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A Dynamic Modelling Strategy for Bayesian
Computer Model Emulation

Fei Liu∗ and Mike West†

Abstract. Computer model evaluation studies build statistical models of deter-
ministic simulation-based predictions of field data to then assess and criticize the
computer model and suggest refinements. Computer models are often expensive
computationally: statistical models that adequately emulate their key features can
be very much more efficient. Gaussian process models are often used as emulators,
but the resulting computations lack the ability to scale to higher-dimensional,
time-dependent or functional outputs. For some such problems, especially for
contexts of time series outputs, building emulators using dynamic linear models
provides a computationally attractive alternative as well as a flexible modelling ap-
proach capable of emulating a broad range of stochastic structures underlying the
input-output simulations. We describe this here, combining Bayesian multivariate
dynamic linear models with Gaussian process modelling in an effective manner,
and illustrate the approach with data from a hydrological simulation model. The
general strategy will be useful for other computer model evaluation studies with
time series or functional outputs.

Keywords: Computer model emulation; Dynamic linear model; Forwarding fil-
tering, backward sampling; Gaussian process; Markov chain Monte Carlo; Time-
Varying Autoregression.

1 Introduction

1.1 Background and Motivation

Computationally intensive simulation models, or simulators, are increasingly used in
research on complex systems in science and technology (Kennedy and O’Hagan 2001).
Computer model evaluation studies emulate simulator-based input-output relationships
using flexible statistical models. Often applied to deterministic simulators, statistical
emulators are typically far less computationally expensive than the model simulators
of interest. This enables their use as proxies for more extensive study of input-output
relationships, as well as to assess, criticize and suggest statistical refinements to the
simulator based on analyses of simulator predictions of field data (e.g. Higdon et al.
2004a,b; Goldstein and Rougier 2003; Fuentes et al. 2003; Goldstein and Rougier 2005;
Rougier 2008b). Recent applications range from modelling traffic flows (Paulo et al.
2005) to analyzing climate sensitivity (Rougier et al. 2008) with a range of variants of
statistical methods (Santner et al. 2003; Bayarri et al. 2005, 2007a,b).

Following Sacks et al. (1989), statistical emulators of computer model simulators
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are commonly based on flexible Gaussian process (GASP) methodology (e.g. Currin
et al. 1991; Welch et al. 1992; Morris et al. 1993; Craig et al. 2001; Kennedy et al.
2002; Rougier 2008a). GASP is justifiably popular in view of its provision of a broad,
flexible nonparametric model framework capable of adapting to complex patterns of
input-output relationships. However, GASP methodology does not scale easily and is
simply computationally infeasible in problems with high-dimensional, time-dependent
or functional outputs (Higdon et al. 2008a). This is particularly challenging in contexts
with time series outputs, such as in our motivating application contexts and the example
in Section 3 of the logSPM hydrological model (Kuczera et al. 2006).

With this interest in extending GASP modelling to problems with long time series
outputs, we have combined Bayesian multivariate dynamic linear models (DLMs) with
Gaussian processes. Specifically, we create multivariate time-varying autoregressive
models – a special class of DLMs – in which the stochastic innovations are Gaussian
processes over computer model input space. Methodologically, this provides flexibility
in representing complex patterns of stochastic structure in outputs, relevant in our
application as well as in other areas (e.g. Sanso et al. 2008; Tebaldi and Sanso 2008;
Sanso et al. 2007). Computationally, the approach is tractable and scalable as posterior
inference via Monte Carlo Markov Chain method efficiently scales based on the forward
filtering, backward sampling algorithm (Carter and Kohn 1994; Frühwirth-Schnatter
1994); see also West and Harrison (1997, section 15.2.3).

Section 2 outlines GASP modelling and then describes the novel DLM-GASP synthe-
sis and resulting new class of statistical emulators, with details of MCMC computations
for model fitting. Section 3 describes an example of the logSPM hydrological simula-
tor and problem context, and exemplifies the approach in an analysis of the logSPM
data. Summary comments appear in Section 4 and supporting technical material in an
appendix.

