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Spatial Mixture Modelling for Unobserved Point
Processes: Examples in Immunofluorescence

Histology

Chunlin Ji∗, Daniel Merl†, Thomas B. Kepler‡ and Mike West§

Abstract. We discuss Bayesian modelling and computational methods in analysis
of indirectly observed spatial point processes. The context involves noisy mea-
surements on an underlying point process that provide indirect and noisy data
on locations of point outcomes. We are interested in problems in which the spa-
tial intensity function may be highly heterogenous, and so is modelled via flexible
nonparametric Bayesian mixture models. Analysis aims to estimate the under-
lying intensity function and the abundance of realized but unobserved points.
Our motivating applications involve immunological studies of multiple fluorescent
intensity images in sections of lymphatic tissue where the point processes repre-
sent geographical configurations of cells. We are interested in estimating intensity
functions and cell abundance for each of a series of such data sets to facilitate com-
parisons of outcomes at different times and with respect to differing experimental
conditions. The analysis is heavily computational, utilizing recently introduced
MCMC approaches for spatial point process mixtures and extending them to the
broader new context here of unobserved outcomes. Further, our example applica-
tions are problems in which the individual objects of interest are not simply points,
but rather small groups of pixels; this implies a need to work at an aggregate pixel
region level and we develop the resulting novel methodology for this. Two ex-
amples with with immunofluorescence histology data demonstrate the models and
computational methodology.

Keywords: Bayesian computation, blocked Gibbs sampler, Dirichlet process mix-
ture model, inhomogeneous Poisson process, unobserved point process

1 Introduction

Parametric and nonparametric approaches to spatial point process modelling have been
well-studied in recent years (Diggle 2003; Moller and Waagepetersen 2004), with in-
creased use of mixtures and convolutional methods for modelling heterogeneity in in-
tensity functions (Wolpert and Ickstadt 1998). Recently Kottas and Sanso (2007) pro-
posed the use of the Dirichlet process as a random mixing distribution for mixture-based
methods. The full computational machinery of nonparametric Bayesian models has thus
been brought to bear on this class of inference problems for point processes. Tradition-
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ally, all such methods assume perfect knowledge of the outcome of the point process.
However, in situations such as that described below, the outcome of the spatial point
process cannot be observed directly, but is measured by some imperfect proxy. In such
situations, inference on the underlying intensity function will depend on accounting for
the uncertainty surrounding the outcome of the point process, the latter including the
number of realized points as well as their spatial locations. Our work here defines mod-
els that address these issues and develops computational Bayesian methods for model
fitting and analysis.

Our motivating applications are immunological studies of multiple fluorescent in-
tensity images of lymphatic tissue. Observed measurements are fluorescent intensities
generated from tagged cell-surface proteins; this generates indirect, noisy observation
of cell locations for as many as tens of thousands of cells in the context of background
noise. The spatial configurations of cells across the 2 or 3-d tissue region is typically
hugely heterogenous, so requiring flexible models for underlying intensities. In any one
experiment (of many) a series of images may reflect cellular distributions at different
times and/or as a response to different interventions and treatments. For each, we aim
to characterize the underlying intensity functions and overall level of abundance of cell
types in order to facilitate comparisons across multiple images.

Section 2 describes our nonparametric mixture models of intensity functions, mea-
surement error modelling for a single unobserved point process, and the need to deal
with problems in which individual, spatially distributed objects of interest are not sim-
ply points, but rather small groups of pixels. Section 3 describes MCMC methods and
extensions to our framework of unobserved, pixel region level outcomes. Section 4 de-
velops examples with image data from the immunological context, and we conclude with
summary comments in Section 5.

2 Latent Spatial Mixture Models

Our general statistical framework jointly models the intensity function of a spatially
inhomogeneous Poisson process and the uncertain outcome of the point process. Mod-
elling of the intensity function is similar to that of Kottas and Sanso (2007), but here
relying on a Dirichlet process mixture model of multivariate normal densities (rather
than beta densities). Incidences of the point process are modelled via a modification of
the basic model to represent data on a pixelated grid across image space, and this cou-
ples with a generalized linear model for linking noisy measurements (e.g. fluorescence
levels, available at the gridded level) to incidences of the point process (e.g. presence of
cells).

2.1 Basic Spatial Point Process Model

A spatial point process over a finite region S ⊂ Rd (here, d = 2) generates realizations
x1:N = {x1, . . . , xN} of N ≥ 0 points xi ∈ S. We regard x1:N as the outcome of an
inhomogenous Poisson process with intensity function λ(x) ≥ 0 (x ∈ S), integrable over
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S. That is: (a) for any region s ⊆ S, the number of points n(s) = #{i = 1 : N | xi ∈ s}
is Poisson with mean Λ(s) =

∫
x∈s

λ(x)dx; and (b) conditional on λ(·), n(s) ⊥⊥ n(r) for
any disjoint subsets s, r ⊂ S (Daley and Vere-Jones 2003; Diggle 2003).

