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Efficient Utility-based Clustering over High
Dimensional Partition Spaces

Silvia Liverani∗, Paul E. Anderson†, Kieron D. Edwards‡,
Andrew J. Millar§ and Jim Q. Smith¶

Abstract. Because of the huge number of partitions of even a moderately sized
dataset, even when Bayes factors have a closed form, in model-based clustering a
comprehensive search for the highest scoring (MAP) partition is usually impossible.
However, when each cluster in a partition has a signature and it is known that
some signatures are of scientific interest whilst others are not, it is possible, within
a Bayesian framework, to develop search algorithms which are guided by these
cluster signatures. Such algorithms can be expected to find better partitions more
quickly. In this paper we develop a framework within which these ideas can be
formalized. We then briefly illustrate the efficacy of the proposed guided search
on a microarray time course data set where the clustering objective is to identify
clusters of genes with different types of circadian expression profiles.

1 Introduction

Many Bayesian model selection procedures are based on the posterior probability distri-
bution over models. Two very common methods are MAP selection, where the most a
posteriori probable model is selected (Heard et al. 2006), and model mixing, where pos-
terior probability distributions are calculated over the most promising candidate models
and the results then mixed over these models (Fraley and Raftery 1998). Here, for sim-
plicity we will focus on the former. In either case, a full exploration of the partition
space is not possible when, as in our case, the number of elements in a cluster is in the
order of tens of thousands, even when using fast conjugate modelling. The number of
partitions of a set of n elements grows quickly with n. For example, there are 5.1×1013

ways to partition 20 elements.

he problem with MAP search is that it scores two partitions differently even when
they agree on all the expressions of scientific interest, even if the cluster objects are pre-
filtered. This therefore means that the vast proportion of the search is used comparing
the efficacy of one partition with another when their difference is of no scientific con-
sequence. For example, in our running example, but using MAP search, an algorithm
will spend a vast proportion of its time trying to cluster obviously non-circadian genes
in the best possible way: clearly a futile waste of time in the context of this experiment.
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The objective of this paper is to find search algorithms which share the possibility of
fast local search with MAP algorithms whilst avoiding the type of inefficacy discussed
above.

In our paper we assume that each cluster has a signature defining how scientifically
interesting each cluster is. This context is quite common and in our case it was motivated
by the need to cluster data from time course microarray data. Many algorithms have
been used to cluster such datasets, in both the classical (Banfield and Raftery 1993;
Fraley and Raftery 1998; Ben-Dor et al. 1999; Yeung et al. 2001; Ramoni et al. 2002;
Luan and Li 2003) and Bayesian framework (Wakefield et al. 2003; Heard et al. 2006;
Zhou et al. 2006). For experiments with multiple microarray experiments (i.e. with
different doses, different treatments or followed up over time), Bayesian algorithms are
very versatile, for example to model time dependence between microarrays and to enable
incorporation of pertinent scientific information. See e.g. Heard et al. (2006) and Zhou
et al. (2006).

In our running example the scientists were only interested in discovering those genes
whose expression profiles over two days exhibited circadian rhythms: other expression
profiles were irrelevant. Because of the enormous size of the search space, for the sake
of efficiency, it looked promising to try to customize the search algorithms so that they
reflect the scientific inquiry by focusing an algorithm to refine only clusters containing
potentially interesting genes and not to waste time refining parts of a partition of no
interest to the scientist. The question we answer in this paper is: can this sort of
procedure be formalized within a Bayesian framework?

MAP selection has a utility based justification (Bernardo and Smith 1994) and
Bayesian selection techniques with specific priors have been limited to different classes
of score functions (Denison et al. 2002). However there is a more pertinent literature
- albeit specifically for Bayesian Networks, e.g. Tatman and Shachter (1990) springing
from a subclass of multiattribute utility functions. This describes how, when the decision
maker’s utility function is separable, then, with the appropriate structure of prior, the
search for an optimal decision can be localized, facilitating fast optimization. Using
a utility led approach we will demonstrate how a modification of this algorithm also
allows us to focus search on parts of the parameter space of importance to the scientist.

The paper is organized as follows. In Section 2 we present the class of conjugate
Gaussian regression models as in Smith et al. (2008): one of the types of model to
which our methodology can apply. In Section 3 we introduce a formal framing of this
genre of clustering problems in terms of multiattribute decision theory and discover a
set of assumptions that will lead us to formally explain only parts of the underlying
partition space. In Section 4 we show that if the product utility function is used, local
search algorithms, widely used for conventional model exploration, are equally valid
within this general framework. This means that the new utility based method is easy
to implement. In Section 5 we briefly illustrate these methods through two examples.
These concern a recent microrray experiment on the plant model organism Arabidopsis
thaliana, designed to detect genes whose expression levels, and hence functionality, might
be connected with circadian rhythms. The examples describe how our utility methods
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can be quickly applied to a very large dataset: here over 22,000 13-dimensional profiles
were clustered.

2 A Clustering for Time Course Data

For the sake of simplicity, in this paper we illustrate our utility based approach in
conjuction with a conjugate model developed by Heard et al. (2006) which we found
particularly appealing. It is fast, flexible and it includes all the features of our data
in the Gaussian conjugate Bayesian regression model. We next summarise some of the
analysis in Smith et al. (2008) which will be intrinsic to the later development of this
paper. Let D = (Y1, . . . , Yn) and Y = vec(D) satisfy