2 DLM-GASP Emulators

2.1 Gaussian Process Models

Begin with a computer model that runs with d−dimensional inputs z = (z1, . . . , zd)′

and generates univariate outputs y(z). GASP uses a Gaussian process prior,

y(·) ∼ GP (µ, c(·, ·)/λ) , (1)

where µ, λ and c(·, ·) are the mean, precision and correlation function respectively. The
latter often takes the specific, separable form

c(z, z∗) = exp(−
d∑
i=1

βi | zi − z∗i |αi) (2)

for any two inputs z, z∗; the range parameters βi control decay of correlation with
respect to distance in individual input dimensions, while the roughness parameters αi
control smoothness of the output response.
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Write y1:n = (y(z1), . . . , y(zn))′ for the vector of outputs of the computer model
runs at inputs z1:n = {z1, . . . ,zn}. At any query input z, due to the Gaussian process
assumption, the joint distribution of (y1:n, y(z)) is a multivariate normal distribution.
Therefore, we can obtain the posterior predictive distribution for y(z) as (y(z) | z1:n) ∼
N(µn+1(z), vn+1(z)) where

µn+1(z) = µ+ γ′n+1Γ
−1
n (y1:n − µ) and vn+1(z) = (1− γ′n+1Γ

−1
n γn+1)/λ

where γ′n+1 = (c(z, z1), . . . , c(z, zn)) and Γn = (c(zi, zj))i,j=1,...,n, giving the GASP
prediction for the output at any query input.

Dealing with outputs that are time series extends the above to series of y(z) values
over a time axis, for each input z. This could, of course, be done with spatial or other
axes too, but we use the time series anchor context here. If outputs are time series,
we could simply extend the above to include time t as an input so that the computer
model outputs are y(z, t). Viewing t as an extension of the z input vector, this leads
to the direct extension of the GASP model above with an additional term for the time
dimension. However, this would massively increase the input dimension and compu-
tations under the extended GP prior become infeasible with other than trivial length
of the time series. Our new DLM-GASP synthesis provides an alternative, tractable
approach.

2.2 A DLM-GASP Statistical Model

By way of notation, define the following:

• the training data inputs z1:n = {z1, . . . ,zn}, where zi is a d−dimensional input
vector, zi = (zi1, . . . , zid)

′
;

• at each time t, the outputs in the n−vector yt = (y (z1, t) , . . . , y (zn, t))
′;

• at any input z, the output time series values up to any chosen time t is the
t−vector y1:t(z) = (y(z, 1), . . . , y(z, t))′ ;

• all outputs up to time t are denoted by y1:t(z1:n) = {y1, . . . ,yt}.

Consider the n−vector time series yt, t = 1, . . . , T over a period up to time T. A flexible
model for what may be quite intricate inter-dependencies among the elements of yt over
time, including non-stationary, time-varying stochastic structure, is provided by the
class of time-varying autoregressive models (TVAR), a special subclass of multivariate
DLMs (Prado and West 1997; West and Harrison 1997; Aguilar et al. 1999; Prado et al.
2001). To reflect the input space context, we now extend TVAR models to be driven by
stochastic innovations that are related over input space via a Gaussian process model.
The new DML-GASP model is as follows. For each z, we have a TVAR model

y (z, t) =
p∑
j=1

φt,jy(z, t− j) + εt(z) , (3)
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where the lag p is specified, the autoregressive parameters φt = (φt,1, . . . , φt,p)′ may
vary over time, and εt(z) ∼ N(0, vt) independently over time. Across series, we link via
a GASP model having

Cov (εt(z), εt(z∗)) = vtc(z, z∗) ,

with c(z, z∗) from equation (2), assuming the same correlation functions c(z, z∗) for all
t while allow the variances vt to change. With εt = (εt(z1), . . . , εt(zn))′, we can write
these models over all inputs as

yt = F ′tφt + εt, εt ∼ N(0, vtΣ) (4)

where

F ′t =

y(z1, t− 1) . . . y(z1, t− p)
...

. . .
...

y(zn, t− 1) . . . y(zn, t− p)


and where Σ is the n by n correlation matrix with (i, j) element c(zi, zj).