Bayesian analysis of observed data x1:N arising from a spatial inhomogeneous Poisson
process requires first specifying a prior probability model for the intensity function λ(·),
and then conducting posterior inference on λ(·) in light of the realized outcomes x1:N . As
in Kottas and Sanso (2007), define the overall intensity scale parameter γ =

∫
x∈S

λ(x)dx
and the probability density (over x ∈ S) f(x) = λ(x)/γ. Then the likelihood function
resulting from observed data x1:N can be expressed as

p(x1:N |γ, f) ∝ exp(−γ)γN
N∏

i=1

f(xi) (1)

as a function of (γ, f). The degree to which underlying spatial heterogeneity can be
represented in λ(·) is therefore linked to the modelling assumptions surrounding f(·).

2.2 Dirichlet Process Mixture Models

To provide flexibility in characterizing spatial heterogeneity in the intensity function
we employ the Dirichlet process mixture framework in which the normalized intensity
function f(x) is the density of a random mixture of d−dimensional normal distributions.
This follows Kottas and Sanso (2007) who develop models using mixtures of betas rather
than normals. Since we are working on problems with very heterogeneous intensity
functions in 2 and 3-d, and with sample sizes N that (though unknown) are large, we
very much need the flexibility offered by mixtures of multivariate normals coupled with
their relative analytic and computational benefits; we simply truncate and ignore the
form of fitted and simulated models outside the finite region S.

A key observation of Kottas and Sanso (2007) was to note that the likelihood function
of equation (1) depends on f(·) only through the term

∏n
i=1 f(xi) and is precisely the

likelihood that would arise from simple random sampling from f(·) generating data x1:N .
Thus, for computational purposes, we can then use the standard methods of posterior
computation based on any assumed model for f(·). Use of Dirichlet process mixtures is
one example.

In brief, f(·) is taken as the density of a distribution arising from the following hier-
archical model for independent, d−dimensional variates xi, each with its own parameter
θi = (µi, Σi), a mean vector and variance matrix, respectively. Then the model for f(·)
is

(xi|θi) ∼ N(xi|µi,Σi), (θi|G) ∼ G, (G|α,G0) ∼ DP (α,G0) (2)

using standard notation. Here G(·) is an uncertain distribution function, G0(·) is the
prior mean of G(·) and α > 0 the total mass, or precision of the DP. For conditional
conjugacy, it is convenient and common to take the prior as normal-inverse Wishart.
The implied distribution corresponding to the density f(x) is a discrete mixture of a
countably infinite number of normals. The model notation and structural details are
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standard and used widely in applied Bayesian inference; key foundational modelling
and computational aspects are available in, for example, MacEachern (1994), West
et al. (1994), Escobar and West (1995, 1998), MacEachern (1998) and MacEachern and
Mueller (1998) and in a broader context in the more recent review paper of Mueller and
Quintana (2004). Details that are key to computation are noted below in Section 3.2
and the Appendix.

2.3 Discrete Pixel Region Model

In the immunological application as in other studies in spatial modelling, the data arises
in terms of images of the region S within which the individual objects of interest are
not simply points, but rather small groups of pixels. This, coupled with the fact that
the objects (here, cells) are in any case not directly observed, implies a need to work
at an aggregate pixel region level. This can be quite general but, for purposes here, we
focus on rectangular pixel regions; in the immunological imaging study, for example, we
work at the level of 3× 3 pixel regions (in 2−d) and each region is either occupied by a
cell, or not.

Generally, in d−dimensions suppose the overall imaged region S = [−s, s]d, for some
s > 0, and that the level of resolution is a pixels in each dimension. S is then a
rectangular grid of ad pixel regions; label these by interior points xr

i , (i = 1 : ad), and
set X = {xr

i : i = 1 : ad}. Assuming a to be large and with ∆ = (2s/a)d, we have
approximate intensity ∆γf(xr

i ) for pixel region i and
∑

x∈X ∆f(x) ≈ ∫
x∈S

f(x)dx = 1.

