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1 Introductory Remarks

This paper is an informative and useful addition to the literature on estimation of
hidden Markov models. The author has done an admirable job of covering many of the
key ideas that are relevant to statistical inference of HMMs. Empirical analysis of the
computational aspects of HMMs can be quite difficult to perform. As a simple example,
elementary diagnostic tools such as scatter-plots are not so useful in analyzing HMMs,
unlike (say) the case of low-dimensional finite mixture models.

The detailed comparison of EM and MCMC in this paper is particularly useful.
Most prior work on the topic of HMMs tends to rely on one technique or the other, with
little practical advice provided on how to compare the two approaches.

2 Background Comments on HMMs in Computer Sci-

ence and Engineering

As mentioned in the introduction of the paper, HMMs are now a standard tool in applied
statistics. We completely agree and would like to reinforce this point from the viewpoint
of computer science and engineering, where HMMs and their various cousins are widely
used as a relatively simple (but very useful) framework for modeling processes with
sequential dependence. Most of the early applications of HMMs were in speech modeling,
but in the past 10 or 15 years their use has extended to a much broader set of application
areas such as robotics (Thrun et al. 1998), computer vision (Wilson and Bobick 1999;
Oliver et al. 2000), information extraction from text (McCallum et al. 2000), language
modeling (Griffiths et al. 2005), and sensor data analysis (Ihler et al. 2007).

Indeed, as pointed out in the Introduction of the paper, there are numerous vari-
ations and extensions of the “basic HMM.” Examples from machine learning include
factorial HMMs (Ghahramani and Jordan 1997), various forms of dynamic Bayesian
networks (Murphy 2002), conditional random fields (Lafferty and Pereira 2001), and
so forth. A useful unification of these many different models is to view them within
the more general framework of graphical models (Smyth et al. 1997; Bilmes 2004). For
example, in this context, the Baum-Welch algorithm can be seen as a special case
of the more general tree-based inference algorithms for graphical models proposed by
Lauritzen and Spiegelhalter (1988) and by Pearl (1988).

From an inference viewpoint, the EM algorithm has been the most widely used
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methodology since the early work by Baum et al. (1970) and the influential review paper
by Rabiner (1989). However, as in statistics, in recent years there has a been a growing
and substantial body of work on using Bayesian inference techniques in the context of
HMMs. Playing an important role here is the growing awareness of Bayesian thinking
in computer science, with early seeds planted by the likes of Geman and Geman (1984),
followed by popularization of Bayesian methodologies due to the work of Mackay (1992),
Buntine (1994), Heckerman et al. (1995), Neal (1996), Jordan (1998), and many others.
As computational power continues to increase, and as Bayesian methodologies become
more widely known in computer science and engineering, we can expect this trend to
continue and work on HMMs will increasingly have a Bayesian flavor. This present
paper is likely to be a valuable reference for such work.

3 Comments on EM and Gibbs Sampler Convergence

The illustration of convergence of EM and Gibbs sampling, in Figures 2 and 3 respec-
tively, is quite informative. For example, it is clear in both cases that the amount of
overlap in the two Gaussian densities (or equivalently the amount of missing information
in the model c) has a significant effect on the resulting inference, e.g., on the rate of
convergence of EM (Figure 2, right) and on the posterior parameter variances in Gibbs
sampling (Figure 3).

Figure 2 (left) plots the trajectories of the estimated state means as a function of
iteration number using EM. We noticed that for σ = 1.5 the estimate of µ3 appears to be
diverging away from its true value µ3 = −2 after EM goes beyond about 30 iterations.
There is also some indication that the estimates for the other two mean values may also
be diverging, again for σ = 1.5. Presumably, after more iterations, EM does converge
to a point in parameter space that is a maximum of the likelihood surface. It would be
worthwhile to show that convergence does indeed occur (by showing more iterations of
EM on the x-axis). It would also be interesting to know if the value of the log-likelihood
at the maximum found by EM is higher than the value of the log-likelihood at the
true parameter values (a likely situation of course for relatively small amounts of data).
Finally, it would be interesting to show a plot of the posterior densities of the means
as estimated by the Gibbs sampler, with the location of the EM point estimate also
marked.