Y = Xβββ + ε

where βββ = (β1, β2, . . . , βp)′ ∈ Rp and ε ∼ N(0, σ2I) is a vector of independent error
terms with σ2 > 0. Note that Yi ∈ RT for i = 1, . . . , n. The posterior Normal Inverse
Gamma joint density of the parameters (βββ, σ2) denoted by NIG(0, V, a, b), is given by

p(βββ, σ2|y) ∝ (σ2)−(a∗+p/2+1) exp
{
− 1

2σ2

[
(βββ −m∗)′(V ∗)−1(βββ −m∗) + 2b∗

]}

with
m∗ = (V −1 + X ′X)−1X ′Y
V ∗ = (V −1 + X ′X)−1

γ = {Y ′Y − (m∗)′(V ∗)−1m∗}
a∗ = a + rn/2
b∗ = b + γ/2

where a, b > 0 and V is a positive definite matrix. Throughout this paper we assume
that X = 1n ⊗ B, where B is a known matrix, and that X ′X = nB′B is full rank.
The design or basis function matrix B encodes the type of basis used for the clustering:
linear splines in Heard et al. (2006), wavelets in Ray and Mallick (2006) or Fourier in
Edwards et al. (2006): the last one is the most appropriate choice in the context of a
study of daily rhythms of genes we study in our illustrative examples.

The Bayes factor can be calculated from its marginal likelihood L(y) as in Denison
et al. (2002) and O’Hagan and Forster (2004). Thus

L(y) =
(

1
π

)nT /2
ba

(b∗)a∗
|V ∗|1/2

|V |1/2

Γ (a∗)
Γ (a)

Let C denote a partition belonging to the space of partitions C, on a space Ω of
cardinality n, and c a cluster of such a partition. Heard et al. (2006) assume that each
gene profile is exchangeable within the cluster to which it belongs and consider the
Normal Inverse-Gamma conjugate Bayesian linear regression model, which takes the
form

Y (c) = X(c)βββ(c) + ε(c) (1)

for cluster c, where βββ(c) = (βββ(c)
1 , . . . ,βββ

(c)
p ) is the vector of parameters with p ≤ T , X(c)

is the design matrix of size n(c)T × p, ε(c) ∼ N(0, σ2
cIT n(c)) where n(c) is number of
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genes in cluster c and IT n(c) is the identity matrix of size T n(c) × T n(c). A partition
C of the genes divides into N clusters of sizes {n(c1), . . . , n(cN )}, with n =

∑N
i=1 n(ci).

Although other priors can be used in this context, Smith et al. (2008) recommended
the use of coherence priors over the partition space. Under these cohesion priors both
the prior and posterior probability π(C), where the generating partition is C, has the
form

π(C|y) = A
∏

c∈C

π(c|y) (2)

where A is a constant ensuring the probabilities of different possible partitions all sum
to one.

Assuming the parameters of different clusters are independent, because the likeli-
hood separates, it is straightforward to check (Smith et al. 2008) that the log marginal
likelihood score Σ(C) for any partition C with clusters c ∈ C is given by

Σ(C) =
∑

c∈C

log pc(y) + log π(C) (3)

where log π(C) is given in (2).

An essential property of the search for MAP models - dramatically increasing the
efficiency of the partition search - is that with the right family of priors the search is
local. That is, if Ĉ+ and Ĉ− differ only in the sense that the cluster ĉ+ ∈ Ĉ+ is split into
two clusters ĉ−1 , ĉ−2 ∈ Ĉ− then the log marginal likelihood score is a linear function only
of the posterior cluster probabilities on ĉ+, ĉ−1 and ĉ−2 . We show in Section 4 that this
local property is preserved when we use our utility based clustering method provided a
product utility search is employed.

The simplest search method using local search is agglomerative hierarchical clus-
tering (AHC). It starts with all the genes in separate clusters, our original C0, and
evaluates the score of this partition. Each cluster is then compared with all the other
clusters and the two clusters which increase the log likelihood in (3) by the most are
combined to produce a new partition C1. We now substitute C1 for C0 and repeat this
procedure to obtain a partition C2. We continue in this way until we have evaluated
the logmarginal score Σ(Ci) for each partition {Ci, 1 ≤ i ≤ n}. We then choose the
partition which maximizes the score Σ(Ci).

A drawback of this method and ones like it is that the set of searched partitions is an
extremely small subset of the set of all partitions. Moreover, no regard is taken by the
algorithm of whether there is any scientific inferential merit in combining two clusters
together. In our context an automatic search algorithm like AHC will spend the vast
majority of its time examining the efficacy of combining two non-circadian gene clusters,
an activity quite worthless from the scientific perspective. The motivation of this paper
is to try to find formal and efficient ways of addressing this obvious inadequacy of simple
deterministic search.
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3 Utility over partitions

3.1 A useful class of utilities

Our idea in this paper is to use a utility function expressing the nature of the scientific
interest to guide the search for the partition focusing on finding the partition with the
highest posterior expected utility.

Let us generalize the notation introduced earlier for our running example. Let θc be
the vector of parameters associated with a cluster c. In our running example θc is the
vector of regression coefficients βββc and the variance term σ2

c . Let θ(C) = {θc : c ∈ C}
denote the vector of parameters associated with a given partition. Recall that under
the usual model assumptions - both a priori and a posteriori - the density πc (θc) of
θc depends on the cluster index c but not on the partition C and that the vectors
{θc : c ∈ C} are mutually independent of each other. Using this more general notation,
it follows that the density π (θ(C)|C, y) can be written in the form

π (θ(C)|C, y) =
∏

c∈C

πc (θc|C, y) =
∏

c∈C

πc (θc|y) (4)

The most complex family U of utility functions over many attributes in current use
consists of utility functions U(Ĉ|C, θ(C)) which exhibit mutually utility independent
attributes (Keeney and Raiffa 1976; Keeney and von Winterfeldt 2007; French and
Rios Insua 2000). In our context, when each attribute is the expression profile of each
gene i ∈ Ω, by definition these utilities have the functional form

U
(
Ĉ|C, θ(C)

)
+ 1 =

∏

i∈Ω

(1 + κiui(ĉ|c, θc)) (5)

where the conditional utility ui(ĉ|c, θc) is the utility score of gene i when placed in
cluster ĉ when in the generating partition C gene i lies in cluster c ∈ C.