Now, for any realization of the point process, each pixel region will be either occupied
by an object or not. Define binary variates y(x) = 1/0 to represent presence/absence of
an object (e.g., a cell) in the pixel region with index point x ∈ X . Then observing the
occurrence of objects at a subset of N regions is equivalent to observing binary data
y(x) for all x ∈ X with y(x) = 1 at just the N regions with objects. Suppose the N
regions are indexed by x1:N ∈ X , and write Y for the full set of ad binaries. It then
follows that the likelihood of equation (1) is equivalent to

p(Y |γ, f) ∝
∏

x∈X
{∆γf(x)}y(x) exp{−γ∆f(x)} (3)

and

p(Y |γ, f) ∝ exp(−γ)∆NγN
N∏

i=1

f(xi). (4)

This provides the ability to work at the discretized, pixel region level appropriately, and
simply modifies the likelihood with the additional ∆ term. Most importantly also, this
discrete pixel region version also enables easy development for contexts in which the
locations x1:N are not observed directly but are measured with noise, since equation (3)
delivers a likelihood function for uncertain locations and number of objects x1:N along
with (γ, f).
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2.4 Unobserved Spatial Inhomogeneous Poisson Process

Consider now contexts in which the locations xi, and their number N, are uncertain.
The example of fluorescent intensity images of lymphatic tissue is a key motivation and
raises broader modelling questions. There, the specific locations of biological cells are
not observed, but reflected in terms of fluorescence generated from labelled cell surface
proteins. Under the discrete pixel region formulation, we can incorporate uncertainty
about x1:N using equation (3), as follows.

Suppose we have observations z(x) at each location x ∈ X generated by the measure-
ment process. That is, the measurements represent single pixel region locations with no
overlap or interaction. It is practicable to assume that the measurement error distribu-
tion depends on x only through presence or absence of objects, i.e., on the y(x) binary
indicators, and will usually involve uncertain parameters here denoted by δ. That is, a
measurement error model is defined by two density functions p(z|x, δ) = p(z|y(x), δ) for
y(x) = 1/0, where p(z|y = 0, δ) represents background noise in the absence of an object
at a specific location, and p(z|y = 1, δ) represents noise in the presence of a signal.

We can now combine p(Y |γ, f) of equation (3) as the prior for all y(x) with the
implied likelihood components p(z(x)|y(x), δ), based on recorded data Z = {z(x) : x ∈
X}. In terms of posterior odds on y(x) = 1 versus y(x) = 0, this yields conditionally
independent posteriors with

Odds(y(x) = 1|Z, γ, f) = r(z(x))γ∆f(x) (5)

where r(z(x)) = p(z(x)|y(x) = 1, δ)/p(z(x)|y(x) = 0, δ) for all x ∈ X .

In the immunological imaging study, appropriate noise models are truncated normals
and the posterior odds ratios are trivially evaluated. This is important as we can then
embed imputation of Y in the overall MCMC computations.

3 Posterior Inference And Sampling Strategies

The overall posterior inference goals are to explore and summarize aspects of the implied
joint posterior for all uncertain quantities based on a complete model specification that
now includes independent priors on γ, α and any of the hyperparameters δ we may wish
to treat as uncertain. In summary, this is the posterior p(Y, f, γ, α, δ | Z).

3.1 Overall MCMC Framework

The MCMC computational algorithm visits the following components in turn. Each of
the imputation steps here draws new variates from the conditional distribution given all
other conditioning quantities. In each, only those conditioning quantities that matter
are included in the notation.
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Sampling the normalized intensity function f(x), its parameters and α

Each MCMC iterate generates a realized density that is a mixture of a finite number
of d−dimensional normals, f(x) ≡ f(x|Θ) =

∑k
j=1 wjN(x|µ∗j , Σ∗j ), with parameters

Θ = {w1:k, µ∗1:k,Σ∗1:k} changing at each MCMC step, being generated via a two-step
process discussed in Section 3.2 and the Appendix below. This step also resamples the
Dirichlet precision α. Given Θ, the density f(·|Θ) can be evaluated at the finite set of
points x ∈ X for further use.

At each iterate, the Θ parameters are drawn from an implicit conditional p(Θ|N, x1:N )
where the number of imaged objects, N, and their location indices x1:N , are set at cur-
rent values. As the MCMC progresses these values are resampled as the analysis explores
the joint posterior that now also includes uncertainty about (N,x1:N ).

Sampling spatial object location indicators Y

Equation (5) leads to resampling of new values of Y as independent binaries y(x) at
each x ∈ X , based on implied probabilities Pr(y(x) = 1|z(x), γ, f, δ). This generates
a complete set of binaries from which those values y(x) = 1 identify the new sample
size N and pixel region locations x1:N . Notice that one by-product is samples from
the posterior for N, i.e., the ability to make inferences about the uncertain number of
underlying objects as well as their locations. This step explicitly requires the evaluation
f(x) ≡ f(x|Θ), the mixture of normals based on the most recently sampled Θ.

