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Prediction of Pregnancy: A Joint Model for
Longitudinal and Binary Data

Julie Horrocks∗ and Marianne J. van Den Heuvel†

Abstract. We consider the problem of predicting the achievement of successful
pregnancy, in a population of women undergoing treatment for infertility, based
on longitudinal measurements of adhesiveness of certain blood lymphocytes. A
goal of the analysis is to provide, for each woman, an estimated probability of
becoming pregnant. We discuss various existing approaches, including multiple
t-tests, mixed models, discriminant analysis and two-stage models. We use a joint
model developed by Wang et al. (2000), consisting of a linear mixed effects model
for the longitudinal data and a generalized linear model (glm) for the primary
endpoint, (here a binary indicator of successful pregnancy). The joint longitu-
dinal/glm model is analogous to the popular joint models for longitudinal and
survival data. We estimate the parameters using Bayesian methodology.

Keywords: joint model, mixed linear model, generalized linear model, longitudinal
data, binary data

1 Introduction

The medical community defines infertility as the inability to establish a viable pregnancy
over a twelve month period. About 8.5% of Canadian couples fall into this category
and most of these seek medical assistance (Royal Commission on New Reproductive
Technologies Final Report, 1994). It should be recognized that new reproductive tech-
nologies and assisted conception treatments do not cure infertility, but rather circum-
vent it. Twenty percent of infertility cases can be accounted for by sexually transmitted
diseases, while smoking, delayed childbearing, harmful environmental agents, alcohol
abuse, stress and eating disorders have also been shown to have roles in development
of infertility. A significant number of cases of infertility cannot be attributed to any
specific cause and these couples often access every available technology in an effort to
achieve a family. The incidence and costs associated with the treatment of infertility
have become issues of public interest over the past twenty years, particularly as the
success rate hovers around 30%. Thus it is of both public and private interest for physi-
cians and patients to have some indication of the chance of success in attempting a plan
of treatment.

Successful pregnancy is dependent upon the maternal immune system recognizing
and tolerating the growth and development of a fetus, an entity which is foreign to
maternal cells. We focus here on CD56bright cells, a type of lymphocyte which is rare
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in blood and the non-pregnant uterus (representing less than 1% of circulating lympho-
cytes) but abundant in the uterus at the time of implantation and even more prevalent
through the first three months of pregnancy. CD56bright cells are thought to have sig-
nificant roles in promoting the development of a thick and well-nourished uterine lining
by producing factors which encourage the growth of new maternal blood vessels. A re-
duction in the numbers of these cells is postulated to impair blood vessel development,
resulting in implantation failure or inadequate development of the placenta.

In this article, we consider the problem of predicting the achievement of successful
pregnancy, in a population of women undergoing treatment for infertility, based on lon-
gitudinal measurements of adhesiveness of CD56bright cells. Thus, for each woman, we
have a set of continuous longitudinal measurements, and a primary endpoint (a single
binary variable indicating whether the woman subsequently became pregnant). A goal
of the analysis is to provide, for each woman, an estimated probability of becoming preg-
nant and an estimate of the precision of this estimate (preferably an interval estimate).
This probability and associated interval could be used for counseling infertile couples
about whether they could benefit from costly treatment for infertility or for providing
couples in treatment with empirical data about their chances of success if they continue
treatment.

The longitudinal measurements in this application are subject to measurement error,
as well as other sources of variability. For instance, adhesion is measured by dropping
dye-labeled lymphocytes from individual patients onto frozen tissue sections of murine
uterine endometrium mounted on microscope slides, allowing these to interact for 30
minutes, washing away non-adherent cells and counting those lymphocytes that remain.
Rather than count all the cells on a slide, a sample of high-power magnification micro-
scope fields is taken and the number of cells in each field is counted and then averaged
across all sampled fields on the slide. This process is subject to substantial error, arising
both from the sampling and human error due to fatigue, inattention, etc. In addition,
for each woman, there is day-to-day variability in the adhesive properties of her blood
lymphocytes. We would like to make inference about the effect of the “true” adhesion
measurements on the probability of pregnancy, after removing these sources of error.
When the explanatory variable is measured with error, it is well known that regres-
sion estimates from conventional methods (e.g. linear regression, logistic regression) are
biased.