Recall here that the relative magnitude of κi to κj reflects the importance the
scientist places on gene i relative to gene j, and that as max κi → 0 this utility function
tends to a linear one, whilst as min κi →∞ we only score partitions which succeed in
classifying all genes partially well. We now identify a subclass V ⊆ U that on the one
hand can plausibly embody the preference structure of a typical biologist investigating
gene profiles and on the other provides a framework for more focused search algorithms
over the partition space.

Thus suppose the scientist is prepared to state whether each given gene i ∈ Ω is
potentially interesting - henceforth written i ∈ I - or uninteresting - denoted here by
i ∈ I. When U ∈ U, the implication of the above is that the scientist should set κi = 0
whenever i ∈ I. Note that sometimes it will be appropriate to set I = Ω. Let nI denote
the number of potentially interesting genes.

Definition 3.1. Say a partition C of Ω is I−simple if all of its clusters c either have
the property c ∩ I = c or c ∩ I = ∅. Denote the set of all I−simple partitions by S(I).
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A partition C is I−simple if and only if I can be expressed in the form

I =
⋃

c∈C(I)

c (6)

where C(I) is a subset of the clusters c of C such that c∩I = c. Obviously all partitions
are I−simple when I = Ω. Clearly for any partition Ĉ1 there is a partition Ĉ2 ∈ S(I)
such that U(Ĉ1|C, θ(C)) = U(Ĉ2|C, θ(C)). We henceforth restrict our search to the
partitions C that belong to S(I).

Let πI denote the probability under the mass function (2) that the generating par-
tition C ∈ S(I). Then, if the scientist believes that πI = 1, for any cluster c that does
not satisfy c ∩ I = c or c ∩ I = ∅, π(c) = π(c|y) = 0. A scientist making this assump-
tion a priori believes that with probability one the generating partition will contain
only clusters that inherit the label of being unambiguously interesting (i.e. containing
only interesting genes) or unambiguously uninteresting (i.e. containing only interesting
genes). This is a substantive but often plausible assumption. It embodies the belief
that the definition of the term interesting is consistent with the underlying generating
partition. If the scientist were not to hold this belief then it would bring into question
whether a partition model should be used at all in the decision analysis. Note that this
assumption simplifies the analysis because it allows the focus of the problem to switch
from the individual units to the more coarse clusters of a partition.

It follows that we can write

π(C|y) = π(C|y, C ∈ S(I)) = π1(C(I)|y)π2(C(I)|y) (7)

where C(I) is a partition of I and C(I) is a partition of I and

π1(C(I)|y) = A1

∏

c/∈C(I)

π(c|y)

π2(C(I)|y) = A2

∏

c∈C(I)

π(c|y) (8)

where A1and A2 are proportionality constants ensuring π1(C(I)|y) and π2(C(I)|y) are
probability mass functions. So in particular any function of C depending only on the
configuration of clusters in the partition C(I) of the interesting genes I and not those
in C(I) of I will be independent of C(I).

Say that preferences are cluster critical if whenever i ∈ ĉ 6= c for all values of θc

ui(ĉ|c, θc) = 0 (9)

A biologist’s preferences will be consistent with this if for any gene i in the cluster
ĉ ∈ Ĉ(I) of interesting genes to contribute to the utility score, it is necessary for i to
be classified correctly so that ĉ = c. When the conditional utilities are cluster critical
write

wi(ĉ|θĉ) , ui(ĉ|ĉ, θĉ) (10)
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In this paper we will also assume that the scientist’s preferences over interesting genes
within the same cluster are exchangeable. Thus assume that genes in I are cluster
exchangeable meaning that

κi =

{
κφ(ĉ) when i ∈ I ∩ ĉ

0 when i ∈ I
(11)

and that the genes in I that are cluster critical are utility exchangeable meaning that
whenever i, j ∈ ĉ

wi(ĉ|θĉ) = wj(ĉ|θĉ) , wĉ(θĉ) (12)

where the functions of the conditional utilities 0 ≤ wĉ(θĉ) ≤ 1 reflect how highly the
gene i ∈ ĉ scores when i really lies in the cluster ĉ - with associated parameters θc - of
the generating partition C. Note that a least preferable estimate ĉ of c has wĉ(θĉ) = 0
and the most preferable wĉ(θĉ) = 1.

In Section 5 we use the functions wĉ(θĉ) to preferentially weight the score of some
genes in a potentially interesting cluster in terms of the values of the parameters θĉ: for
example those with high expression and/or parameter values that suggest a clear diurnal
pattern that would be associated with circadian regulatory genes. In particular, in
Section 5 we will aproximate this utility function by using a measure of the circadianity
of genes over time. Further discussion on wĉ(θĉ) is given in Section 4.2.

Definition 3.2. Say a utility function U ∈ U is amenable if it is cluster critical and
cluster and utility exchangeable - i.e. if the three conditions (9), (11) and (12) all hold.
Denote the class of amenable utility functions by V.

Henceforth assume U ∈ V. Then by definition, from (5) for decision Ĉ ∈ S(I)

U
(
Ĉ|C, θ(C)

)
+ 1 =

∏

i∈I

(1 + κiui(ĉ|c, θc)) (13)

which by cluster criticality can be written

U
(
Ĉ|C, θ(C)

)
+ 1 =

∏

i∈J(Ĉ)

(1 + κiwi(ĉ|θĉ)) (14)

where J(Ĉ) is the set of genes correctly classified by Ĉ i.e.