To reflect the fact that the computer model may describe some non-stationary pro-
cess, we allow the auto-regressive coefficients, φt = (φt,1, . . . , φt,p)

′
, to vary over time.

In particular, we assume the AR coefficients follow a random walk through time,

φt = φt−1 +wt , wt ∼ N(0,Wt) , (5)

where φ0, vt and Wt are parameters with subsidiary models and prior distributions to
be specified. In our analysis, we fix roughness parameters at αi = 2 throughout, and
treat the range parameters β1:d as uncertain and also to be estimated.

The model equations (4) and (5) define a multivariate DLM, and we then have
access to the full theory of dynamic models (West and Harrison 1997) including the
forward filtering analysis and the related backward sampling algorithm that are critical
to efficient computation. Some key technical details are given in Appendix 2 here.

2.3 DLM-GASP as an Emulator of GASP

Before proceeding to analysis, we note as an aside that the DLM-GASP model can also
be viewed as a flexible, non-stationary approximation to an alternative GASP model
that incorporates time into the input variable. In the latter framework, suppose the
correlation function to have the separable form c((z, t), (z∗, t∗)) = c(z, z∗)ctime(|t− t∗|)
where ctime(·) is an additional correlation function on the time dimension. Over times
t − 1, . . . , T, write Σtime for the T × T matrix with (t, s) element ctime(|t − s|). Then
the GASP model on the extended (z, t) inputs has

vec(y1:T (z1:n)) ∼ NnT (µ× 1nT ,Σ⊗Σtime/λ) . (6)

Assuming that the correlation ctime(·) becomes negligible after p lags, then

p(yt,yt−1, . . . ,y1 | θ) ≈ p (yt | yt−1, . . . ,yt−p+1,θ)
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for t > p. Using the properties of the Kronecker product listed in Appendix 1, we then
obtain the approximations

E (yt | yt−1, . . . ,yt−p,θ) = F ′tφ with φ = Σ̃−1
p ρt,t−1:t−p, (7)

and

V(yt | yt−1, . . . ,yt−p,θ) = vΣ with vλ = 1− ρ′t,t−1:t−pΣ̃
−1
p ρt,t−1:t−p, (8)

where ρt,r:s = (ctime(|t− r|), . . . , ctime(|t− s|))′ and Σ̃p is a p × p matrix with (i, j)
element ctime(|i − j|). This is a multivariate normal DLM with constant AR coeffi-
cients and innovations variance. Hence we see the TVAR model can be interpreted
as approximating this structure but allowing more flexibility through time-varying AR
coefficients and innovations variance. Alternatively, we can just view the DLM-GASP
as a richer model specification in its own right, allowing that flexibility and generating
richer possibilities for correlation structures in the time dimension.

2.4 Model Completion and Prior Specification

Model completion requires specifications for the quantities φ0, {vt,Wt, t = 1, . . . , T} and
β1:d = ({βi, i = 1, . . . , d}. This follows standard specifications for all DLM parameters
with a conjugate normal/inverse-gamma prior on (φ0, v0|D0) and the use of variance
discounting to define models for the vt sequence and specific values for the Wt sequence;
See West and Harrison (1997) and the Appendix 2 here.

A key component of the analysis is learning on the range parameters β1:d for which
we use the half-range correlation idea (Higdon et al. 2008b). Suppose the design inputs
have been standardized. Then, for each i = 1, . . . , d, the half-range ρi = exp(−βi/4)
is the correlation between εt(z) and εt(z∗) when input z and z∗ differ only in the
ith component with a difference of 0.5. Following that approach, we use independent
Ga(1, 0.1) priors on ρi, placing substantial mass near ρi = 1 to reflect the expectation
that only a subset of the inputs are influential in the computer model. The resulting
prior for β1:d is then

p(β1:d) ∝
d∏
i=1

(1− exp(−βi/4))0.9 exp(−βi/4) . (9)

2.5 DLM-GASP Prediction for Simulator Emulation

At any query input z, we can predict the output of the computer model as follows based
on assumed values of all parameters that will be generated from posterior simulation.
Given the realized values of εt(zi) = y(zi, t) −

