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Comment on article by Rydén

Sylvia Frühwirth-Schnatter∗

First of all, I would like to congratulate the author on an excellent paper providing
a very fair comparison of EM versus MCMC estimation for hidden Markov models.
I agree with most of what has been said in the paper, nevertheless I would like to
comment on several issues, including estimating the unknown number of states using
marginal likelihoods, choosing the prior and post-processing the MCMC draws to deal
with label switching. Before doing so, I would like to introduce bayesf, a MATLAB
software package for estimating hidden Markov models.

1 The MATLAB software package bayesf

In January 2007 I finished a first version (Version 1.0) of a MATLAB software pack-
age called bayesf. This package allows to perform Bayesian inference for some of
the finite mixture and Markov switching models discussed in my Springer monograph
(Frühwirth-Schnatter 2006). An updated version (Version 2.0) is close to be finished
and will be available on my web site at

http://www.ifas.jku.at/e2571/e2626/e2632/index_ger.html

by the time this discussion is published. bayesf allows MCMC estimation of a hidden
Markov model for a variety of conditional distributions, including multivariate nor-
mal distributions, Student-t distributions, but also discrete-valued distributions like the
Poisson distribution. The unknown number of states is estimated through marginal
likelihoods (rather than RJMCMC).

2 Estimating the Unknown Number of States

My first contribution to the discussion concerns estimating the unknown number of
states of the hidden Markov model for the S&P 500 data studied in Section 2 of the
paper. For these data, I want to discuss two issues, namely choosing an appropriate
prior and computing marginal likelihoods.

I consider three different prior choices for the parameters of the hidden Markov
model to assess the influence of the prior. “Prior 1” which is closely related to the
prior considered in the paper assumes that the state specific standard deviations σi are
equipped with independent uniform U [0, max |yk|] priors while each row of the transition
matrix A follows a Dir (1, . . . , 1) prior. “Prior 2” assumes a hierarchical prior for σ2

i ,
namely σ−2

i ∼ Γ (α, β) where α = 2 and β ∼ Γ (g, h) with g = 0.5 and h = 25/R2

where R = max yk − min yk is the data range, while the prior for the rows of the
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Table 1: S&P 500 data; log of various estimates of the marginal likelihood p(y1:n|d)
for Prior 1 obtained from three independent MCMC runs; BS . . . bridge sampling,
IS . . . importance sampling, RI . . . reciprocal importance sampling; standard errors in
parenthesis

d 1 2 3 4 5
BS -1716. -1625.1(0.01) -1625.0(0.04) -1637.3(0.05) -1649.6(0.05)

-1716. -1625.1(0.01) -1625.6(0.05) -1636.5(0.05) -1649.7(0.05)
-1716. -1625.1(0.00) -1625.1(0.04) -1636.4(0.05) -1649.6(0.05)

IS -1716. -1625.1(0.01) -1624.0(0.59) -1635.7(0.37) -1644.5(0.62)
-1716. -1625.1(0.01) -1624.1(0.47) -1635.5(0.26) -1646.2(0.49)
-1716. -1625.1(0.01) -1623.8(0.63) -1629.8(0.99) -1645.4(0.61)

RI -1716. -1625.1(0.01) -1630.6(0.47) -1646.0(0.72) -1664.1(0.88)
-1716. -1625.1(0.03) -1630.6(0.22) -1644.1(0.34) -1662.8(0.72)
-1716. -1625.1(0.01) -1630.3(0.32) -1645.8(0.57) -1661.2(0.70)

transition matrix A is the same as for “Prior 1”. This prior is closely related to the prior
considered in the paper for Case I. Finally, “Prior 3” combines the hierarchical prior
for state specific variances σ2

i with a slightly more informative prior on the transition
matrix A by assuming that each row (ai1, . . . , aid), i = 1, . . . , d follows a Dir (ei1, . . . , eid)
prior where eii = 4 and eij = 1/(d − 1) for i 6= j. By choosing eii > eij the hidden
Markov model is bounded away from a finite mixture model, see Frühwirth-Schnatter
(2006, Subsection 11.5.1). This prior is the default choice in the bayesf package. For
all priors, I assume that the vector ρ of the initial states is drawn from the ergodic
distribution of the hidden Markov chain rather than from an independent Dir (1, . . . , 1)
prior as in the paper.

It will turn out that the choice of the prior is far more influential on the posterior
probabilities p(d|y1:n) of the number d of states than one might expect. To compute
the posterior probabilities p(d|y1:n), I consider estimating the marginal likelihoods for
a certain range of d rather than using RJMCMC as was done in the paper.