In our experience with HMMs, the transition probabilities are sometimes more
difficult to estimate accurately (compared to the means) when using relatively small
amounts of training data. Perhaps the author can provide some observations on this
based on the experiments in this paper.

4 Credibility and Confidence Intervals

The paper makes a clear case in Section 2 that when interval estimates for parame-
ters are required, MCMC methods can be as computationally cheap to implement as
frequentist alternatives such as the parametric bootstrap—and MCMC inference can
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provide additional benefits such as parameter averaging for prediction. But what if we
only want point estimates of our HMM parameters to begin with? Are there advantages
in using MCMC to seek the posterior mode in parameter space, as a stochastic search
alternative to EM (which can get trapped at local maxima)?

Section 2.3 provides an interesting comparison of both non-Bayesian and Bayesian
approaches to determining credibility intervals for HMM parameter estimates. The
Gibbs sampler provides a credibility estimate directly from the estimated (sample-based)
posterior density for the parameter of interest. The parametric bootstrap provides a
confidence interval using K MLE parameter estimates computed from K bootstrap
samples of the original data (here K = 661). It is not entirely clear that the credibility
and confidence intervals from the Gibbs sampler and from the parametric bootstrap,
respectively, should agree in principle. Gibbs provides us with an empirical estimate
of our posterior uncertainty; the parametric bootstrap tells us about the uncertainty
in our MLE point estimates from different bootstrap data sets of the same size. In
practice the resulting intervals from both approaches will likely be similar (as they are
in the example in Section 2.3), but fundamentally these intervals appear to capture two
different notions of uncertainty. Can the author comment further on this difference?

At the end of Section 2.3 the author compares computation times for the Gibbs
sampler and the parametric bootstrap, pointing out that “bootstrapping is more auto-
matic,” but also noting hat the computation time of the bootstrap method will depend
on the stopping procedure for EM that is being used. It may be worth noting that, in
addition to the identifiability issues discussed in Section 2.3, EM is also prone to find-
ing local maxima (particularly for small data sets). Thus, an additional complicating
factor in using the bootstrap in this context is the presence of local maxima during EM
optimization—these local maxima could result in significant (and artificial) inflation of
the bootstrap confidence interval estimates.

As final comment on the bootstrap method, we wondered how the identifiabil-
ity constraints are implemented if the means are multi-dimensional, rather than one-
dimensional as in the example in the paper?

5 Inferring the Appropriate Number of States

We found the comparison of the bootstrapped GLRT and reversible jump MCMC for
model selection in Section 3 to be interesting and informative. As a general comment on
selecting the number of states in an HMM, it is worth noting that in the case where the
HMM is an approximation to a true data-generating process that is not itself an HMM
(as is usually the case in practice), there is no real notion of the “correct” number of
states. As we get more data, the “best” number of states is the number that leads to
the best predictions on new data, and this number will increase as we get more training
data. So “best” in practice may be a function of how much data we have, rather than
some data-independent notion of truth. This is particularly important in situations
where the inferred states are accorded specific interpretations (e.g., for data analysis in
the sciences), versus the case where the model is being used as a black-box predictor as
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is often the case in speech processing for example.

In Section 3.1, the economic data seems like it will by definition have high overlap
between the components given that the means are the same for both components. Per-
haps the author could comment on how this may influence model selection, in the light
of Section 2 where we saw that significant overlap adds considerable variance into the
posterior on parameters. Does the relatively large variance due to component overlap
also translate into uncertainty or instability in model selection?

It would be interesting to know the results of applying the model selection methods
from Section 3 to the simple simulated data from Section 2 (since we know ground
truth for this data). If the author has run this analysis, perhaps he could provide a few
sentences or comments on the results? Of particular interest would be what happens
when the amount of training data is reduced—is there any indication that reversible
jump MCMC or bootstrapped GLRT methods have any particular advantage over each
other in the small training data regime?