Sampling the overall scale of intensity γ

The form of equation (4) makes it clear that a gamma prior is conjugate to the condi-
tional likelihood, leading to a gamma distribution p(γ|N).

Sampling hyperparameters δ of the measurement error model

Under a prior p(δ), these parameters may be generated using some form of Gibbs or
Metropolis-Hastings component strategy based on the implied conditional

p(δ|Z, Y ) ∝ p(δ)
∏

x∈X
p(z(x)|y(x), δ).

For example, normal measurement errors would involve normal mean and variance pa-
rameters in δ, one pair for each of the signal and noise error models; in such a case,
conditionally conjugate priors would aid in this computational step. In our immunolog-
ical studies appropriate error models are truncated normals, which introduces a need
for Metropolis-Hastings for sampling δ as described in 4.2 and the examples.
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3.2 Simulation in DP Mixtures

Under the DP model of equation (2), G is discrete. This results in any realized set of
N parameters θ1:N = (µ1:N , Σ1:N ) being configured into some k ≤ N distinct values
(µ∗1:k,Σ∗1:k). The DP generates configuration indicators c1:N such that ci = j indicates
(µi,Σi) = (µ∗j , Σ

∗
j ). The original MCMC approaches to generating posterior samples

in DP mixtures (MacEachern 1994; West et al. 1994; Escobar and West 1995, 1998;
MacEachern 1998; MacEachern and Mueller 1998) utilize this theory to generate sam-
ples from the full joint posterior of k, (µ∗1:k,Σ∗1:k) and c1:N . Most effective among these
approaches are the collapsed or configuration samplers for DP mixture models origi-
nating from MacEachern (1994). More recent approaches are based on the innovative
strategy using the blocked Gibbs sampler (Ishwaran and James 2001) that explicitly in-
cludes simulation from approximations to the conditional posteriors for the underlying
mixing distribution G(·) itself.

In many problems with small or moderate sample sizes N , and when f(·) is well-
behaved to the extent that it may be well-approximated by a small mixture of normals,
there is little to choose between the configuration and blocked samplers in terms of
either computational or statistical efficiencies. However, as N increases, and also with
densities f(·) of greater complexity that therefore require larger numbers k of mixture
components for adequate representation, the blocked sampler dominates. Configuration
sampling iteratively resamples each configuration indicator conditional on the rest; this
one-at-a-time update degrades computational efficiency as N increase, and difficulties
in moving in configuration space induced by the tight conditioning degrade mixing of
the MCMC, and hence statistical efficiency. In contrast, the blocked sampling strat-
egy breaks this configuration conditioning at each iterate, resampling the full set of
configuration indicators jointly.

In our immunological applications, N is in the thousands or tens of thousands, and
intensity surfaces can be very heterogeneous, so the blocked sampling strategy is really
demanded for efficiency reasons. In fact, the approach is almost mandated in the context
of measurement error; as we have seen, values of the normalized intensity f(x) itself
are key components of the overall analysis, arising in the conditional posteriors for the
latent spatial object location indicators Y in equation (5). To evaluate values of the
density f(·) requires inference on the underlying mixing distribution G(·) itself, and
this is provided by the blocked sampling strategy. Kottas and Sanso (2007) use this
strategy, pointing out that it is needed to generate posterior inferences on aspects of
f(·) in any case; our new framework with latent spatial process outcomes, large N and
heterogeneous intensity patterns very strongly reinforces this choice.

The block sampler involves three linked steps: sampling of the set of configuration
indicators c1:N , sampling of parameters that define an approximation to the mixing
distribution G(·), and sampling of sets of normal model means and variance matrices.
A key element is the truncated approximation to the so-called stick-breaking represen-
tation of G (Sethuraman 1994) that effectively defines a finite mixture model with a
specified upper bound k on the number of components (Ishwaran and James 2001).
Importantly, then, this approach actually introduces a theoretical approximation to the
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full DP mixture model through this truncation. The practical relevance of the trunca-
tion is limited, however, particularly when dealing with problems with large numbers of
components. Moreover, the resulting truncated version can in any case be viewed as a
directly specified alternative model in its own right, rather than as an approximation to
the DP mixture. The MCMC strategy we use follows that of Kottas and Sanso (2007),
with some changes in detail related to the resampling steps for parameters, and is briefly
outlined in the Appendix here.