2.1 Computing Marginal Likelihoods for Unknown Number of States

As discussed in the paper, there exist many ways to approximate the marginal likelihood
using MCMC draws. Ever since Gelfand and Dey (1994) introduced the harmonic mean
estimator there has been a desire to find estimators that are based solely on the MCMC
draws and the mixture likelihood function evaluated at the MCMC, because such an
estimator is extremely cheap to evaluate and very easy to program. Unfortunately,
it seems impossible to find such an estimator. Recently Scott (2002) providing a nice
survey on recursive algorithms mentioned also in the introduction of the paper suggested
an estimator along these lines as did Congdon (2006), however, these estimators are
biased as shown by Robert and Marin (2008).
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Table 2: S&P 500 data; log of various estimates of the marginal likelihood p(y1:n|d)
for Prior 2 obtained from three independent MCMC runs; BS . . . bridge sampling,
IS . . . importance sampling, RI . . . reciprocal importance sampling; standard errors in
parenthesis

d 1 2 3 4 5
BS -1717.6 -1628.4(0.00) -1630.0(0.04) -1643.4(0.05) -1657.2(0.05)

-1717.6 -1628.4(0.01) -1630.0(0.04) -1643.2(0.05) -1657.6(0.05)
-1717.6 -1628.4(0.00) -1629.9(0.04) -1643.1(0.05) -1656.8(0.05)

IS -1717.6 -1628.4(0.01) -1629.5(0.30) -1641.9(0.35) -1652.7(0.73)
-1717.6 -1628.4(0.01) -1630.1(0.17) -1640.1(0.47) -1655.5(0.29)
-1717.6 -1628.4(0.01) -1628.7(0.62) -1641.7(0.47) -1653.4(0.58)

RI -1717.6 -1628.5(0.01) -1634.7(0.30) -1653.3(0.45) -1669.7(0.57)
-1717.6 -1628.5(0.01) -1634.1(0.27) -1650.7(0.28) -1669.5(0.64)
-1717.6 -1628.4(0.01) -1634.3(0.33) -1651.2(0.38) -1669.1(0.72)

Thus, I focus on three of the simulation-based approaches discussed in
Frühwirth-Schnatter (2006, Section 5.4), namely bridge sampling, importance sampling
and reciprocal importance sampling. Bridge sampling is described in detail in the paper,
but has not been applied to the S&P 500 data.

The importance density q(θ) underlying bridge sampling and the other estimators is
constructed from the conditional densities appearing in the Gibbs sampler1 and reads:

q(θ) =
1

S

S
∑

s=1

p(θ|x
[s;d]
0:n ,y1:n, d),

where the draws x
[s;d]
0:n , s = 1, . . . , S are selected randomly from the full MCMC chain

x
[m;d]
0:n , m = 1, . . . , M . Since the complete-data posterior p(θ|x0:n,y1:n, d) usually factors

into the product of closed form densities, it is sufficient to store the moments of these
densities rather than the entire path of the states x0:n of the hidden Markov chain.

One advantage of constructing q(θ) in this way is that the importance density ex-
hibits the same kind of multimodality as the posterior density p(θ|y1:n, d), provided
that each sweep of the Gibbs sampler is ended by randomly permuting the labels of
the states as in Frühwirth-Schnatter (2001). The number md of modes in the posterior
p(θ|y1:n, d) is usually equal to d!, if n is large enough and the model is not overfitting,
meaning that d is not larger than the true number of states. For small data sets and
for overfitting models there may be more or less than d! modes.

It is desirable to choose the number S of components as small as possible, because
q(θ) has to be evaluated at each of the M MCMC draws and at each of the L draws from

1Subsequently I use the notation of the present paper rather than the notation applied in
Frühwirth-Schnatter (2006).
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Table 3: S&P 500 data; log of various estimates of the marginal likelihood p(y1:n|d)
for Prior 3 obtained from three independent MCMC runs; BS . . . bridge sampling,
IS . . . importance sampling, RI . . . reciprocal importance sampling; standard errors in
parenthesis

d 1 2 3 4 5
BS -1717.6 -1626.0(0.00) -1621.3(0.03) -1626.5(0.05) -1634.0(0.06)

-1717.6 -1626.0(0.00) -1621.3(0.03) -1626.9(0.05) -1634.4(0.05)
-1717.6 -1626.0(0.00) -1621.3(0.03) -1626.5(0.05) -1634.6(0.06)