∑p
j=1 φt,jy(zi, t − j) the predictive dis-

tribution for y(z, t) conditional on all model parameters, on the output training data
y1:T (z1:n), and on the “previous” time series values yt−1:t−p(z) is normal with mean

µt(z) =
p∑
j=1

φt,jy(z, t− j) + v−1
t γ′zΣ−1εt
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and variance σ2
t (z) = vt(1 − γtzΣ−1γz), where γz = (c1(z, z1), . . . , c1(z, zn))

′
and

εt = (εt(z1), . . . , εt(zn))
′
. These distributions define the emulator that results from

our DLM-GASP model. It is apparent that the emulator interpolates the data with
µt(z) = yt(z) and σ2

t (z) = 0 at the realized points zi; this is a typical feature of the
emulators for deterministic computer models that carries over to this new DLM-GASP
framework.

2.6 Posterior MCMC Sampling

We use MCMC for simulation of the joint posterior of the unknowns φ1:T = {φ1, . . . ,φT },
v1:T = (v1, . . . vT ) and β1:d. The joint posterior distribution can be written as

p(φ1:T , v1:T , β1:d | y1:T ) ∝ p(y1:T |φ1:T , v1:T , β1:d)p(β1:d)
T∏
t=1

p(φt, vt | y1:t−1,β)

with conditional likelihood function proportional to

p(y1:T |φ1:T , v1:T , β1:d) ∝ |Σ|−(T−p)/2 exp(−Q/2)
T∏

t=p+1

v
−n/2
t

where

Q =
T∑

t=p+1

(yt − F ′tφt)′Σ−1(yt − F ′tφt)/vt.

We use a block Gibbs sampler (Gelfand and Smith 1990) with a Metropolis-within-
Gibbs step for β1:d. The overall MCMC iterates between Gibbs draws from the complete
conditional posterior distribution of (φ1:T , v1:T ) and Metropolis-Hastings draws whose
target distributions are the conditionals for β1:d. Conditional on β1:d, the first step here
involves running the forward filtering, backward sampling computations to efficiently
sample the full sequence of AR parameters and innovation variances; see Appendix 2.
A key novelty is the Metropolis-Hastings component for β1:d targeting the conditional
p(β1:d | y1:T ,v,φ1:T ) at each Gibbs iterate. This requires careful choice of the proposal
distributions and extensive exploration as discussed in Appendix 3.

Given the draws of the parameters, at any query input z we can then make draws
from the emulator sequentially as described in Section 2.5. This generates repeat sam-
ples of outcomes y1:T (z) to summarize for posterior predictive inferences.

3 Example: LogSPM Hydrological Model

3.1 Background and Problem Context

The hydrological saturated path models (logSPMs) of Kuczera et al. (2006) are deter-
ministic simulators of water balance dynamics at catchment scales; these models are
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central to environmental models at these scales. The logSPM has 13 inputs: 2 time
series inputs of external forces – rainfall and potential evapotranspiration; 3 initial con-
ditions – initial water volume per unit area in the soil, in the ground water and in
the river; and 8 coefficients describing water dynamics. The external forces and initial
conditions are typically known and here we take them fixed so that we have an input
dimension d = 8 for water dynamic coefficients z. The logSPM output is a river flow
time series. See Reichert et al. (2008) for description of the partial differential equations
of this computer model and data source.

We use the first data set in Reichert et al. (2008) as our training data, which consists
of n = 60 computer model runs with inputs selected according to a 60-point Latin
hypercube design (LHD); a 2-dimensional projection of the design after normalization
is given in Figure 1. These input points reasonably fill the design space as is important
to exploring the global characteristics of the simulator. The corresponding 60 output
time series over T = 1827 time points outputs are shown in Figure 2.

We analyse the output data on the log scale (right frame in Figure 2), fitting the
DLM-GASP model to the n = 60 training data inputs and output time series over
t = 1, . . . , T. An additional data set of another n = 60 runs is also available in Reichert
et al. (2008). These runs are based on a 60-point LHD set of inputs that is independent
from the designed inputs of the training data, i.e., the design allows different patterns
from the training data. We use this data set as our validation data set.