To address these challenges, we use a parametric joint model, consisting of a lin-
ear mixed effects submodel for the longitudinal adhesion data and a generalized linear
submodel for the primary endpoint. The two submodels are linked by the random co-
efficients which appear in both submodels. This model was developed by Wang et al.
(2000). While these authors used frequentist methods to estimate the parameters, here
we estimate the parameters using a Bayesian approach. The methodology is similar to
Bayesian joint models for longitudinal and survival data espoused by Guo and Carlin
(2004).
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2 Controlled Ovarian Hyperstimulation (COH) Study

Women of reproductive age who had been previously diagnosed as infertile were re-
cruited to participate in this study by physicians in the Reproductive Endocrinology
and Infertility Program at London Health Sciences Center, London, Ontario, Canada.
The study was approved by the health sciences research ethics board at University of
Western Ontario, and all recruited patients were fully informed of the potential risks
and signed consent forms before participation. The subset of women discussed in this
article was enrolled in a controlled ovarian hyperstimulation (COH) protocol for in vitro
fertilization. These women underwent daily injections of follicle-stimulating hormones
to increase the number of ova (egg)-containing follicles developing in their ovaries. The
number and size of developing ova and the amount of hormones in their blood were
monitored approximately every other day. When a sufficient number of ova (at least
one) were of mature size, an injection of human choriogonadotropin was administered
to effect their final maturation. The following day, the mature oocytes were aspirated
from the ovaries using ultrasound guided needles, mixed with her partners sperm in a
petri dish and allowed to incubate for 3 days. They were then assessed for fertiliza-
tion and quality as evidenced by cell division and intact cell membranes. Up to three
high quality embryos were then transferred back to the patient’s uterus. Women subse-
quently underwent serum pregnancy tests at 18 days after embryo transfer. If the test
was positive, they were examined by ultrasound at 40 days post-transfer to confirm the
presence of a viable gestational sac and fetal heart.

Exclusion criteria included insufficient response to hormone therapy (such that no
follicles were found to develop) or failure of the sperm to fertilize the eggs (so that no
embryos were available for transfer). For statistical analysis, the day of embryo transfer
was designated time zero, while the day of oocyte pickup and human choriogonadotropin
treatment were designated analysis times -1 and -2, respectively. Blood samples taken
before these days were assigned analysis times of -3, -4, -5, and -6. Because the menstrual
cycle lengths of individual women differed, not all women had measurements at all
time points. The blood samples collected during the monitoring stage were further
analyzed (within 3 hours of collection) as follows. Lymphocytes were separated and
CD56bright cells were dye-labeled using standard methods as previously described by
van Den Heuvel et al. (2005b). CD56bright cells were then layered onto cryosections of
mouse uterine tissues. After 30 min of rotation at 112 rpm in a cold chamber, non-
adherent cells were rinsed off, and the tissue was fixed. Two independent researchers
then counted the number of adherent CD56bright cells in 25 high power fields (x400).
The average number of adherent cells, measured up to 6 times for each woman, became
the longitudinal data in our analysis. Data were log transformed, which stabilized the
variance and led to a more normal distribution.

3 Related Approaches

In this section, we survey existing methods of analysis for continuous longitudinal data
collected on two groups of individuals. Assuming that all individuals are measured at
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the same points in time, a simple approach would be to perform separate t-tests compar-
ing the two groups (e.g. pregnant/not pregnant) at each time point, using Bonferroni
or some other procedure to adjust for multiple comparisons. A more sophisticated
and efficient approach (that does not require common measurement times across all
individuals) is a linear mixed effects model, with the continuous measurement as the
response variable, and with time and group membership and their interaction as ex-
planatory variables. Correlation between continuous measurements over time from the
same individual is accounted for by allowing the within-person correlation matrix to
have non-zero off-diagonal elements. This model, introduced by Laird and Ware (1982),
allows differing random slopes and intercepts for each person. This was the approach
taken in van Den Heuvel et al. (2005b). Mixed-model F-tests indicated a significant
difference between the two groups of women with respect to their longitudinal adhesion
measurements.