IS -1717.6 -1626.0(0.01) -1621.3(0.17) -1624.9(0.49) -1630.3(0.35)
-1717.6 -1626.0(0.01) -1621.3(0.08) -1624.9(0.32) -1628.2(0.71)
-1717.6 -1626.0(0.01) -1621.3(0.14) -1622.9(0.90) -1629.9(0.64)

RI -1717.6 -1626.1(0.02) -1626.5(0.45) -1640.9(0.99) -1647.0(0.40)
-1717.6 -1626.0(0.01) -1626.3(0.39) -1635.1(0.28) -1654.4(0.95)
-1717.6 -1626.1(0.02) -1625.2(0.40) -1636.2(0.45) -1648.6(0.50)

the importance density in order to compute the bridge sampling estimator, leading to a
total of S(M+L) functional evaluations of the complete-data posterior p(θ|x0:n,y1:n, d).
On the other hand, it is essential that all modes of the posterior density are covered by
the importance density also for increasing values of d to avoid instability of the resulting
estimators. On the average, each mode is covered by M0 = S/md components of q(θ).
This means that the whole approach is limited to moderate values of d, say up to 5 or
6, and does not provide a feasible alternative to RJMCMC if the number of states is
larger than that.

The appropriate choice of S also depends on the amount of missing information.
Around a particular mode, p(θ|y1:n, d) is approximated by a mixture of M0 = S/md

complete-data posteriors p(θ|x0:n,y1:n, d). If the complete data (x0:n,y1:n) are much
more informative about θ than the observed data y1:n alone, then a larger value of M0 is
needed to obtain a reliable importance density than in cases were the amount of missing
information is small.

Subsequently, I compute all three estimators of the marginal likelihood for the
S&P500 data for d = 1, . . . , 5. The estimators are based on M = 8, 000 MCMC draws
after a burn-in of 4,000 draws and on L = 8, 000 draws from the importance density
q(θ). The total number of draws is equal to 5(M + L + 4000) = 100, 000 which is com-
parable to the 100,000 sweeps of the RJMCMC sampler considered in the paper. To
construct q(θ), I choose S = M0d! where M0 = 100 for d ≤ 3, while M0 = 25 for d = 4
and M0 = 5 for d = 5. Thus for d ≥ 3 S = 600 components are used, regardless of d.

Computations were carried out running the MATLAB package bayesf on a note-
book with a 2.0 GHz processor. Running MCMC and performing marginal likelihood
estimation for d = 1, . . . , 5 required in total 57 CPU minutes which is only a fraction of
the 19 hours reported in the paper for RJMCMC. To evaluate the stability of each es-
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Table 4: S&P data; posterior distribution of the number of states for various priors on
the parameters of the hidden Markov model

d 1 2 3 4 5

Prior 1
p̂BS(d|y1:n) 0.0 0.482 0.518 0.0 0.0

0.0 0.633 0.367 0.0 0.0
0.0 0.512 0.488 0.0 0.0

Prior 2
p̂BS(d|y1:n) 0.0 0.833 0.167 0.0 0.0

0.0 0.825 0.175 0.0 0.0
0.0 0.807 0.193 0.0 0.0

Prior 3
p̂BS(d|y1:n) 0.0 0.009 0.985 0.006 0.0

0.0 0.009 0.987 0.004 0.0
0.0 0.009 0.985 0.006 0.0

timator, MCMC sampling and subsequent marginal likelihood estimation was repeated
independently three times.

Table 1 to Table 3 report the various estimators of the (log) marginal likelihood for
three independent runs under each prior. Additionally, standard errors were computed
as described in Frühwirth-Schnatter (2006, p. 152). While all estimators agree for d = 1
and d = 2, considerable differences are present for d ≥ 3. As observed in previous work,
we find that bridge sampling is far more stable and more precise than importance or
reciprocal importance sampling. For these estimators we find considerable differences in
the estimated value for independent runs and much larger standard errors in particular
for overfitting models.

2.2 Studying the Influence of the Prior

I will now proceed with studying the influence of the prior on the parameters of the
hidden Markov model on the posterior probabilities p(d|y1:n) of the number d of states.
For each prior, the marginal likelihoods p(y1:n|d), estimated through bridge sampling
as in Table 1 to Table 3, are combined with a uniform prior over d ∈ {1, . . . , 5} which is
also used in the paper in connection with RJMCMC. From Table 4 we find that the prior
exercises considerable influence on the posterior distribution of the number of states and
the stability of the estimated posterior probabilities over independent MCMC runs.