4 Immunofluorescence Histology Image Analysis

4.1 Context

The motivating application for this work arises in immunological studies in mice where
multiple images provide data on the spatial configuration of many immune cells in a
specific, localized region of lymphatic or spleen tissues. A single experiment views an
image as the response to stimulus via injection of a vaccine, the overall context being
exploration of responses under candidate vaccine designs. Comparisons involve replicate
images from different mice – possibly at different times and under differing treatments
– with careful matching and registration of the tissue region across mice. Observed
measurements are fluorescent intensities generated from tagged cell-surface proteins that
characterize a specific cell type. The pixel region model adopts a very small, 3×3 region
of pixels as the level of resolution for modelling; this is small enough to be consistent
with each region x being either occupied by a single cell (y(x) = 1) or being unoccupied.
Interest lies in characterizing the spatial intensity functions underlying observed data
in each image, and feeding the statistical summaries and characterizations into visual
and numerical comparisons. For the current paper, we simply explore aspects of the
analyses of two example images, focussing on statistical aspects.

4.2 Measurement Error Models

Based on exploration of past data and experimentation with different measurement
error models, a simple truncated lognormal model for the measurement of the fluores-
cence intensity appears to be adequate. That is, if z = z(y(x)) represents measured
fluorescence at pixel region x, then p(z|y, δ) is defined by

(log(z)|y, δ) ∼ N(my, vy)I(log(z) < h), (y = 0, 1),

where (m0, v0) relates to the background noise and (m1, v1) to the distribution of signal
fluorescence – i.e., the distribution conditional on the pixel region being occupied by a
cell. Then δ = (m0,m1, v0, v1). Here h = log(255), the truncation being inherent to the
digital fluorescent image generation process; log(z) is recorded on a scale of (0, h) with
values greater than h being truncated.

As described in Section 3.1, the overall MCMC can be extended to include a compo-
nent representing uncertainty about δ. Under the truncated normal model for (z|δ), this
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can be done with standard priors, although it raises a need for a Metropolis strategy due
to the truncation effects. We adopt independent normal-inverse gamma priors; for each
of y = 0, 1 independently, (my|vy) ∼ N(my|my, tvy) and v−1

y ∼ Ga(c/2, cvy/2) based
on specified prior estimates my, vy of my, vy, respectively. These values are chosen to
reflect known scales of (log) fluorescence and background. Specified values of the hyper-
parameters t, c are used to define relatively precise priors while allowing for adaptation
to the data in each new image data analysis. In the examples here, m0 = 3.5, m1 = 4.5,
t = 10, v0 = 0.1, v1 = 0.1 and c = 10. We explore aspects of model fit and adequacy in
the following discussion.

Conditional on the current Y and data Z, the (m0, v1) and (m1, v1) are condition-
ally independent. Each of the two conditional posteriors is the product of two terms:
updated inverse-gamma based on the full set of N(log(z)|my, vy) non-truncated terms
in the conditional likelihood functions, and the term involving products of cumulative
normal distribution function values derived from truncation. The first terms provide
suitable Metropolis proposals for the full conditional posteriors, with the contribution
to the conditional likelihoods from the truncation normalization providing the terms in
the acceptance ratio. Due to the fact that only a relatively small fraction of the data
is truncated in these images (almost none, generally, for background levels, and in the
region of up to 15% for signal) with much of the data lying well below the limit, these
constructed proposal distributions are typically close to the target conditional posterior
and the resulting sampler is very effective.

4.3 Image Data B220

Figure 1a is the original image of the intensity of emission from the fluorescent dye
AF350 conjugated to an antibody that binds to B220, a molecule expressed on the sur-
face of B lymphocytes. Lymph nodes were excised and sectioned 24 hours after subcu-
taneous alum injection. Figure 1b shows the corresponding heat map of intensity levels,
which after logging provide the raw numeric data Z; histograms of the fluorescence and
logged values Z are shown in Figure 2. The image indicates typical heterogeneity of
spatial distributions of a very large number of cells. On the resolution analyzed, we
have 180 × 180 pixel regions, each 3 × 3 pixels representing the locations of individual
cells (if present). We take the image region S as [−5, 5]2 so ∆ = 1/324.

We use priors as follows. First α ∼ Ga(1, 1) and γ ∼ Ga(1, 0.001) for the two scalar
model parameters. The base prior G0(µ, Σ) is N(µ|0, t0Σ)IW (Σ|s0, S0) where t0 > 0,
s0 > 0 is the prior degree-of-freedom and E(Σ) = S0/(s0−2) when s0 > 2. Analysis here
adopts t0 = 50, s0 = 2 and S0 = 0.4I, based on the specified scale of the image region
S = [−5, 5]2 and the expectation of needing a large number of widely dispersed and
relatively concentrated normal components to represent a very heterogeneous intensity
surface. Further, the truncation of the mixture model uses k = 250 as the upper bound
on the number of components.
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Figure 1: Data image on cell experiment B220 on day 1; (a) shows an image of the original
data with fluorescent green tag, and (b) shows the scale of the corresponding intensity data.
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Figure 2: Data from B220, day 1: intensities
(upper) and log intensities Z (lower).

