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New Axioms for Rigorous Bayesian Probability

Maurice J. Dupré∗, and Frank J. Tipler†

Abstract. By basing Bayesian probability theory on five axioms, we can give a
trivial proof of Cox’s Theorem on the product rule and sum rule for conditional
plausibility without assuming continuity or differentiablity of plausibility. Instead,
we extend the notion of plausibility to apply to unknowns, giving them plausi-
ble values. Thus, we combine the best aspects of two approaches to Bayesian
probability theory, namely the Cox-Jaynes theory and the de Finetti theory.
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1 Introduction

The problem of developing the foundations of Laplacian or Bayesian probability has led
to many different approaches, which are mainly variations on two. The first, which is our
main concern is due to R. T. Cox (1961). The second is due to Bruno de Finetti (1974),
de Finetti (1975) and a concise general treatment is in Regazzini (1985). We find that by
combining aspects of both, we can substantially weaken the assumptions and arrive at
a proof of the problematic Cox theorem which is very simple, in fact trivial, as it should
be. This triviality is of the utmost importance. The foundational axioms assumed
by de Finetti for conditional expectation (his conditional prevision) require a positive
normalized linear functional on a partially ordered commutative algebra (with identity
element and over the reals) of objects more general than random variables which he calls
“random quantities” and which we will simply call “unknowns” or “unknown numerical
quantities”. Even though it is not explicitly pointed out axiomatically, de Finetti, in his
discussion in the first two chapters of his book, assumes that the ordering of the lattice
of idempotents is inherited from that of the algebra. To define his conditional prevision,
he requires a coherence condition (see also Regazzini (1985)) equivalent to a quadratic
minimization property assumed to be satisfied by the choice of previsions. We merely
assume the existence of some form of rules and demonstrate that if the assignment of
plausible value (what de Finetti calls “prevision”) is required to be logically consistent,
then the actual rules themselves are uniquely determined. In particular, as a conse-
quence, the rules of conditional expectation in Bayesian probability theory are uniquely
determined by the requirement of logical consistency. Thus we find a trivial proof of the
Cox Theorem, which properly understood, is a uniqueness theorem, and we show that
the theory of de Finetti is a consequence. That is, de Finetti assumes his coherence
condition, meaning existence of a positive linear functional which also satisfies a cer-
tain quadratic minimization criteria, and he uses the quadratic minimization criteria to
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prove the multiplication rule of conditional expectation, provided that the commutative
algebra contains the indicators of a Boolean algebra of statements. But this quadratic
minimization property is essentially a consequence of the rules of conditional expecta-
tion which we prove are uniquely determined by weaker and more natural assumptions.
Of course, any positive linear functional on an algebra of continuous functions can be
represented as an integral against a measure Rudin (1966), and consequently it has
long been known that the Kolmogorov approach can be developed from the basic rules
of expectation (see for instance Whittle (2000) where the product rule of conditional
probability is assumed as an axiom). But the de Finetti approach is more general in
that the unknowns or random quantities are no longer assumed to be functions on some
sample space. In fact there need not be any sample space. Thus, we shall generalize
the Cox approach to apply to the de Finetti unknowns (Cox restricted attention to
a Boolean algebra of statements — still no sample space) and more generally to any
partially ordered commutative algebra (over the reals and with identity) of objects we
might want to call unknowns and which contains the Boolean algebra of indicators of
the statements in which we are interested. We will make all our assumptions as clearly
stated axioms which are easily motivated.

Bayesian probability theory, as expressed by Cox (1961) and followed by Jaynes
(2003) in his classic book, is not defined by precise axioms, but by three “desiderata”:
(I) representations of plausibility are to be given by real numbers; (II) plausibilities
are to be in qualitative agreement with common sense; and (III) the plausibilities are
to be “consistent”, in the sense that anyone with the same information would assign
the same real numbers to the plausibilities. It is known that Cox’s 1961 development
(mainly copied by Jaynes (2003)) is non-rigorous, and in fact a counterexample has
been found by Halpern (1999a). Attempts to circumvent this counterexample have led
to very complicated approaches (Halpern (1999b), Hardy (2002), who used the work
of Koopman (1940), Kraft et al. (1959), Regazzini (1985), Scott (1964), and Tribus
(1969)). The assumption of differentiability or even continuity is questionable since the
Boolean algebra of statements may only be finite. We shall see that our axioms are
mathematically simpler and more intuitive than Cox’s desiderata. In particular, we
shall not need to make any continuity or differentiability assumptions on any assumed
function. Our results are special cases of more general trivial facts about retraction
mappings which can be applied to give plausible value to more general objects such as
unknown vectors or operators and as well there are other possible choices for the simple
axioms (Dupre and Tipler (2006)).