3.2 DLM-GASP Emulation of LogSPM

Based on aspects of the known structure of the LogSPM model (Reichert et al. 2008)
we specify p = 2 in the TVAR model component, with hyper-parameters defining the
initial priors reflecting the known range and scale of outputs while being hedged with
substantial uncertainty: m0 = 0, n0 = 1, d0 = 1 and C0 = 10I2. Discount factors for
the analysis exemplified here are δv = δW = 0.9 which allow some variation over time in
AR parameters and innovations variance; repeat analyses with varying discounts confirm
that the global patterns of variation over time in φt and vt are evident across models,
and the overall conclusions here are not sensitive to choices of discount factors δv and
δW . The MCMC analysis was run for a total of H = 200, 000 iterations generating draws
Θ(h), (h = 1, . . . ,H), of all uncertain DLM-GASP quantities Θ = {φ1:T , v1:T , β1:d}.

Figure 3 shows approximate posteriors for the range parameters β1:d. That for
β3 is centered around 0.066, which corresponds to a half-range correlation around
exp(−0.066/4), approximately equal to 0.98; in contrast, a β8 near 2.8 corresponds
to a half-range ≈ 0.50. The high correlation in the 3rd dimension and low correlation in
the 8th dimension of input space suggest that a more efficient design should put fewer
design points in the 3rd than in the 8th dimension. Furthermore, noticing that the
smallest correlation in the 3rd direction is still very large, about exp(−0.066) ≈ 0.94,
one may want to remove the 3rd input from the Gaussian process – that is, posterior
inference is suggestive of model refinements and input variable screening and selection
in a natural manner.
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The model identifies time variation in the TVAR model parameters φt1, φt2 and vt
via estimated trajectories summarized in Figure 4. Though the TVAR model seems
consistent with local stationarity as a general rule, with values of φt sitting mainly
within the AR(2) stationary region for parameter values (West and Harrison 1997),
there are substantial global non-stationarities evident: major stochastic changes in AR
parameters and volatility changes in the innovations variance consistent with periods of
apparent volatility and spiking behavior in the simulator outputs.

For any of the given validation input points z, the DLM-GASP emulator generates
draws from the posterior predictive distribution of future outputs from further model
runs at z. Applying the emulator to all the 60 inputs in the validation data set we
obtain posterior predictive draws illustrated in Figure 6; this shows pointwise posterior
predictive medians for all 60 inputs in the validation data. These are comparable, in
terms of overall nature of patters over time, with the realized validation outputs from
the simulator, also displayed. The emulator is defining and predicting global trends,
appropriate levels of variability across the set of inputs, and, in particular, is capturing
both timing and magnitudes of the peaks and troughs including the marked periods of
bursts in volatility and spiking of the output processes.

For each validation run, we can compare the prediction given by the emulator with
the true validation data by the mean squared error (MSE), defined as

MSE =
1
T

T∑
t=1

(ŷ(z, t)− y(z, t))2 ,

where ŷ(z, t) is the posterior median of the posterior draws at time t, and y(z, t) the
true validation data. The MSE can be potentially used as a measure to compare the
performance of the present emulator with that of some other emulator, if both are
applied to the same data set. For the 60 validation runs in the LogSPM data, the present
emulator yields MSEs with mean and standard deviation 1.67 and 1.53, respectively.

We further investigate predictions of several individual runs, making comparisons of
simulated predictions from the DLM-GASP emulator with the true outputs for valida-
tion sample inputs z1, z20, z40 and z60; see Figure 7. This provides a further, good
and subjective view of the ability of the emulator to predict global as well as local
characteristics of the simulator-based hydrological process.

4 Further Comments

The DLM-GASP approach is particularly suitable as a candidate emulator for computer
models generating long time series outputs, and when there is evidence of dynamic
variation in underlying trends as well as in stochastic volatility in the outputs. TVAR
models are well-established as flexible, tractable and sometimes interpretable empirical
models of what may be quite complex and erratic processes, and we believe this synthesis
with GASP will be of interest in computer model evaluation and emulation studies.
DLM-GASP provides a computationally feasible approach to simulator emulation even
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with very long time series outputs, and will be of use in studies aiming to explore aspects
of variation in time and over input space to improve understanding of the underlying
model structure as well as in studies where prediction at new design points is of central
interest. The flexible model framework will also be relatively easily adaptable to other
issues related to the computer experiments, such as design and calibration. We also note
the potential for more customized models that build additional structural components
into the multivariate DLM, including the opportunity to bring in dynamic regression
terms as functions of inputs if desired; the overall methodology will easily extend to
accommodate that since dynamic regressions are also special cases of DLMs and can be
combined trivially with TVAR model components (West and Harrison 1997).