J(Ĉ) = {i : i ∈ ĉ = c} (15)

By cluster and utility exchangeability this now reduces to the form

U
(
Ĉ|C, θ(C)

)
=

∏

ĉ∈Ĉ(C,I)

(1 + κφ(ĉ)wĉ(θĉ))n(ĉ) − 1 (16)

where Ĉ(C, I) is the set of clusters correctly classified in Ĉ(I).

For reasons that will become apparent later we will call a scientist’s preference
weights φ(ĉ) balanced if φ(ĉ) = n(ĉ)n(ĉ)−1

.
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3.2 Marginal Search

When U ∈ V, from (4) and (16) the expected utility U(Ĉ|C) of choosing the partition
Ĉ ∈ S(I), when the true generating partition is C, is given by

U(Ĉ|C) =
∫

U(Ĉ|C, θ(C))π (θ(C)|C, y) dθ(C)

=
∏

ĉ∈Ĉ(C,I)

u(ĉ)− 1 (17)

where for each ĉ ∈ Ĉ(I)

u(ĉ) =
∫

(1 + κφ(ĉ)wĉ(θĉ))n(ĉ)πĉ (θĉ|y) dθĉ (18)

Thus when the generating cluster is known, one plus the score of a simple partition is
the product over scores obtained from each correct potentially interesting cluster.

Recall that Ĉ(C, I) ⊆ C(I) is the set of clusters correctly classified in Ĉ(I) and C(I)
is a partition of I. Because by definition Ĉ(C, I) ⊆ C(I) note the score U(Ĉ|C) depends
on C only through C(I) and is independent of C(I) because I and I are disjoint sets.
By the comments after (8) if the scientist a priori believes πI = 1 then the expectation
U(Ĉ) of U(Ĉ|C) over C - the score we assign to Ĉ - only depends on our choice of Ĉ(I).
In this scenario, investigating splits and combinations of clusters in C(I) is pointless
since such moves cannot improve the score. Thus when U ∈ V and πI = 1 there is no
loss in restricting our moves between partitions Ĉ+ and Ĉ− whose differential clusters
ĉ+ ∈ Ĉ+ and ĉ−1 , ĉ−2 ∈ Ĉ− lie in I.

Under the assumptions above we can therefore, without loss, simply search the
partition space over the space I. However, in general, standard local search algorithms
cannot be used for expected utility maximization because the local properties of this
score function are lost. Nevertheless, in the next section we prove that the product
utility function, which is a limit of the usual class of utility independent utilities, does
retain this important property.

4 Properties of the product utility

4.1 Product Utilities and Local Moves

The product utility function is closely linked to the family V and also admits the simple
evaluation of relative scores under local search.

Definition 4.1. The product utility function UI(Ĉ|C,θ(C)) on a set I ⊆ Ω has the
form

UI(Ĉ|C, θ(C)) =
∏

c∈C(I)

φ(ĉ)n(ĉ)uĉ(ĉ|c, θc)n(ĉ) (19)
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where the conditional utilities uĉ(ĉ|c,θc) are cluster critical. Denote the set of product
utility functions on I by VI .

Note that in the notation developed above we can write a product utility function
in the simplified form

UI

(
Ĉ|C, θ(C)

)
=

{∏
ĉ∈Ĉ(I) {φ(ĉ)wĉ(θĉ)}n(ĉ)) when Ĉ(I) = C(I)

0 otherwise
(20)

where wĉ(θĉ) is defined in (10).

The product utility function UI ∈ VI is a limit of a utility function U ∈ V in the
following sense. For any partition C ∈ S(I) write

U I(Ĉ|C) =
∏

ĉ∈Ĉ(I)

v(ĉ) (21)

where for each ĉ ∈ Ĉ(I)

v(ĉ) = φ(ĉ)n(ĉ)

∫
uĉ(ĉ|c, θc)n(ĉ)πc (θc|y) dθc (22)

Recalling that nI is the number of genes in interesting clusters, using the notation above
we see that as κ →∞, and holding weights so that min{φ(ĉ) : ĉ ⊆ I} ≥ M

κ−nI

{
U

(
Ĉ|C

)
+ 1

}
=

∏

ĉ∈Ĉ(I)

∫ (
κ−1 + φ(ĉ)uĉ (ĉ|ĉ,θc)

)n(ĉ)
πc (θc|y) dθĉ

= U I(Ĉ|C) + 0(κ−1) (23)

provided uĉ(ĉ|ĉ, θc) ≥ ε > 0 for all c ∈ C. So a linear transformation of the expected
utility score of a sequence of U ∈ V tends to that of a corresponding product utility
score as the criterion weight on all the potentially interesting genes becomes large.

In addition to inheriting the interpretability of its parameters from V the UI ∈ VI

also exhibits the property that its scoring is local. Because UI(Ĉ|C, θ(C)) = 0, whenever
Ĉ 6= C letting

U I(Ĉ) , E{U I(Ĉ|C)} (24)

- the expected value of U I(Ĉ|C) over the possible generating partitions - we note that,
since Ĉ ∈ S(I), with any cohesion prior (2) on the partitions

U I(Ĉ) = U I(Ĉ|C)π(Ĉ = C, C ∈ S(I)|y)

= U I(Ĉ|C)π(Ĉ = C|y, C ∈ S(I))πI |y
=

∏

ĉ∈Ĉ(I)

v(ĉ)π2(Ĉ(I)|y)πI |y
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So in particular on comparing the adjacent partitions Ĉ+ and Ĉ− ∈ S(I), U I(Ĉ+) ≥
U I(Ĉ−) if and only if

log v(ĉ+) + log π(ĉ+|y) ≥ log v(ĉ−1 ) + log π(ĉ−1 |y) + log v(ĉ−2 ) + log π(ĉ−2 ) (25)

or equivalently
log π(ĉ+|y)− log π(ĉ−1 |y)− log π(ĉ−2 |y) ≥ ζ (26)

where
ζ = log v(ĉ−1 ) + log v(ĉ−2 )− log v(ĉ+) (27)

Whenever the parameter κ is large this property provides a vehicle for efficiently compar-
ing the efficacy of adjacent I−simple partitions. Note that any optimal simple partition
Ĉ will maximize or equivalently

E(κ−nI{U
(
Ĉ|C

)
+ 1}) = U I(Ĉ) + 0(κ−1) (28)

So if
log π(ĉ+|y)− log π(ĉ−1 |y)− log π(ĉ−2 |y) > ζ (29)

then there is a κ for which U(Ĉ+) > U(Ĉ−) and conversely if

log π(ĉ+|y)− log π(ĉ−1 |y)− log π(ĉ−2 |y) < ζ (30)

then there is a κ for which U(Ĉ+) < U(Ĉ−).