2 The Five Axioms for Bayesian Probability Theory

If T is an algebra (over R and with identity), then we denote by E(T ) the set of
idempotents of T. We generally assume all our algebras are commutative and partially
ordered, and we will assume that statements of interest form a Boolean subalgebra of
E(T ). The set E(T ) of idempotents in the commutative algebra T naturally forms a
Boolean algebra under a natural order (if x, y ∈ T, are idempotent where T is any
algebra over R, then we say x ≤ y if and only if yx = x). It is also obvious that if
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e, c ∈ E(T ), we have

e ∪ c = e + c− ec. (1)

As far as the Boolean algebra E itself is concerned, if we start with it alone, we can
note that in general, by Stone’s Theorem (discussed at length in Halmos (1963)), we
can embed E as a Boolean algebra of idempotents in the algebra CE of continuous real
valued functions on the Stone space of E.

To proceed formally, we list our axioms.

AXIOM 1. STRUCTURE OF UNKNOWN REAL NUMBERS AND PLAU-
SIBLE VALUE. We assume a set T of unknown numbers is a partially ordered com-
mutative algebra over R with identity, 1.

We assume in addition a given sub-Boolean algebra E of E(T ) with 0, 1 ∈ E and
denote by E0 the set of non-zero members of E. We assume that the partial ordering
in E(T ) as a Boolean algebra coincides with the ordering that E(T ) inherits from the
algebra T. Finally, we assume a function PV : T × E0 → R, called PLAUSIBLE
VALUE, whose value on the pair (x, e) is denoted PV (x|e).

AXIOM 2. STRONG RESCALING FOR PLAUSIBLE VALUE. If a, b belong
to R, if x belongs to T, and if e belongs to E0, then

PV (ax + b|e) = aPV (x|e) + b. (2)

AXIOM 3. ORDER CONSISTENCY FOR PLAUSIBLE VALUE. If x, y ∈ T
and if e ∈ E0, implies that x ≤ y, then PV (x|e) ≤ PV (y|e).

Notice that if e ∈ E(T ), then 0 ≤ e ≤ 1, in T, as it is true in the lattice ordering of
E(T ).

AXIOM 4. THE COX AXIOM FOR PLAUSIBLE VALUE: If e, c are fixed
in E, with ec ∈ E0, if x1, x2 are in T, if PV (x1|ec) = PV (x2|ec), then PV (x1e|c) =
PV (x2e|c). That is, we assume that as a function of x, the plausible value PV (xe|c)
depends only on PV (x|ec).

AXIOM 5. RESTRICTED ADDITIVITY OF PLAUSIBLE VALUE. For each
fixed y ∈ T and e ∈ E0, the plausible value PV (x + y|e) as a function of x ∈ T depends
only on PV (x|e), which is to say that if x1, x2 ∈ T and PV (x1|e) = PV (x2|e), then
PV (x1 + y|e) = PV (x2 + y|e).
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3 Motivations for the Axioms

We define the plausibility PL(A|B) = PV (A|B) for A ∈ E, B ∈ E0 by naturally
regarding E ⊂ E(T ), where statements are identified with their indicator unknowns.

Since not A = 1−A, an immediate consequence of axiom 2 is then the fact that

PL(not A|B) = 1− PL(A|B), A ∈ E, B ∈ E0, (3)

which is the additivity part of the Cox Theorem.

We point out here that the structural properties of the algebra of unknowns related
to ordering are very intuitive if we think of unknowns as having descriptions as numerical
quantities in the sense of de Finetti (1974), and this structure is implicitly assumed by
de Finetti without stating it. Let us consider the motivation for our last two axioms.
The Cox axiom 4 for plausible value is a natural generalization to plausible value of
the corresponding axiom assumed by Cox for plausibility of statements. The usual
motivation for the Cox axiom begins with the idea that PL(AB|C) should or could
depend on all of the quantities

PL(A|B&C), PL(B|C), PL(A|C), PL(A|B), PL(B|AC), PL(C|A), PL(C|B),

through some real-valued function of 7 real variables and then observing that unless
the function is independent of the last 5 quantities, absurdities result in various special
cases (see Jaynes (2003) and Tribus (1969)). For instance, we can immediately eliminate
the fourth and last two variables since C is to be assumed in calculating PL(AB|C).
In our situation, PL is replaced by its generalization PV, and A is now replaced by
an arbitrary unknown, so the fifth and sixth variables can be eliminated immediately,
as for a general unknown X, the plausible value for an unknown given X, is nonsense.
Moreover, we will not assume that our function is defined on all of R3, since the variables
in which we have only indicators appearing need only be in the range of the plausibility
function, which we will denote by J. That is, J = {PL(A|B) : A ∈ E, B ∈ E0}, and we
can assume, under the same reasoning that there is

f : R× J × R −→ R

with the property that

PV (XA|B) = f(PV (X|A&B), PL(A|B), PV (X|B)), (4)