Supplementary Material: Code and data

Further details and complete information needed to recapitulate the analyses reported
are available at www.stat.missouri.edu/~liufei/DlmComputerWeb.zip. This includes
the data and the Matlab code to conduct the analysis and a brief readme on use of the
code.
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1 Kronecker product

The Kronecker product of two matrices A = (aij)i,j and B = (bij)i,j is defined as,

A⊗B =

a11B · · · a1nB
...

. . .
...

am1B · · · amnB

 .
It has the following properties.

1. (A⊗B)−1 = A−1 ⊗B−1 if A and B are both invertible.

2. |A⊗B| = |A|d2 |B|d1 , where d1 and d2 are the dimensions of A, B.

3. (A⊗B)(C ⊗D) = (AC)⊗ (BD) if the dimensions are matched.
If we assume A = U1U

′

1, B = U2U
′

2, then (A⊗B) = (U1 ⊗ U2)(U1 ⊗ U2)
′
.

2 DLM and Forward Filtering, Backward Sampling

2.1 DLM Completion

Refer to the DLM representation of the TVAR model of equations (4) and (5) and
let Dt = {yt, Dt−1} be the information set at time t where D0 is the initial infor-
mation set. For this appendix material for notational clarity, we assume all other
model parameters not mentioned, including the GASP parameters αi, βi, are condi-
tioned upon and absorbed into D0. The initial prior is (φ0|v0, D0) ∼ N (m0, v0C0) and
(v−1

0 |D0) ∼ Ga(n0/2, d0/2) with specified initial hyper-parameters. The models for
the sequences vt and Wt are based on standard variance discounting using a variance
discount factor δv for vt and one δW for Wt, each lying in the unit interval and typi-
cally taking values very close to 1 to represent relative stability over time in stochastic
changes in the (vt,Wt) sequences. The nature and roles of the two variance discount
factors (δv, δW ) is clear in the resulting filtering equations summarized here.

2.2 Forward Filtering Computations

Initializing at t = 1, the forward filtering analysis sequences through t = 1, 2, . . . updat-
ing the one-step forecast and posterior distributions as follows, valid for all t > 0 :

(a) The posterior for (φt−1, vt−1|Dt−1) is the conjugate normal/inverse-gamma form
with margins φt−1 ∼ Tnt−1(mt−1,Ct−1) and v−1

t−1 ∼ Ga(nt−1/2, dt−1/2); we note
that st−1 = dt−1/nt−1 is an implied point estimate of vt−1.

(b) The prior at for (φt, vt|Dt−1) has the same form with φt ∼ Tδvnt−1(mt−1,Rt) and
v−1
t ∼ Ga(δvnt−1/2, δvdt−1/2) where Rt = Ct−1 +Wt. The variance discounting

model sets Wt = Ct−1(1 − δW )/δW resulting in Rt = Ct−1/δW . The effect of
variance discounting is clear from these equations.
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(c) The one-step forecast distribution for (yt | Dt−1) is yt ∼ Tδvnt−1(ft,Qt) with
ft = F ′tmt−1 and Qt = F ′tRtFt + st−1Σ.

(d) The posterior for (φt, vt|Dt) is normal/inverse-gamma – as in part (a) following
the update to time t. The margins are:

– v−1
t ∼ Ga(nt/2, dt/2) with nt = δvnt−1 + n and dt = δvdt−1 + st−1e

′

tQ
−1
t et

based on realized forecast error vector et = yt−F ′tmt−1. The updated point
estimate of vt is st = dt/nt.

– φt ∼ Tnt
(mt,Ct) where mt = mt−1 +At(yt − F ′tmt−1) and Ct = (Wt −

AtQtA
′
t)st/st−1 where At = RtFtQ

−1
t .