Note that under this subfamily of utilities we do not need to assume that C is
I−simple, just that we only search over Ĉ that are I−simple. This is because, if this
Ĉ is I−simple but C is not, then C 6= Ĉ which - unlike in the more general scenario -
in turn implies UI(Ĉ|C, θ(C)) = 0.

4.2 Relationships between Product Utility and MAP

The implications of the results are the following:

1. From the comments in Section 3.2, to find the utility maximising partition we need
only find the utility maximising partition over the potentially interesting genes I.

2. Under the product utility function, like the MAP score, the expected utility score
decomposes making it possible to use simple standard search algorithms to explore
the space for high scoring partitions.

From (26) if the combined cluster in the coarser partition has more interesting ex-
pected values than the two smaller clusters in the finer partition then we are more
prepared to choose the coarser partition than under MAP. In this sense the local al-
gorithm associated with a product utility can be seen as exactly a MAP search but
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over the genes in I and with adjusted priors over the partition space: the original prior
cohesions π0(ĉ+), π0(ĉ−1 ), π0(ĉ−2 ) are simply replaced by the adjusted prior cohesions

π′0(ĉ
+|y) = v(ĉ+)π0(ĉ+|y)

π′0(ĉ
−
1 |y) = v(ĉ−1 )π0(ĉ−1 |y)

π′0(ĉ
−
2 |y) = v(ĉ−2 )π0(ĉ−2 |y) (31)

So, from an algorithmic perspective, searching for a simple partition maximising U I (C)
is almost identical to searching for a MAP model over the subclass of potentially inter-
esting genes, except that the most interesting clusters are given a higher prior weight
than the less interesting ones. To simplify our notation henceforth write c for ĉ.

It is interesting to note that under appropriate conditions we can now find prior
densities and UI ∈ VI where an optimal partition C under UI is a MAP optimal
partition on I. Thus assume φ(c) are balanced. The weights defined in (22) are then of
the form

v(c) = n(c)
∫

wc(θc)n(c)πc (θc|y) dθc (32)

Second assume that the marginal utilities on the parameters are indicators so that when
θc ∈ Ψ where Ψ is a particular region of the parameter space the scientist is satisfied
whilst otherwise she is not. Then

wc(θc) =

{
1 when θc ∈ Ψ
0 when θc /∈ Ψ

(33)

Under these conditions the threshold ζ defined in (27) can be written as

ζ = log P (θc−1
∈ Ψ|y) + log P (θc−2

∈ Ψ|y)− log P (θc+ ∈ Ψ|y) (34)

In particular if we assume we have certainty ,i.e.

P (θc−1
∈ Ψ|y) = P (θc−2

∈ Ψ|y) = P (θc+ ∈ Ψ|y) = 1 (35)

then ζ = 0. So we recover MAP search but now restricted to I rather than Ω.

It is common practice in this context to first preselect genes that lie in a set I and
then search for an optimal partition using MAP. So note that with the assumptions
above this is a specific case of our method. Therefore our development above can be
seen as providing a formal check about whether or not clustering combined with a
particular preselection technique is valid and it also provides a way of adjusting this
procedure when this is not so.

Note that we have shown that the preselection method is valid if the generating
partition C is I-simple. When the scientist is not looking for specific structures, the sorts
of routine preselection methods commonly used may well often be plausible. However
when the scientist has strong beliefs about what shapes of data she is looking for, routine
preselection will often not be consistent with the I-simple hypothesis. Furthermore, I
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will certainly be larger than it is needed for the analysis and so the search unnecessarily
computational hungry.

Summarising we therefore have the following result.

Theorem 4.2. The relative score between adjacent I−simple partitions under a U ∈ V
(19) score and cohesion priors is the relative MAP score over all partitions of I using the
adjusted cohesion priors over the partition space given by (31). In the particular case
when conditions (32), (33) and (35) hold then this relative product utility score over
I-simple partitions is exactly the MAP score on all partitions of I using the original
priors on the partition space.

Thus in the very special case when (32), (33) and (35) hold the optimal MAP
partition found by local search on I will also be optimal under product utility score
over the space of simple partitions. It is simply that there are other optimal partitions
under the product utility: namely those that differ from the MAP partition but only on
the clustering of the uninteresting genes. The fact that there are so many more optimal
partitions under product utility means that we are more likely, with an efficacious search
algorithm, to find a high scoring partition more quickly. So when I = Ω our utility based
search inherits all the search efficiency of local MAP search, whilst when I ⊂ Ω and
we are content to search only for I−simple partitions, our search algorithm can focus
on partitions optimal with respect to I. Then, in fact, the utility based search is much
quicker than MAP.

We also can conclude that if I ⊆ J and under UJ a J−simple locally optimal
partition C∗J is also I−simple then C∗J is also locally optimal under the utility function
UI . In this sense, if we include too many genes in our potentially interesting set this
will affect the efficiency of our search but not the optimality. So there is a robustness
to mispecification of the set I, provided we err on the side of caution and include genes
in I if we think they might be interesting. An illustration of this methodology is given
in the second example of Section 5.3.