For our application, while both the multiple t-tests and mixed model approaches
allow us to say whether or not adhesion was different in the two groups, they do not
allow us to predict whether a woman will become pregnant or to estimate the probability
of pregnancy. In both approaches, the longitudinal data are treated as the response, and
the binary variable (group membership) is treated as the explanatory variable. This is
unpalatable from a causal point of view, because the binary variable (pregnant or not)
is the object of inference and was measured later in time than the longitudinal adhesion
data. A better approach would be to treat the binary variable as the response, and the
longitudinal data as explanatory information.

Logistic regression is commonly used to predict a binary outcome from continuous
and/or discrete explanatory variables measured at a single point in time. However, when
the explanatory information is longitudinal, more complicated strategies are needed. For
instance, a summary measure that collapses the longitudinal information over time (e.g.
overall average, change score, slope, intercept, maximum, minimum, achievement of a
threshold, measurement on a particular day, etc.) could be used as a covariate in a
logistic regression. However, it may be difficult to decide which summary measure to
use, and as there are many candidate measures, there is perhaps a problem of multiple
comparisons. Furthermore, if the longitudinal measurements are non-linear in time, it
may be difficult to come up with a single summary measure. Generalized Estimating
Equations (GEE) can be used to estimate the effect of a time-varying covariate on a
time-varying multi-dimensional response; in our application however, the response has
a single dimension, so GEE is not appropriate.

If the goal is to merely classify individuals into groups, a classical approach is dis-
criminant analysis, where each continuous longitudinal measurement is treated as a
separate explanatory variable. This requires that the measurement times be the same
for every person and furthermore does not exploit the correlation between multiple
measurements made on the same individual over time.

Another possible approach is a two-stage model: first a linear mixed effects model
is fit to the longitudinal data and predicted values of the random slopes and intercepts
are computed; then a logistic regression model is fit to the binary outcome, using the
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random slopes and intercepts as covariates. Other covariates can be included in both
models. Although the two-stage model is easily fit with existing software, it ignores
the error inherent in the predicted random effects which are used as covariates in the
logistic regression model, and thus is not recommended. We will return to this model
below.

While joint models for longitudinal and time-to-event data are ubiquitous and have
spawned a vast literature, joint models for longitudinal and binary outcomes are less
common. This is perhaps surprising, given the pervasiveness of binary outcomes, es-
pecially in medicine and epidemiology, where they are used to indicate the presence of
a disease. However, many binary outcomes are formed by downgrading the informa-
tion contained in time-to-event outcomes. For instance, a binary variable indicating
whether a patient survives five years after the start of treatment is a common outcome
in medicine, but the exact survival time (possibly censored) is more informative. In
this situation, a joint model for longitudinal and time-to-event data would be more
informative than a joint model for longitudinal and binary data.

However, in other applications the exact timing of the event is not of interest. For
instance, for the application considered in this paper, the time of pregnancy within a
single menstrual cycle is clinically irrelevant, as the time of conception is biologically
determined to within a few days. Thus, a joint longitudinal/binary model is appropriate.

Joint models for longitudinal and time-to-event data are well-developed, and have
many similarities to the joint longitudinal/generalized linear models (glm) considered
here. Henderson et al. (2000) propose a class of joint models, based on a latent bivariate
Gaussian process, with a semi-parametric submodel for an event time. Guo and Carlin
(2004) illustrate the fitting of these models with the readily available software Win-
BUGS, and compare them to separate modeling of the longitudinal and time-to-event
data.