These results follow from the theory of general multivariate DLMs (West and Harrison
1997).

2.3 Backward Sampling Computations

Having completed the forward filtering computations over times t = 1, . . . , T, backward
sampling generates a posterior draw for the full sequence of states and variances from
the joint posterior p(φ1:T , v1:T |DT ). This operates in in reverse time, using the general
theory of DLMs that generate this computationally efficient algorithm for what can be
a very high-dimensional full set of states when T is large. Backward sampling proceeds
as follows.

• Initialize at t = T : draw v−1
T from Ga(nT /2, dT /2) followed by φT |vT from

N(mT ,CT vT /sT ).

• Set n∗T = nT , d
∗
T = dT , m

∗
t = mT and C∗T = CT . Then, for t = T − 1, T − 2, . . . , 0

in sequence, sample:

– v−1
t ∼ Ga(n∗t /2, d

∗
t /2) where d∗t = n∗t s

∗
t with n∗t = (1 − δv)nt + δvn

∗
t+1 and

1/s∗t = (1− δv)/st + δv/s
∗
t+1;

– φt|vt ∼ N(m∗t ,C
∗
t vt/s

∗
t ) where m∗t = (1 − δW )mt + δWm

∗
t+1 and C∗t =

(1− δW )Ct/st + δ2WC
∗
t+1/s

∗
t+1

3 MCMC algorithm in DLM-GASP

At each Gibbs iteration h, the overall MCMC steps through the sequence of simulations
as follows:

(a) Sample β(h)
1:d from p(β1:d | y1:T ,φ

(h−1)
1:T , v(h−1)) by the Metropolis-Hastings algo-

rithm detailed below.

(b) Sample (φ1:T , v1:T | y1:T , β
(h)
1:d ) using the DLM forward filtering, backward sam-

pling algorithm.
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The Metropolis-Hastings algorithm to draw β
(h)
1:d works as follows. We first set ηi =

log(βi) and η = (η1, . . . , ηd) and propose a new value for ηi as

η∗i = η
(h−1)
i + N(0, 0.12) ,

then setting β∗i = η∗i . The choice of the proposal distribution is customized to each ap-
plication and requires experimentation with the step-width of the random walk proposal
here, but the overall strategy is broadly relevant.

Denoting the correlation matrix at the proposal values by Σ∗, calculate the likelihood
function

|Σ∗|−(T−p)/2 exp(−Q∗/2) where Q∗ =
T∑

t=p+1

e′tΣ
−1
∗ et/vt.

With Jacobian

J(β1:d) =
d∏
i=1

dηi
dβi

=
d∏
i=1

β−1
i ,

this gives the Metropolis-Hastings acceptance ratio

r = max

{
L(β∗1:d)π(β∗1:d)J(βh−1

1:d )

L(β(h−1)
1:d )π(β(h−1))J(β∗1:d)

, 1

}
.

Set β(h)
1:d = β∗1:d with probability r; otherwise, set β(h)

1:d = β
(h−1)
1:d . In our example, the

proposal distribution for β1:d leads to an acceptance rate of about 10%.
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Figure 1: Pairwise scatter plots of normalized values of the d = 8
input parameters in the 60 runs of the logSPM model.

Figure 2: Outputs of the logSPM model at the n = 60 selected
inputs in the training data set (left), and after log trasnformation
and shifting to zero-mean (right).
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Figure 3: Histograms of posterior samples for the range parame-
ters β1:8.
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Figure 4: Pointwise posterior medians and 95% credible interval
for φt1 and φt2 defining estimated trajectories over t = 1, . . . , T.

Figure 5: Pointwise posterior medians and 95% credible interval
for vt defining estimated trajectories over t = 1, . . . , T.

Figure 6: Validation data output time series (left) and point-
wise posterior predictive medians from the DLM-GASP emulator
(right).
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Figure 7: Simulated predictions of outputs at selected validation
sample inputs z1, z20, z40 and z60. Light blue curves are the
true validation output series and the darker blue curves are 5
randomly selected draws from the posterior predictive distribution
of the DLM-GASP emulator. The black curves are the posterior
medians.
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