for any choice of A,B ∈ E and X ∈ T, for which all the inputs make sense. Next,
we will drop the assumption that f is in any way universal, that is we only assume it
applies to our given setup consisting of the algebra T, the Boolean algebra E, and our
specific function PV. If we take the case of X = r(not A) + s, where r, s ∈ R, then as
(not A)A = 0, we find that XA = sA, so PV (XA|B) = sPL(A|B), is independent of
the choice of r ∈ R. But PV (X|B) = rPL(not A|B) + s, and if PL(not A|B) 6= 0, then
we see that the last variable can be made to assume any real value without changing
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PV (XA|B), from which conclude that f must be independent of its last variable. Thus
we arrive at the axiom 4, which we see is still more general, because, we in fact allow the
function f to depend on A and B. More specifically, notice we are fixing A and B and
only requiring that for each such choice of A and B there is a function f(A,B) for which
PV (XA|B) = f(A,B)(PV (X|AB), PL(A|B)). Thus, in a sense, we are assuming less
than the usual axiom of Cox, but for a broadened domain, namely all of the unknowns
and not merely for idempotents. The final axiom 5 is only necessary to obtain general
additivity of plausible value and is really not necessary for the proof of the Cox theorem
for plausibility, but it seems natural to want to have general additivity for plausible
value. We could simply assume additivity of plausible value as being intuitively obvious,
but we prefer to keep our assumptions to a reasonable minimum, and the axiom 5 is in
the same spirit as the axiom 4.

Notice that by taking the case that b = 0 in (2) we immediately obtain HOMO-
GENEITY OF PLAUSIBLE VALUE:

PV (ax|e) = aPV (x|e), a ∈ R, e ∈ E0, x ∈ T, (5)

whereas by taking the case that a = 0 in (2) we immediately find the RETRACTION
PROPERTY OF PLAUSIBLE VALUE:

PV (b|e) = b, b ∈ R, e ∈ E0. (6)

Proposition 3.1. If x, y ∈ T and e ∈ E0 implies that x = y, then PV (x|c) = PV (y|c).

Proof. This is an immediate consequence of axiom 3, simply because for real numbers,
= is the same as ≤ & ≥ .

Proposition 3.2. If x ∈ T and e ∈ E0 implies that x = r ∈ R, then PV (x|e) = r.

Proof. This follows from (6) and proposition 3.1.

Now an immediate consequence of Axioms 2 and 3 is that if a and b are real numbers
and e ∈ E0 implies that a ≤ x ≤ b, then

a ≤ PV (x|e) ≤ b.

As a special case, if 0 6= e, c ∈ E, then 0 ≤ c ≤ 1, so by Axioms 2 and 3 we can
immediately conclude that

0 ≤ PL(c|e) ≤ 1.

4 The General Product Rule

Theorem 4.1. If x ∈ T, if e, c ∈ E with ec ∈ E0, then

PV (xc|e) = PV (x|ce)PV (c|e) = PV (x|ce)PL(c|e). (7)
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Proof. We consider a real-valued function

F = F(c,e) : T → R

defined by
F (x) = PV (xc|e).

The axiom 4 says that F (x) depends only on the numerical value PV (x|ce) and not on
the particular x ∈ T. Put another way, this says that there is a real-valued function

f = f(c,e) : R→ R

so that for any x ∈ T, we have

PV (xc|e) = F (x) = f(PV (x|ce)).

If we take the case of x = r ∈ R ⊂ T, then F (x) = F (r) = PV (rc|e) = rPV (c|e), by
(5). But as r = PV (r|ce), this means, f(r) = F (r) = rPV (c|e), for all r ∈ R, which
in turn means f is simply multiplication by PV (c|e) = PL(c|e). But now, if X ∈ T is
arbitrary, we conclude that PV (xc|e) = F (x) = f(PV (x|ce)) = PV (x|ce)PL(c|e).

Corollary 4.2. If e, c, g belong to E, with ec ∈ E0, then

PL(gc|e) = PL(g|ce)PL(c|e), (8)

which is the standard product rule of Cox’s Theorem.

5 Conclusion

Our approach to the Cox theorem (4.2) has two major advantages over other treatments
as is seen from the proof of theorem (4.1). First it is trivial. Second it has eliminated
the problems which allow the counterexample of Halpern (1999a). Specifically, his
counterexample violates the homogeneity property which plausibility here inherits from
plausible value. We do not need to have an associative multiplication on the real line or
an interval, we do not need to assume any continuity or differentiability or divisibility,
we do not need to assume that our Boolean algebra of propositions has sufficiently
many plausible values to have dense range in an interval of numbers. It is thus the
homogeneity, not the additivity assumed by some authors Koopman (1940), which is
crucial. Also, we have assumed our set of unknowns forms an algebra with identity
over the reals as seems natural, but we really only used the fact that we have a set of
unknowns that is closed under multiplication by indicators and contains all indicators
from E and the real numbers themselves as a subset.

We have not mentioned general additivity of PV. If we are only concerned with the
additivity of plausibility for statements in E, then this is already a consequence of (8)
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and our axioms, using (1) and (3), as in Jaynes (2003). In fact, for arbitrary A,B ∈ E,
repeated applications of the multiplication rule with deMorgan’s Law yields easily

PL(A or B|C) = PL(A|C) + PL(B|C)− PL(A&B|C).

We therefore get the usual rules of probability on defining the conditonal proba-
bility, P (A|B), by P (A|B) = PV (A|B) = PL(A|B). Then plausibility satisfies all
the axioms of ordinary probability theory by our axioms. One can easily use
the technique of the proof of the multiplication theorem to prove general additivity of
plausible value using axiom 5.
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