4.3 Robustness of the utility weighted score

Of course for most statistical models the certainty condition (35) will hold at best only
approximately. Thus suppose that the scientist’s utility has the form given by (32) and
(33) but that we only know that, for all c ∈ I, P (θc ∈ Ψ|y) ≥ 1 − α for some small
value of α. If the interesting genes are discovered by thresholding then this rather than
(35) may well be the type of condition we might have (see Section 5). Note that

−2α l 2 log(1− α) ≤ ζ ≤ − log(1− α) l α (36)

It follows that when α is small and I = Ω then in this scenario our utility based
search will closely approximate MAP search. So the method only performs significantly
differently from MAP search in this context when either at least some of the clusters
have weights α that are not small or when I ⊂ Ω which will be illustrated below.
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Suppose therefore that, under the notation above

P (θc−1
∈ Ψ|y) l P (θc−2

∈ Ψ|y) l P (θc+ ∈ Ψ|y) = 1− α (37)

Then ζ l log(1−α) would mean that for large α we would combine clusters much more
often than under MAP: i.e. the partition will be coarser over the less interesting genes
in I.

4.4 Some practical issues

With balanced criterion weights we have that

v(c) = n(c)
∫

u0
c(θc)πc (θc|y) dθc (38)

where u0
c(θc) = wc(θc)n(c). Note that u0

c(θc) = wc(θc) if wc(θc) is an indicator function.
In order to implement our search algorithm to be comparably fast with MAP search we
need to be able to quickly evaluate v(c). This then provides the thresholds ζ determining
whether or not we move to an adjacent partition. We could approximate this function
using summary statistics calculated already and so obtain an approximately optimal
partition. Alternatively we could try to find functions u0

c(θc) which on the one hand
reflect the preferences of the biologist and on the other admit the explicit calculation of
v(c).

In our running example we need to find expedient u0
c(θc) - when π(θc|y) which

has a product Gaussian - Inverse Gamma form - making v(c) an explicit function of
the hyperparameters of π(θc|y). The second alternative is clearly more elegant, but
we have found that the first option is more flexible and appears to be robust to the
approximations we take.

5 Examples

To investigate the efficacy of this method we studied the circadian rhythms of the plant
Arabidopsis thaliana. The experimental results were provided by co-authors Kieron
D. Edwards and Andrew J. Millar and have been published in Edwards et al. (2006),
although the analysis performed below is more refined than the original. We compare
standard MAP methods used with AHC local search to our expected utility based search
using adapted AHC on the same datasets.

We will illustrate our proposed method and its efficacy on a smaller example of 18
observations. Then we will show how an approximation of the methodology presented
can be used on a larger example of tens of thousands of observations. For simplicity
we will concentrate on an analysis where conditions (32), (33) and (35) are assumed to
hold and we use an approximation rather than an exact evaluation of (38).
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Table 1: The score of the best partition of the interesting genes obtained with direct
AHC and AHC but applied to potentially interesting gene only.

Σ(C)
Direct AHC 64.896
AHC on I 68.295

5.1 Data

The gene expression of 22,810 genes was measured by Affymetrix microarrays at 13 time
points over two days. The aim was to identify the genes (of order 1,000) which may be
connected with the circadian clock of the plant. Constant white light was shone on the
plants for 26 hours before the first microarray was taken, with samples every four hours.
The light remained on for the rest of the time course. Thus, there are two cycles of data
(13 time points) for each of the 22,810 genes available on the Arabidopsis microarray
chip. Subjective dawn occurs at about the 24th and 48th hours – this was when the
plant has been trained to expect light after 12 hours of darkness. An exposition of
the whole dataset, together with a discussion of its biological significance is given in
Edwards et al. (2006) and subsequently by Michael et al. (2008).

The cluster profiles at time t, y(t), over a 48 hour time course are given by

y(t) = β0 +
6∑

i=1

[β2i−1 cos (2πit/48) + β2i sin (2πit/48)] (39)

5.2 A simple example of how direct use of AHC fails

Here 15 circadian genes from the dataset above, were contaminated with 3 outliers.
Using AHC on the 18 genes produces two clusters (see Figure 2). The second cluster
contains all potentially interesting genes.

To compare this with our utility based approach we simply specified our set of
interesting genes I as those whose individual first harmonics are a larger than the
expected proportion of the total variation, here set to 0.25. Preselecting the set I in
this coarse way identifies the 15 genes in the second cluster in Figure 1. However now
using AHC on I leads to the further discrimination of the 15 genes into the two clusters
in Figure 2.

It is easy to see that both in terms of their Bayes factor scores and visually these new
clusters discriminate profiles much better than AHC used directly. AHC is disrupted
by outliers in larger problems in similar ways. See Smith et al. (2008) for reasons
for this. When potentially interesting profiles can be defined then even using a crude
filter like the one illustrated above and then using a simple local search algorithm like
AHC on I can greatly enhance the discovery process and classify interesting genes more
precisely. We have seen earlier that proceeding in this way is formally justified provided
the scientist has a utility as defined in Section 4 with equal utility weights.
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Figure 1: Clusters obtained on 18 genes of Arabidopsis thaliana running AHC only once
on the whole dataset (Σ(C) = 64.896). The y-axis is the log of gene expression. Note
the different y-axis scale for the two clusters. This is the partition with the lowest score.

5.3 A simple approximate guided learning algorithm

We have shown in the previous example that AHC does not always succeed in identi-
fying the best scoring partition and that our proposed utility method can enhance the
clustering algorithm by formally allowing for the search to focus on interesting areas of
the partition space. This is particularly important when dealing with high dimensional
datasets, such as the whole dataset of 22,810 gene expression profiles of Arabidopsis.