For “Prior 1” which is very similar to the prior used in the paper for RJMCMC no
clear decision concerning the number of states is possible. In their inability to discrimi-
nate clearly between d = 2 and d = 3 states the posterior distributions are similar to the
one reported in the paper for RJMCMC. The estimated posterior probabilities reported
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in Table 4 differ considerably over independent runs, the difference between the largest
and the smallest value of p̂BS(2|y1:n) being as large as 15.1%. This instability leads to
choosing d = 3 for the first and d = 2 for the remaining two runs, each time with a high
risk for a wrong decision.

I would also like to mention that I experienced difficulties with “Prior 1” insofar
as Gibbs sampling tended to get stuck at a mode where some of the variances were
equal to 0. This happened, for instance, for d = 3 for one out of four independent runs.
Also, when I tried to combine the uniform prior for σ1, . . . , σd with the slightly more
informative prior on the transition matrix A I ran into troubles, in particular, for d = 4,
because the Gibbs sampler got stuck for three independent runs.

No such problems occurred under “Prior 2” and “Prior 3” which both assume a
hierarchical prior for the variances σ2

1 , . . . , σ2
d rather than a uniform prior for σ1, . . . , σd.

As discussed in Frühwirth-Schnatter (2006, Subsection 6.2.3) for finite mixture models,
under this prior the ratio of any two variances σ2

i /σ2
j follows an F (2α, 2α) distribution

and thus is stochastically bounded which helps to overrule spurious local modes and
the unboundedness of the mixture likelihood function. The same, of course, applies to
hidden Markov models.

For “Prior 2” and “Prior 3” the posterior distributions in Table 4 are much more
concentrated than under “Prior 1” and stability over independent runs increases. For
“Prior 2” the difference between the largest and the smallest value of p̂BS(2|y1:n) reduces
to 2.6%, while the posterior probabilities are extremely stable for “Prior 3”.

However, we also find that under a hierarchical prior on the variances the prior on the
rows of the transition matrix exercises a tremendous influence on the selected number
of states. In combination with the flat prior (“Prior 2”) one would choose d = 2, in
combination with the prior which bounds the hidden Markov model away from a finite
mixture model (“Prior 3”) one would choose d = 3 with high confidence.

If one is willing to view the prior as part of the model, one could consider “prior
selection” based on the marginal likelihoods reported in Table 1 to Table 3. We find
that “Prior 3” gives larger marginal likelihoods than the other priors and that “Prior 3”
together with d = 3 has the highest marginal likelihoods among all models considered.

3 Label Switching and Post-processing MCMC

Finally, I would like to comment on handling label switching through post-processing
the MCMC output. In (Frühwirth-Schnatter 2001) I suggested to use a point process
representation of the MCMC draws, by producing scatter plots of pairs of component
specific parameters. Since the MCMC draws scatter around the true point process
representation of the mixture (Stephens 2000), a visual inspection of these plots allows
to study the differences in the component specific parameters and to formulate an
identifiability constraint. Although this works quite well in lower dimensions, I found
it difficult or even impossible to extend this method to higher dimensional problems.
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Table 5: Data simulated as in Case I with µ1 = −2, µ2 = 0, µ3 = 2, and σ2
1 = σ2

2 = σ2
3 =

1; relabelling the MCMC output using the classification obtained from unsupervised k-
means clustering; illustration for m = 100 (top), m = 200 (middle) and m = 300
(bottom); the estimators µ̂i and σ̂2

i are the averages over all original and all permuted
MCMC draws

MCMC output Classification Permuted MCMC output
i = 1 i = 2 i = 3 i = 1 i = 2 i = 3 State 1 State 2 State 3

µ
[m]
i -0.13 2.25 -2.04 3 1 2 2.25 -2.04 -0.13

(σ2
i )[m] 1.09 0.84 0.76 0.84 0.76 1.09

µ
[m]
i -1.94 0.15 2.31 2 3 1 2.31 -1.94 0.15

(σ2
i )[m] 0.83 1.01 0.59 0.59 0.83 1.01

µ
[m]
i -1.96 2.13 0.03 2 1 3 2.13 -1.96 0.03

(σ2
i )[m] 0.78 0.85 1.18 0.85 0.78 1.18

µ̂i -0.13 -0.08 -0.08 2 -2.21 -0.09
σ̂2

i 1.01 1.01 1.01 0.99 0.99 1.04

Influenced by a paper by Celeux (1998), I prefer now to use standard k-means
clustering in the point process representation of the MCMC draws as a routine way
to identify finite mixture and hidden Markov models. As opposed to Celeux (1998),
clustering is performed in a post-processing manner. This method which is also included
in the bayesf package is described in detail in (Frühwirth-Schnatter 2006, p. 96f) for
finite mixture models, but applies to hidden Markov models as well. For hidden Markov
models this method not only allows to identify the state specific parameters, but also
to estimate the hidden Markov chain. The method is particularly useful in higher
dimensions, for instance, for Markov mixtures of multivariate normal distributions, see
(Hahn et al. 2007) for a recent application in finance.