Joint models for continuous longitudinal data and binary data have been used to
model data subject to selection or informative dropout in both econometrics (dating
back at least to Heckman (1979)) and biostatistics (for instance Wu and Bailey (1989);
Wu and Carroll (1988)). In these papers, the binary variable is an indicator for possibly
informative dropout and the main focus of inference is the parameters associated with
the continuous longitudinal variable. Gueorguieva and Agresti (2001), building on the
work of Catalano and Ryan (1992) develop a model for clustered binary and continuous
outcomes. Here the effect of covariates on both the binary and continuous outcomes is
the object of inference; the effect of the longitudinal data on the binary outcomes is not
discussed. Longitudinal discriminant analysis has recently been discussed by several au-
thors, including Tomasko et al. (1999), Marshall and Baron (2000), and Wernecke et al.
(2004). Here the goal is to merely classify individuals into groups, and probabilities of
group membership are not given. Roy and Khattree (2005) also discuss longitudinal dis-
criminant analysis and give expressions for parameter estimates, including probabilities
of group membership. However, expressions for standard errors are not given. Their
method however requires that the measurement times be the same across individuals.
The joint longitudinal/generalized linear model used in this paper was introduced by
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Wang et al. (2000) and further developed by Huang and Wang (2001), Wang and Huang
(2001); Li et al. (2004); Li et al. (2007b); and Li et al. (2007a).

With the exception of Guo and Carlin (2004), none of these authors used Bayesian
methodology to estimate the model parameters. A recent paper that does use Bayesian
methods is that by de la Cruz-Mesia and Quintana (2007). These authors classify
observations into two groups based on a nonlinear random effects model and augment
the model with predicted probabilities.

4 Joint Model

The joint model consists of two submodels: a mixed effects model for the continuous
longitudinal data, and a generalized linear model for the primary outcome (which in
our application is a binary indicator of pregnancy). Let Yi = (Yi1, Yi2, . . . , Yimi) rep-
resent the continuous longitudinal measurements for individual i, i = 1, 2, . . . , n, at
measurement times ti1, . . . , timi . The submodel for the longitudinal data can be written
as

Yi = Xiα + ZiUi + εi

where α is a p x 1 vector of unknown fixed-effects parameters, Xi and Zi are known
design matrices of dimension mi x p and mi x q respectively, Ui is a q x 1 vector of
unknown random-effects and εi = (εi1, . . . , εimi) is a vector of measurement errors for
individual i. We assume that

Ui ∼ N(0 ,Σ) and εi ∼ N(0, σ2Imi)

and that U1, . . . , Un, ε1, . . . , εn are independent, where Σ is a q x q covariance matrix
for the random effects and Ik indicates the k x k identity matrix. For example, letting
the jth row of Zi equal (1, tij) for j = 1, . . . ,mi, so that Ui = (Ui1, Ui2)T corresponding
to the random intercept and slope for subject i, and with

Σ =
(

σ2
1 σ12

σ12 σ2
2

)

we obtain a random slopes and intercepts model (see Laird and Ware 1982).

The submodel for the primary endpoint, Ri, is assumed to be a generalized linear
model, with µi = E(Ri), g(µi) = Vi

T β + Ui
T γ and Var(Ri) =Φν(µi), where g(.) is a

known function, often referred to as a link function, Ui is the q x 1 vector of random
effects from the previous submodel, Vi is a vector of observed covariates, β and γ are
vectors of unknown parameters, ν(.) is a known variance function, and Φ is a scale
parameter. The distribution of Ri is assumed to belong to the exponential family of
distributions. For our application, Ri is a binary indicator of successful pregnancy and
follows a Bernoulli(pi) distribution where µi = pi is the probability that individual i
becomes pregnant and ν(pi) = pi(1 − pi) with Φ = 1. We use a logit link function,
although probit and complementary log-log are common choices.



J. Horrocks, M. van Den Heuvel 529

The two submodels are linked by their common random effects Ui. Consequently,
the vector parameter γ measures the strength of the association between the two models.
If γ = 0, then the longitudinal data has no predictive ability for the primary endpoint.

4.1 Estimation

We use Bayesian methods to estimate the parameters of the joint longitudinal/glm
model, as software is readily available. Specifically we used the software package Win-
BUGS, which estimates the posterior distribution of the parameters using Markov Chain
Monte Carlo (MCMC) methods. Of course, prior distributions must be specified for the
parameters of the model. We use proper but vague prior distributions, since prior
knowledge is limited and elicitation is difficult for this application. These prior distri-
butions have large variances, and so have little effect on the final model, which is largely
determined by the data. For the regression parameters (α and β), we use multivariate
normal priors with mean 0 and a diagonal covariance matrix with large diagonal ele-
ments. In other words, we specified independent normal priors with large variances for
the regression parameters. An inverse gamma prior was used for the measurement error
variance σ2. A multivariate Wishart distribution can be used for the covariance matrix
Σ of the random effects, or, for models with a single random effect, an inverse gamma
can be used for the variance of this random effect.