Some aspects of the analysis with a
final 5000 MCMC iterations after burn-
in are graphically summarized in the fig-
ures. Additional visual confirmation of
the relevance of the truncated normal
measurement error model is illustrated in
Figure 3, showing normal qqplots of the
Z data partitioned into noise and signal
samples based on the current indicators
Y at one randomly chosen step on the
MCMC analysis. Repeat draws show sim-
ilar forms. Looking at these graphs for a
series of MCMC steps is useful in con-
firming the stability of the apparent ade-
quacy of the truncated normal model, as
reflected in the qqplots across multiple re-
alizations of the signal/noise allocation of

the pixel regions. Evidently, the raw data displayed in the lower frame of Figure 2
shows the signal/noise structure, but without conditioning on signal/noise assignments
it is difficult to develop direct graphical or numerical assessments of the normality as-
sumption; repeat exploration across a series of MCMC samples aids measurably in this
exploratory model assessment exercise.

Additional snapshots of one of the MCMC iterates are graphed as follows. Figure 4
shows an image of one posterior sample of Pr(y(x) = 1|Z) over all x ∈ X , and Figure 5
(upper frame) identifies the corresponding current sampled mixture components overlaid
on the data.
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Figure 3: Based on a single, randomly selected draw from the MCMC in analysis of B220, day
1, the data are partitioned into noise (y = 0) and signal (y = 1) and the two corresponding
samples of log intensities Z are displayed as normal qqplots: (a) noise, and (b) signal. This
provides useful, visual insight into the utility and relevance of the truncated noise measurement
error model and represents a nice dissection of the full data in the histogram of Figure 2.
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Figure 4: Image plot of Pr(y(x) = 1|Z) at one
randomly chosen step of the MCMC in analysis
of B220, day 1.

The supplemental material on the web
site contains a series of these “snap-
shot” figures in a movie, which gives a
nice overview of the uncertainty across
MCMC steps. Some regions are more
stable/less variable than others, and this
comes through best by viewing a series
of samples through the MCMC. Viewing
such figures aids in understanding and il-
lustrating aspects of the model, and com-
parison of such MCMC snapshots with
the real data in Figure 1 is illuminating.
In terms of posterior estimates, averag-
ing over MCMC iterates produces rele-
vant summaries. For example, Figure 5
(lower frame) shows an image of the pos-
terior mean intensity estimate based on
averaging Monte Carlo samples f(x|Θ)

over the MCMC steps. In essence and up to a constant, this also represents the Monte
Carlo posterior mean of the probabilities in Figure 4. Comparisons with Figure 1 begin
to indicate the ability of the model to reflect the complexity of the data configuration,
and with large numbers of heterogeneous mixture components to adapt to very variable
patterns in the underlying spatial intensity.
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Figure 5: Upper frame: Scatter plot of the
current sampled locations of cells Y at one
MCMC step in analysis of B220 on day 1,
overlaid with contours representing the lo-
cation, scale and shape of the correspond-
ing posterior sample of the normal mixture
components underlying the intensity func-
tion. The contours are drawn at one standard
deviation from the means in each of the ma-
jor and minor axes directions. Lower frame:
Image plot of the posterior estimate of the
normalized intensity function f(x) in analy-
sis of B220 on day 1, based on averages of the
sampled surfaces over MCMC steps.

Monitoring of various parameters aids
in assessment of convergence, again at the
usual informal level. Rapid stabilization of
trajectories of key single parameters, includ-
ing α, γ, N and δ among others, is typically
observed, and that is exemplified in Figures
6, 7 and 8. Good mixing is evident in these
and other marginal trajectory plots.

From the applied perspective, the sam-
ples for N provide summary approximate
posterior inferences on the underlying num-
bers of occupied pixel regions, i.e. our proxy
for the number of cells, as one characteristic
of this data set. Figure 8b indicates that N
very likely lies in the range 8, 500 − 8, 700
for B220 on day 1, corresponding to 26-28%
coverage of the image.