The method is based on the idea that MCMC draws coming from the same state
will cluster around the same point in the point process representation. Even if label
switching occurred between two draws, the classification sequence resulting from k-
means clustering indicates how to rearrange the state specific parameters. In cases where
the simulation clusters are well-separated all classification sequences are a permutation
of the labels {1, . . . , d} and show how to relabel the MCMC draws in order to obtain
draws from an identified model.

For illustration, I consider simulated data of size n = 1, 000 as in Case I of the paper
and fit a hidden Markov model with state specific variances, Yk|Xk = i ∼ N

(

µi, σ
2
i

)

for various values of d. Bayesian inference is carried out by combining “Prior 3”, de-
fined above, on σ2

1 , . . . , σ2
d and A with the following prior on µi: µi ∼ N

(

m, R2
)

,
independently for i = 1, . . . , d, where m = (min yk + max yk)/2 and R is the range of
the data. Gibbs sampling was run for M = 10, 000 sweeps after a burn-in of 1,000
draws and each step was ended by a random permutation as in Frühwirth-Schnatter
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(2001). Unsupervised clustering is applied to a sample of size Md containing the draws
(µi, σ

2
i )[m], i = 1, . . . , d, m = 1, . . . , M .

First, the method is applied to data where σ2
i ≡ 1 which corresponds to the mid-

dle panel of Figure 1 of the paper. Let us start with fitting a three-state hidden
Markov model with state specific variances. Table 5 shows MCMC draws of (µ1, σ

2
1)[m],

(µ2, σ
2
2)

[m], and (µ3, σ
2
3)[m] for m = 100, 200, and 300. Evidently label switching took

place between these MCMC draws. Nevertheless, each classification sequence suggests
a permutation of the labels which evidently leads to identified MCMC draws. For
these data, also all remaining classification sequences were permutations of {1, 2, 3} and
allowed to identify a unique labelling for all MCMC draws including the transition ma-
trices (not reported in the table) and the states of the hidden Markov chain. Estimators
of the state specific parameters are obtained as averages of the identified MCMC draws,
see e.g. µ̂i and σ̂2

i in the last two lines of Table 5.

For overfitting models the classification sequences are not necessarily permutations
of the labels {1, . . . , d}. When fitting a four-state hidden Markov model to the same
data as above, only 175 among the 10,000 classification sequences are permutations
of {1, . . . , 4}, meaning that it is not possible to find a unique labelling of the MCMC
draws for this model and these data. This is not surprising, because a four-state model
is overfitting and the (log) marginal likelihoods of d = 3 versus d = 4 are -1869.1 and
-1875.7, respectively, clearly favoring the three-state model.

Not only for this example, but also for many other simulated as well as real data
sets, I found that a high fraction of classification sequences that are not permutations
of the labels is a reliable hint that the model is overfitting.

To give a further example consider data where σ2
i ≡ (1.5)2 which corresponds to the

right panel of Figure 1 of the paper. There is a strong overlap of the components due
to the high variance in each component which makes it difficult to identify the state
specific means µ1, µ2 and µ3. When we compare a two-state and three-state model
for a data set of 1000 observations using (log) marginal likelihoods we obtain -2054.35
versus -2056.33, favoring the smaller model. The difficulty to identify the state specific
means µ1, µ2 and µ3 for this data set is also reflected by unsupervised clustering of the
MCMC output. For d = 2 all classification sequences are permutations of the labels.
However, for d = 3 this is the case only for 34 among the 10,000 classification sequences,
indicating that it is not possible to find a unique labelling of the MCMC draws for a
three-state model for this data set.

For a much larger data set of 10,000 observations the (log) marginal likelihoods of
d = 2 versus d = 3 read -20666.7 and -20609.4, respectively, this time clearly favoring
the three-state model. It is possible to identify the state specific means µ1, µ2 and µ3,
as indicated also by unsupervised clustering of the MCMC output, where all among the
10,000 classification sequences are permutations of {1, 2, 3}. The estimators of the state
specific means obtained as averages of the identified MCMC draws are µ̂1 = −1.96,
µ̂2 = −0.003, and µ̂3 = 1.98.
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