1
β∗ and µ̃β∗ = Σ̃β∗

(∑T
t=1 f

∗
t
′Σ−1yt + Σ−1

β∗ µβ∗

)
.

Common factors dynamics It follows from (2) that fjt ∼ N(γjfj,t−1, λj), j = 1, . . . ,m

and t = 2, . . . , T . Therefore, p(γi| . . .) ∝
∏T

t=2 p(fjt|fj,t−1, γi, λi) p(γi|mγ , Sγ , α), so i)

if α = 1, [γj ] ∼ Ntr(−1,1)(m
∗
γj
, S∗

γj
) where S∗−1

γj
= λ−1

j

∑T
t=2 f

2
j,t−1 + S−1

γ and m∗
γj

=

S∗
γj

[
λ−1

j

∑T
t=2 fjtfj,t−1 +mγS

−1
γ ,
]
, and ii) if α ∈ (0, 1) draw γj with probability α∗

using the normal distribution Ntr(−1,1)(m
∗
γj
, S∗

γj
) or let γi = 1 with probability 1 −

α∗ where α∗ = A/(A + B), A = αCS
−1/2
γ S

∗1/2
γj exp{−0.5[λ−1

∑T
t=2 f

2
jt + S−1

γ mγ −

S∗−1
γj

m∗2
γj

]}, C = [Φ((1−m∗
γj

)/S
∗1/2
γj )−Φ((−1−m∗

γj
)/S

∗1/2
γj )][Φ((1−mγ)/S

1/2
γ )−Φ((−1−

mγ)/S
1/2
γ )]−1, B = (1 − α) exp{−0.5λ−1

j

∑T
t=2(fjt − fj,t−1)

2} and Φ is the one-sided
probability from the standard normal.

Common factors The vectors of common factors, i.e. f1, . . . , fT , are sampled jointly
by means of the well known forward filtering backward sampling (FFBS) scheme of
Carter and Kohn (1994) and Frühwirth-Schnatter (1994), which explores, conditionally

on β and Θ, the following backward decomposition p(F |y) =
∏T−1

t=0 p(ft|ft+1, Dt)p(fT |DT ),
where Dt = {y1, . . . , yt}, t = 1, . . . , T and D0 represents the initial information. Start-
ing with f0 ∼ N(m0, C0), it can be shown that ft|Dt ∼ N(mt, Ct), where mt =
at + At(yt − ỹt), Ct = Rt − AtQtA

′
t, at = Γmt−1, Rl = ΓCt−1Γ

′ + Λ, ỹt = βat,
Qt = βRtβ

′ + Σ and At = Rtβ
′Q−1

t , for t = 1, . . . , T . fT is sampled from p(fT |DT ).
This is the forward filtering step. For t = T − 1, . . . , 2, 1, 0, ft is sampled from
p(ft|ft+1, Dt) = fN (ft; ãt, C̃t), where ãt = mt + Bt(ft+1 − at+1), C̃t = Ct − BtRt+1B

′
t

and Bt = CtΓ
′R−1

t+1. This is the backward sampling step.

Spatial hyperparameters By combining the inverse gamma prior density form (5) or
the reference prior density from (6) with the likelihood function from (9), it follows that
[τ2

j ] ∼ IG(n∗
τj
/2, n∗

τj
s∗τj
/2), where n∗

τj
= N +nτ and n∗

τj
s∗τj

= (β(j) − µj1N )′R−1
φj

(β(j) −

µj1N) + nτsτ when inverse gamma prior distributions are used, and n∗
τj

= N and

n∗
τj
s∗τj

= (β(j) − µj1N )′R−1
φj

(β(j) − µj1N ) when reference prior distributions are used.
The full conditional density of φj has no known form and a Metropolis-Hastings step

is implemented. A candidate draw φ̃j is generated from a log-normal distribution with
location logφj and scale ∆φ, i.e., qj(φj , ·) = fLN(·; logφj ,∆φ). ∆φ is a tuning parameter
and is frequently used to calibrate the proposal density. The candidate draw is accepted
with probability

α(φj , φ̃j) = min

{
1,
fN (β(j);µj1N , τ

2
j Rφ̃j

)πP (φ̃j) φ̃j

fN (β(j);µj1N , τ2
j Rφj )πP (φj)φj

}
,

where πP is either an inverse gamma prior, i.e., πIG or the reference prior, i.e., πR.
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Figure 6: CASTNet data: Posterior means of the factors following the SSDFM(4,1)-cov-
GP model. Solid lines represent the posterior means and dashed lined the 95% credible
interval limits.
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Figure 7: CASTNet data: Bayesian interpolation for loadings factors. Values represent
the range of the posterior means.



Lopes, Salazar, Gamerman 791
SO

2

0
5

10
15

20
25

30

2001−1 2001−26 2002−1 2002−26 2003−1 2003−26 2004−1

Observed
Post. Mean
95% C.I.

SO
2

0
10

20
30

40
50

60

2001−1 2001−26 2002−1 2002−26 2003−1 2003−26 2004−1

Observed
Post. Mean
95% C.I.

(a) Interpolated values at SPD station (b) Interpolated values at BWR station.

SO
2 l

ev
el

s

0
10

20
30

2004−1 2004−15 2004−30

MCK

Observed
SSDFM
SGSTM
SGFM
95% C.I.

SO
2 l

ev
el

s

0
10

20
30

40
50

60
70

2004−1 2004−15 2004−30

QAK

Observed
SSDFM
SGSTM
SGFM
95% C.I.

(c) Forecasted value at MCK station (d) Forecasted value at QAK station.

SO
2 l

ev
el

s

0
10

20
30

40

2004−1 2004−15 2004−30

BEL

Observed
SSDFM
SGSTM
SGFM
95% C.I.

SO
2 l

ev
el

s

0
5

10
15

20
25

30
35

2004−1 2004−15 2004−30

CAT

Observed
SSDFM
SGSTM
SGFM
95% C.I.

(e) Forecasted value at BEL station (f) Forecasted value at CAT station.

Figure 8: CASTNet data: (a)-(b)Interpolated values at stations SPD and BWR left
out from the sample. (c)-(f) Forecasted values for the period 2004:1–2004:30. Solid,
dotted and dotted-dashed lines represent the posterior mean of SSDFM(4,1)-COV-GP,
SGSTM and SGFM(4) specifications respectively. Dashed lines represent the 95% cred-
ible interval limits of the model SSDFM(4,1)-COV-GP, × the observed values, while
dotted and dotted-dashed lines represent forecasts with the benchmark models.
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Figure 9: CASTNet data: Map of SO2 concentrations using SSDFM(4,1)-cov-GP model.