For a brief visual comparison, a sec-
ond image of data illustrates the ability of
the model analysis to reflect a diversity of
patterns of complexity in image intensities.
This comes from data captured from tissue
in the same experiment, using the same dye-
antibody combination, but now after an ad-
ditional 10 days. Comparisons between se-
lected posterior summaries between day 1
and day 11 clearly indicate that the distri-
bution of the fluorescently labelled cells has
changed significantly between day 1 and day
11. For example, the number of the fluores-
cent labelled cells has apparently also re-
duced significantly in the later stages; Fig-
ure 9 suggests N likely lies in the range
8, 700 − 9, 200 for B220 on day 11, so that
the coverage of the overall image region is
slightly increased relative to day 1. Further,
there are multiple regions with higher inten-
sities on day 1 that dissipate later on, and
the overall intensity becomes fragmented;
see the images for day 11 in Figure 10 in
comparison to those at day 1.
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Figure 6: MCMC outputs in analysis of B220, day 1: Trajectories of (a) the Dirichlet process
precision parameter α, and (b) the number of realized, non-empty components in the mixture
model.
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Figure 7: Trajectories of MCMC samples of measurement error model parameters in analysis
of day 1 data.
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Figure 8: Experiment B220, day 1: Plots to show the number of “cells” in the image. (a)
Trajectory of sampled N values in the MCMC, (b) the resulting histogram.
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Figure 9: Experiment B220, day 11: Plots to show the number of “cells” in the image. (a)
Trajectory of sampled N values in the MCMC, (b) the resulting histogram.
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5 Additional Comments

 

 

Figure 10: B220 on day 11. Upper frame: Im-
age of the original data with fluorescent green
tag. Lower frame: Image plot of the posterior
estimate of the normalized intensity function.

Our applied studies involve large (though
unknown) numbers of point occurrences
and intensity mixture models with rel-
atively large numbers of mixture model
components to represent potentially com-
plex patterns of variation over the spatial
region. Coupled with the need for practi-
cally relevant measurement error models
to link between observed, noisy data and
the underlying latent spatial process of bi-
ological relevance, this represents a chal-
lenging computational as well as mod-
elling problem context. Our examples
shown here, and experiences with other
data sets, indicate the relevance and util-
ity of the model developed. The use
of flexible, nonparametric Bayesian mix-
ture models of intensity functions, pio-
neered by Kottas and Sanso (2007) and
extended here, is central and key in en-
gendering adaptability to wildly hetero-
geneous intensity patterns coupled with
robustness and in-built parsimony. The
use of effective MCMC samplers is key,
and the blocked sampler for Dirichlet pro-
cess mixture models is attractive from
that viewpoint, but also really necessary
as our overlaid measurement error struc-
ture demands that we have direct, al-
beit approximate evaluation of the under-
lying density-intensity function with the
MCMC that generates from conditional posteriors of the underlying latent spatial pro-
cess. In many spatial point process modelling contexts, lack of complete, direct observa-
tion on point outcomes is common, and our new methodology provides examples of how
the overall analysis framework can be extended to allow for that. Our immunological
context generates data sets for which truncated normal models of fluorescence, under
both signal and noise at a point location, are adequate, and our experience suggests
that we can robustly include learning on measurement error models within the overall
analysis. Other contexts may, of course, require alternative measurement error model
choices, but the general strategy will apply.

Our use of mixtures of normals for the spatial intensity builds on the well-known
framework of normal mixtures and their ability to represent even very highly irregu-
lar surfaces. Kottas and Sanso (2007) used mixtures of bivariate betas. The choice
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of parametric form of the mixands, or “kernels”, is to some extent arbitrary, and the
use of mixtures of betas is mathematically elegant when the spatial region is a speci-
fied rectangle. Normal mixtures do offer advantages, however. In modelling terms, the
restricted range of correlations and shapes that bivariate betas are able to represent
limits their flexibility. To represent an irregular intensity as accurately as a mixture of
normals then requires more beta mixture components. We have explored this in studies
with simulated data and confirmed a need for 4 or 5 times the number of beta than
normal components in some examples. This imposes greater computational burden and
decreased flexibility. Looking ahead to 3-dimensional, and possibly higher-dimensional
extensions, normal mixtures clearly generalize trivially, in both modelling and compu-
tational implementation senses. Further, due to the lack of conditional conjugacy for
parameters of the bivariate betas within clusters, the MCMC analysis is complicated.
Kottas and Sanso (2007) use a traditional Dirichlet process mixture Gibbs sampler with
Metropolis-Hasting (MH) steps for sets of beta parameters. Beyond the difficulties in
specifying efficient MH proposals, and subsequent inefficiencies, the standard, Polya
urn-based Gibbs sampler for these mixtures is inherently slow mixing and this is in-
creasingly problematic with larger sample sizes and numbers of mixture components,
such as in our examples. These issues make the MCMC sampler for beta mixtures
very slow compared to approaches based on block sampling and that can analytically
integrate over parameters, exploiting conditional conjugacy, as in the normal mixture
models. In head-to-head comparisons with the data sets here, we find computations in
the normal model to be roughly 20 times faster per iterate than using the beta model
algorithm.