As the author points out, penalized likelihood criteria for model selection (e.g.,
BIC) are problematic when applied to models such as HMMs. However, these criteria
are widely used (particularly in the sciences) and relatively easy and fast to compute.
In this context, for completeness, it would be worthwhile to report such scores for the
data set used in Section 3. It would also be useful to see how non-parametric Bayesian
methods compare when used for model selection, such as Dirichlet processes which
place an implicit prior over the number of hidden states (e.g., Xing and Sohn 2007).
We realize of course that this could entail significant additional work on the part of
the author—but hopefully future comparative studies by the author or by others could
include such approaches.

The author mentions several methods in Section 3 for determining the number of
states in an HMM. We would like to point out yet another option: use cross-validation
(or simply test set validation if one has a very large amount of data). For example,
from an MLE viewpoint, one can compute the log-probability of unseen data for different
numbers of states using EM for estimation, and then (for example) select the model with
the highest out-of-sample log-probability. While acknowledging that the resulting cross-
validation estimates can be quite noisy for small data sets, we have nonetheless found
this approach to be simple to implement and it has the advantage that its predictive
nature makes it easy for scientific collaborators to trust and understand (e.g., see an
application to climate data in Robertson et al. (2004)).

6 “MC within EM” versus MCMC

As described in the paper, the model in Section 4 no longer allows an exact and tractable
E-step for the EM. The solution used in the paper is to average over samples from the
posterior distribution of the latent variables, instead of computing the exact expecta-
tion. This approach can be viewed as a hybrid between EM and Gibbs sampler MCMC,
with the difference of choosing a mode of the posterior distribution over model param-
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eters (MCEM) rather than sampling from that distribution (MCMC). Given that the
computational cost of sampling values of the latent variable would often dominate, we
should not expect MCEM to offer a computational advantage over MCMC. Without
such an advantage, is there a reason to bother with MCEM at all? It may be worth
considering an alternative to sampling within EM such as variational methods which
can be faster than sampling (e.g., Ghahramani and Jordan 1997).

7 Computational Costs and Human Costs

The paper provides a number of useful practical estimates of computation time, e.g.,
comparing the time taken for Gibbs sampling and bootstrap methods in Sections 2.3
and 3.2. There is a current trend in computer systems towards making parallel com-
puting readily available on the desktop, whether in the form of multiple processors in
your desktop machine (already a reality) or easy access to distributed (e.g., grid) com-
puting resources. While parallelization at best only provides a linear speed-up of P ,
where P is the number of processors, this trend towards parallelization is a boon for
simulation-based inference. As examples of “trivial parallelizations,” for MCMC one can
run multiple independent chains on different processors, or for bootstrap methods one
can allocate different bootstrapped data sets to different processors. In consequence, as
computation times decrease, we can anticipate even more interest and activity in using
the types of inference methods from this paper in applied problems.

The paper discusses briefly (e.g., in the Summary of Section 3, in Section 3.5) the
point that in addition to computation time, another factor to consider in choosing an
inference method is the complexity of the software code required to implement a par-
ticular method. We would go a little further and argue that the “human cost” involved
correctly implementing and testing an inference procedure in software can actually be
a much more significant cost in many applied projects compared to the computational
cost of running the inference. In particular, for relatively complex models and rela-
tively complex inference procedures (such as reversible jump MCMC—as pointed out
in Section 3.5) the human cost of implementation can be significant, particularly for
practitioners who do not have prior experience with working with complex inference
methods. Debugging the software associated with complex MCMC samplers is non-
trivial, e.g., differentiating between slow mixing and a bug in the code can be quite
difficult. Thus, human cost is an important factor (in addition to computational cost)
when deciding what inference methodology to choose in practical situations.

8 Concluding Comments

This paper is a welcome addition to the HMM literature for researchers interested in
the relative advantages and disadvantages of EM and MCMC inference. The detailed
and specific examples comparing EM and MCMC should be particularly valuable for
example for students and for practitioners, who may not have much prior experience
with these techniques. In collaborative work involving HMMs it is difficult to provide a
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short answer to the question “is it better to use an EM algorithm or a Bayesian approach
when modeling data with HMMs?” This paper will be a very useful starting point for
answering such questions.
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