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I would first like to congratulate the authors for taking on a very ambitious modeling
project. It is increasingly the case in a broad variety of application areas that there is in-
terest in combining data collected on different measurement scales, while accounting for
complications such as censoring, missingness and spatial misalignment. Bayesian hier-
archical modeling provides a natural paradigm for addressing such problems. However,
difficulties in specifying the model and implementing the analysis provide a significant
hurdle to many statisticians, limiting the use of Bayesian hierarchical models in ap-
plications such as exposure assessment. It is too often the case that ad hoc methods
are used for combining information from different sources, with the results then used to
make important regulatory decisions. For example, it is standard practice to summarize
data from a particular source using a point estimate, which is then included without
accounting for estimation uncertainty in a model for data from a different source. This
type of exercise leads to a modeling house of cards, which can certainly produce highly
misleading inferences and predictions. The Craigmile et al. article is a step in the right
direction toward shifting the current standard practice.

All that said, I feel it necessary in my role as a discussant to raise a number of issues
with their analysis. First, the primary goal of the article is to provide a behind-the-
scenes look at the practical details involved in implementing a Bayesian hierarchical
analysis in a complex setting. However, the authors focus on an arsenic exposure path-
ways application, which has been considered in a number of previous Bayesian analyses.
The authors rely heavily on the models chosen in these previous analyses without much
justification, allowing them to essentially bypass the challenging issue of model uncer-
tainty. This luxury will be unavailable in most applications, and it is typically necessary
to properly account for model uncertainty to obtain reasonable inferences and predic-
tions, particularly in exposure pathway modeling.

I found the author’s assessment of the Clayton et al. (2002) model insufficient. Even
an eyeball analysis of the correlation table in Figure 4 showed a number of discrepancies,
and it seems much more appealing to formally account for the obvious fact that the
Clayton et al. (2002) model may not hold exactly. This can be done by allowing
uncertainty in the directed acyclic graph (DAG), while using a prior centered on the
Clayton et al. (2002) structure. There are many more modeling assumptions made,
and it seems insufficient to simply rely on graphs of model fit and posterior predictive
checks, because it is unlikely that the sparse data will provide evidence against even a
poor model. In the authors’ defense, accommodating model uncertainty does complicate
the analysis, and one must make some pragmatic decisions to simplify the process.

A second major issue is the widespread use of diffuse but proper normal and gamma
priors. Because data are sparse and there are many parameters to estimate, high vari-
ance priors seem to be a very bad idea. The first issue is that one does not want
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to choose a prior with very large variance if the limiting case as the variance → ∞
corresponds to an improper posterior because the MCMC algorithm may behave as
if the posterior is improper and have very poor mixing and convergence properties
(Natarajan and McCulloch 1998). For normal-gamma hierarchical models, it is well
known that such issues arise, and indeed this is exactly what occurred in the authors’
analysis. Their response was to claim non-identifiability and simplify the model in a
stepwise manner until the MCMC algorithm appeared to converge. From a Bayesian
perspective, I find that this type of strategy should not be recommended in general.
If the MCMC exhibits poor mixing and slow convergence, it is not necessarily due to
the data containing insufficient information about the parameters. In many Bayesian
hierarchical models, there is a high degree of posterior correlation in the parameters
that leads to very poor mixing, and diffuse gamma priors can exacerbate this problem.

Instead of discarding pieces of data and simplifying the model, there are two preferred
strategies that immediately come to mind (1) use a more efficient MCMC algorithm;
and (2) use more informative priors. Regarding (1), a natural approach to follow in the
types of normal-gamma hierarchical models considered in this article is to use parameter
expansion Gibbs steps (Gelman 2006; Ghosh and Dunson 2009). Such algorithms are no
more complicated to implement than typical Gibbs samplers and maintain conjugacy.
Regarding (2), it is my view that high variance priors are almost always a bad idea in
sparse data situations in which there are many parameters.

In such settings, even if there is essentially no prior information available about
the parameters, heavy-tailed shrinkage priors (e.g., Cauchy) have been widely recom-
mended for Bayesian robustness. Such priors allow parameters to effectively drop out
of the model by setting their values close to zero, while maintaining conjugacy through
the use of a scale mixture of normals specification. This is done adaptively, while ap-
propriately accounting for uncertainty. For variance parameters, one can typically use
a reparameterized model, as described in Gelman (2006), and then use half-Cauchy
priors as a heavy-tailed default for random effect standard deviations. Conjugacy is
maintained, and the analysis is often more efficient because mixing is improved, requir-
ing fewer MCMC samples need to be collected. In the arsenic models considered in the
paper, I suspect that one has substantial prior information to use in choosing an infor-
mative prior. Even rough prior information that would allow one to choose a plausible
range of values for a coefficient would be very helpful.

A final issue of concern is possibly biased sampling and informative missingness.
Regarding the biased sampling issue, the NHEXAS data were collected from a three-
stage, population-based sampling design, and the 179 individuals represented a small
subset of those households that were contacted. It seems that the sampling weights
used in the NHEXAS survey possibly have an important impact on the results, but
such weights were not included in the analysis. Biased sampling is a concern for other
components of the data as well. For example, the authors rely on topsoil and stream
sediment measurements from two surveys. One wonders how the monitoring sites were
chosen. Often, there is a tendency to over-sample sites that are suspected to have
high concentrations or to place a monitor at a location of concern. Certainly, such
biased sampling will lead to problems in the analysis if not appropriately dealt with.
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Missing data creates a related concern. Examining table 2, it is clear that there is
a large proportion missing for many of the media. It seems that the authors have
implicitly assumed missing at random (MAR) in their analyses. However, violations
of this assumption may have a large impact on the results given the large amount of
missing data.
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