Current and potential future areas for consideration include refined computational
strategies to increase computational efficiency and enable at least partial parallel im-
plementation to take advantage of both multi-threading and cluster computation. New
statistical directions might include consideration of local spatial dependencies in the
0/1 outcomes process, and also potential dependencies at the observational level due
to fluorescence scatter across neighboring pixel regions. Potential refinements of prior
specifications over the normal variance matrix parameters may also be of interest; for
example, mixtures of priors favoring very different scales of variances in the Σj may
allow us to more adequately represent very heterogenous images. In the applied context
of immunofluorescent images arising in studies of vaccine design, current case studies
are focused in part on the context-specific questions of making comparisons between
models fitted to two or more images. Further studies are currently exploring extensions
of the current approach to deal with problems in which several cells of distinct biological
types are marked by fluorescent tags with distinct emission spectra; interest then lies
in simultaneously estimating two or more underlying spatial intensity functions for the
separate cell types, with a need for dealing with the uncertainties about cell type at any
one pixel region location due to frequency interference in recorded intensities.
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Supplementary material and code

The web page http://ftp.stat.duke.edu/WorkingPapers/08-25.html provides freely
available Matlab code that implements the method described here. This includes sup-
port functions and the examples from this paper as templates for other more general
models. The site also provides additional information on aspects of posterior uncertainty
and predictive fit in the day-1 example. These include contour and image plots of suc-
cessive samples of the DP mixture-based intensity surface through a series of MCMC
iterations, and associated plots of the changes in the implied MCMC-based posterior
mean estimate of the intensity function as it is updated through a series of MCMC
iterations. Additional supplementary plots show pixel probabilities representing pres-
ence/absence of cell-based fluorescence as they vary over a series of MCMC iterations,
accompanied by sampled spatial point patterns – i.e., locations of cells – corresponding
to the above probabilities as the MCMC progresses.

In terms of computational benchmarks, for each one of the examples presented here
each iterate of the MCMC algorithm presented takes roughly 2-3 seconds when running
on a 2.80 GHz Intel Pentium 4 laptop with 1024 MB memory. We are investigating
multicore and multiscale implementations that will speed up analyses substantially.
The current MCMC is of the order of 20 times faster than alternatives using more
traditional Polya urn configuration MCMC samplers.
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Appendix

The block sampler MCMC for the Dirichlet mixture component of the analysis is as
follows. This is based on Kottas and Sanso (2007), with some changes in sampling
the normal mean and variance matrix parameters under the DP prior. The truncated
DP model requires a chosen upper bound k on the number of mixture components.
The sampler then successively resamples values of the parameters θ∗1:k = (µ∗1:k, Σ∗1:k)
of k distinct normals, together with the mixture weights w1:k. Choosing k large, the
posterior over all model parameters puts positive probability on zero values among the
w1:k so allowing for reduction of the number of effective components, and the MCMC
explores this along with relevant values of the moments of normal component. Each
MCMC iterate involves the following steps:

• Resample configuration indicators c1:N from 1 : k with probabilities

Pr(ci = j) ∝ wjN(xi|µ∗j , Σ∗j ), (j = 1 : k),
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independently over i = 1 : N. This reconfigures the N points independently among
the k components, and delivers counts nj = #{ci = j, i = 1 : N} for j = 1 : k.
Note that some components may be empty, with nj = 0 for some j.

• For j ∈ {1, ..., k}, independently sample new parameters θ∗j from p(θ∗j |x1:N , c1:N ).
The model has G0(µ, Σ) = N(µ|0, t0Σ)IW (Σ|s0, S0) where t0 > 0, s0 > 0 is
the prior degree-of-freedom, and E(Σ) = S0/(s0 − 2) when s0 > 2. This leads
to conditional normal-inverse Wishart distributions for each of the k parameters.
This straightforward step samples a new set of k parameters, including new draws
from G0(·) for cases with nj = 0.

• For each component j = 1 : (k−1), compute αj = 1+nj and βj = α+
∑k

r=j+1 nr

and then sample independent beta variates vj ∼ Be(αj , βj); set vk = 1. Compute
new values of the component probabilities via π1 = v1 and πj = vj

∏j−1
r=1(1− vr)

for j = 2 : k.

• Resample the Dirichlet precision α from its conditional posterior p(α|N, Θ) (Ish-
waran and James 2001) for which a gamma prior on α is conjugate.

After each sweep through these steps we have available a sample from the conditional
posterior for Θ = (w1:k, µ∗1:k,Σ∗1:k) and can therefore evaluate the density function

f(x) ≡ f(x|Θ) =
k∑

j=1

wjN(x|µ∗j , Σ∗j )

at any chosen set of x values.
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