It is usual to prefilter using either a simple expression threshold (Zhou et al. 2006) or
a naive simple filter, such as the first harmonic in the Cosopt software (Straume 2004)
or prefiltering techniques as in Eisen et al. (1998), Tamayo et al. (1999), Wakefield
et al. (2003) and Zhou et al. (2006). However in our context we found that prefiltering
in this way removed a high proportion of genes whose profiles looked interesting to
the biologist, because it was special shapes of harmonic, often non sinusoidal, profiles
and sometimes relatively lowly expressed profiles which experience had suggested had
biological regulatory importance. By performing the more refined filters of preclustering
we were able to reduce the variance of estimated flexibly shaped profiles when these were
replicated, helping to ensure that circadian but lowly expressed genes appeared in the
set I we subsequentially searched.

First of all, we preclustered using the Bayes factors associated to a full Bayesian
clustering algorithm on subsets of genes using the usual conjugate analyses by Heard
et al. (2006) but adapted to a Fourier domain. We then treated the cluster parameter
distributions as providing rough estimates of the profile of the individual genes contained
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Figure 2: Running AHC again on the genes in I we do not search the partition space
around the 3 outliers, but we find a higher scoring partition for the other 15 genes. The
score of this new partition is Σ(CIterative) = 68.295.

in each particular cluster. We noticed that although cluster containment could be very
sensitive to the setting of hyperparameters the estimates of individual gene profiles
was remarkably robust to our hyperparameter settings: see Appendix 6. The only
exception to this was that, because of certain technical difficulties described in Smith
et al. (2008), these algorithms occasionally produced ‘junk’ clusters containing many
genes with highly or moderately highly expressed, but heterogenous, profiles. The
cautious approach advocated in Section 4.2 therefore suggested we included these genes
into the class I of interesting genes. So the set I constituted genes with well estimated
profile means in interesting areas of the parameter space together with genes whose
profile estimated variance was large.

There were several options for defining regions of potential interest. One was to use
the posterior distribution of a measure of the interestingness of a cluster profile being
greater than a given threshold using the MAP estimate of each gene. In our particular
context biological expert judgement suggested that an interesting cluster is one whose
second harmonic is high relative to the third, fourth, fifth and sixth harmonics.We define
the second harmonic ratio (SHR) as

SHR =
(
β2

3 + β2
4

) 1
2

/ ∑

i=1,3,5,7,9,11

(
β2

i + β2
i+1

) 1
2 (40)

Because the distribution of this measure was not in closed form, provided the estimated
variance of the regression parameters was not large, we approximated this by substitut-
ing the posterior means for their actual value in the thresholding formulae, as suggested
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in Section 4.4.

Once AHC has been used to discriminate the set I it is possible to use more refined
search techniques on smaller sets. However, for the purpose of this illustration in this
paper we simply ran AHC again but now restricted to I. By doing this, we found that
the contribution to the marginal likelihood over the set I of the final pass was much
greater than that associated with the marginal likelihood over interesting genes found
in the final run because outlying genes were largely sieved out through the iteration
process. From Section 4 this means that the utility score for these new partitions was
also greater. Full results of this final pass are given in Appendix 6, where the clustering
can be seen to be tight.
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Figure 3: Demonstration of the advantages of the utility-based search algorithm. On
the left is a potentially not interesting cluster from the penultimate step containing
PKS1-like which biologists believe may be involved in the clock. The cluster on the
right shows that PKS1-like ends up reclassified as a potentially circadian cluster after
AHC has been reused on the subset I alone.

An example of the practical as well as theoretical usefulness of our utility based
algorithm is illustrated in figure 3 using the unguided standard AHC method, whatever
the values of the hyperparameters, the regulatory PKS1-like gene was always classified
in a high variance no signal cluster like the one depicted in the first graph of figure 3.
However, by first identifying the subset I of interesting genes the profile of this possibly
regulatory gene is reclassified into a new cluster which is clearly circadian. Potentially
useful possible homologues of the PKS1-like gene can now be identified as those genes
whose profile lie in this cluster.

6 Discussion

Guided Bayesian clustering methods like the simple one described here clearly enhance
the performance of Bayesian clustering algorithms for longitudinal time series. Our
proposed methods can explore much larger relevant regions of the partition space and
provide a useful, practical and formally defensible tool for the search of high dimensional
partition spaces where the units in the partition are not exchangeable. Note that our
techniques apply outside the narrow context of clustering gene profiles. Any clustering
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of large numbers of units can benefit from the approach discussed above, provided that
the domain expert can be specific enough about her priorities to specify relative utility
weights.

Of course there are significant further improvements that can be made to the method-
ology above. We are currently exploring such avenues. First we are examining the effects
of using more refined local search techniques on the final stage of the process illustrated
in the second example above, allowing splits and long jumps, currently used in other
domains (Chipman et al. 2002). A second improvement is to weight the interesting
genes, as described in the last section, rather than use a simple indicator discriminant.
It is easy to do this if we approximate using the continuous score on the SHR obtained
as a function of the means of the parameters in the penultimate iteration. Moreover, in
the example we used an approximated guided algorithm, but those approximations are
unnecessary for some expedient choices of utility functions. Instead of SHR, measures
with a known distribution could have been used for precision rather than speed. Our
results so far, though, showed that the practical gain in such exact methods, although
measurable, was not great. Finally, we are investigating the effects of using heteroge-
neous versions of other partition priors discussed in Booth et al. (2008), Crowley (1997)
and McCullagh and Yang (2006). We will report our findings in a later paper.

Appendix

1. Plots and classification of the clustering

In this appendix we give the results of our I-MAP optimally found clusters of the final
AHC partition search. Because of the speed of our method, many iterations could be
performed over a grid of hyperparameters. The results given below correspond to the
clustering giving the highest score with the choice of variance matrix V = vI where
v = 0.498.

After the clustering process, it was found helpful to the biologists to classify the
posterior mean profiles into various shapes. The first five classifications cover the clusters
identified as circadian over both 24-hour periods; the last five those that aren’t. Types I,
VI and VII are delineated by objective criteria whilst the remaining types are classified
by eye. This is nevertheless useful as a guideline to the broad classes of behaviour that
are displayed.

Further details on the analysis can be found in Anderson et al. (2006).

I. Sinusoidal: those clusters with SHR>0.65 and more than 11 genes.

II. Sharply rising then sharply falling.

III. Sharply falling then sharply rising.

IV. Sharply rising then drifting back to zero.

V. Sharply falling then drifting back to zero.
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Figure 4: Type I clusters: sinusoidal. The black dots are the data points (joined by
dotted lines) and the blue line is the posterior mean for the cluster. Genes marked as
interesting by the biologists are highlighted in thicker lines of red, green and blue.

VI. Clusters classified as potentially not interesting by the algorithm.

VII. Clusters classified as O by the algorithm.

VIII. Potentially circadian, but not accurately repeated: clusters with a peak or trough
in one 24 hour period, but not in the other.

IX. Outliers: clusters containing less than 11 genes.

X. ‘Junk’: clusters with expressions close to zero and non-circadian profiles.

The profiles of each of the 100 clusters identified among the interesting genes are
shown in figures 4 to 19 classified in order according to the ten types above. Within
each type, the clusters are sorted by their phase by maximum (the maximum value of
the posterior mean in the first 24 hours). The second harmonic ratio (SHR) and phase
by maximum (PBM) are given on each plot.

Figures 20 and 21 illustrate the robustness of the initial gene estimates to mispec-
ification of hyperparameters. The clustering is very different when v = 10, 000 rather
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Cluster 31 (109 genes). SHR=0.847, PBM=42.992.
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Cluster 100 (42 genes). SHR=0.834, PBM=43.76.
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Figure 5: Type I clusters: sinusoidal. The black dots are the data points (joined by
dotted lines) and the blue line is the posterior mean for the cluster. Genes marked as
interesting by the biologists are highlighted in thicker lines of red, green and blue.

than v = 0.498 giving us far fewer, but larger, clusters (34 instead of 100) so that we
get intrinsically different solutions. Despite this, the estimated profiles of most genes
do not radically differ under changes in v. This means that the sets of genes identified
to have interesting profiles do not change greatly over large ranges of v. Furthermore,
genes having similar profiles remain close.
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Figure 6: Type I clusters: sinusoidal. The black dots are the data points (joined by
dotted lines) and the blue line is the posterior mean for the cluster. Genes marked as
interesting by the biologists are highlighted in thicker lines of red, green and blue.
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Figure 7: Type I clusters: sinusoidal. The black dots are the data points (joined by
dotted lines) and the blue line is the posterior mean for the cluster. Genes marked as
interesting by the biologists are highlighted in thicker lines of red, green and blue.
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Cluster 99 (12 genes). SHR=0.545, PBM=41.984.
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Figure 8: Type II clusters: sharply rising then sharply falling. The black dots are the
data points (joined by dotted lines) and the blue line is the posterior mean for the
cluster.
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Figure 9: Type III clusters: sharply falling then sharply rising. The black dots are
the data points (joined by dotted lines) and the blue line is the posterior mean for the
cluster.
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Figure 10: Type IV clusters: sharply rising then drifting back to zero. The black dots
are the data points (joined by dotted lines) and the blue line is the posterior mean for
the cluster. Genes marked as interesting by the biologists are highlighted in thicker
lines of red, green and blue.
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Figure 11: Type IV clusters: sharply rising then drifting back to zero. The black dots
are the data points (joined by dotted lines) and the blue line is the posterior mean for
the cluster. Genes marked as interesting by the biologists are highlighted in thicker
lines of red, green and blue.
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Figure 12: Type V clusters: sharply falling then drifting back to zero. The black dots
are the data points (joined by dotted lines) and the blue line is the posterior mean for
the cluster. Genes marked as interesting by the biologists are highlighted in thicker
lines of red, green and blue.
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Figure 13: Type VI clusters: potentially not interesting. The black dots are the data
points (joined by dotted lines) and the blue line is the posterior mean for the cluster.
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Figure 14: Type VI clusters: potentially not interesting. The black dots are the data
points (joined by dotted lines) and the blue line is the posterior mean for the cluster.
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Figure 15: Type VII clusters: other. The black dots are the data points (joined by
dotted lines) and the blue line is the posterior mean for the cluster. Genes marked as
interesting by the biologists are highlighted in thicker lines of red, green and blue.
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Figure 16: Type VIII clusters: potentially circadian, but not repeated. The black dots
are the data points (joined by dotted lines) and the blue line is the posterior mean for
the cluster.
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Figure 17: Type VIII clusters: potentially circadian, but not repeated. The black dots
are the data points (joined by dotted lines) and the blue line is the posterior mean for
the cluster.
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Figure 18: Type IX clusters: outliers. The black dots are the data points (joined by
dotted lines) and the blue line is the posterior mean for the cluster.
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Figure 19: Type X clusters: not interesting. The black dots are the data points (joined
by dotted lines) and the blue line is the posterior mean for the cluster.
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Figure 20: Phase plot of the clusters of the final gene set with v = 0.498. Each dot is
one cluster, its radius is proportional to the number of genes it contains. Its distance
from the origin gives its second harmonic ratio, and the angle indicates the phase by
maximum of the posterior mean profile.
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Figure 21: Phase plot of the clusters of the final gene set with v = 10, 000. Each dot is
one cluster, its radius is proportional to the number of genes it contains. Its distance
from the origin gives its second harmonic ratio, and the angle indicates the phase by
maximum of the posterior mean profile. The structure is broadly similar to that of
figure 20.
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