4.2 Two-Stage Model

A two-stage version of the model can be fit with readily available software for classical
statistical methods, as follows. First, a linear mixed model is fit to the longitudinal data
Yi, and predicted values Ûi for the random effects are computed. Then, the predicted
values of the random effects are used as covariates in a generalized linear model for
the primary endpoint. This two-stage method is essentially the regression calibration
approach studied by Wang et al. (2000, section 4).

The longitudinal model can be fit, for instance, using SAS Proc Mixed or the Splus
function nlme. Then the estimated best linear unbiased predictors (BLUPs) for the
random effects can be included as covariates in a logistic regression, which can be fit
using SAS Proc Logistic or Proc Genmod or using the Splus function glm. However
this two-stage model is not recommended as error in the estimation of the random
coefficients is not accounted for, and it can result in biased inference (see Wang et al.
2000). We have included the two-stage model here for comparison.

5 Analysis of COH data

In the COH protocol, adhesion of blood lymphocytes was measured up to 6 times, on 18
women undergoing in-vitro fertilization. Figure 1 shows log adhesion for the 7 women
who became pregnant (top panel) and the 11 women who did not become pregnant (bot-
tom panel). We present here a simplified model with only random intercepts and time as
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the single covariate. A full analysis would likely include other covariates. While a ran-
dom slopes and intercepts model would usually be expected to give better predictions,
for our data such a model resulted in numerous trap errors in WinBugs. Investigations
of the longitudinal submodel indicated that the variance of the random slopes is very
close to zero, so that a random slopes and intercepts model is not supported by these
data.

Let Yij represent the log adhesion measurement on the ith individual (i = 1, 2, . . . , n)
at time tij , where tij is the jth day before embryo transfer for the ith individual, and
let pi represent the probability that the ith individual becomes pregnant.

A joint model for these data consists of a random-intercept submodel for the longi-
tudinal adhesion measurements and a logistic model for the response:

Yij = α0 + α1tj + Ui + εij

logit(pi) = β0 + γ1Ui

where
εij ∼ N(0, σ2)

and
Ui ∼ N(0, σ2

1).

In this study individuals were measured at approximately the same times in their men-
strual cycle, so that tij = tj for i = 1, 2, . . . , n; however some times were missing for
some individuals. The Ui are the random intercepts and the parameters to be estimated
are α0, α1, σ

2, β0, γ1 and σ2
1 .

In WinBUGS, the normal distribution is parameterized with mean and precision
parameters, where the precision is the inverse of the variance. For the parameters
α0, α1, β0 and γ1, we used normal priors with mean 0 and precision 0.01 (ie variance
1/0.01=100). For variance parameters, denoted generically as σ2, a common practice in
WinBUGS is to define τ = 1/σ2 and specify that this has a gamma prior distribution,
so that the prior distribution for σ2 is inverse gamma. Both 1/σ2 and 1/σ2

1 were given
gamma(0.1,0.1) prior distributions. We used the Brooks-Gelman-Rubin (BGR) diag-
nostic tool in WinBUGS to check that the model had converged after 20000 iterations.

At each iteration of the Markov chain, WinBUGS calculates estimates of all the
parameters and any missing values, as well as predicted random intercepts Ûi, i =
1, 2, . . . , n. The predicted probability of pregnancy for person i, p̂i, can be calculated as

p̂i = exp(η̂i)/(1 + exp(η̂i))

where
η̂i = β̂0 + γ̂1Ûi.

The results from the model are shown in Table 1. There is evidence that the pa-
rameter γ1 is different from 0, since the 95% credible interval does not include 0. Thus
there is evidence that a linkage exists between the two models and that the longitudinal
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adhesion data can be used to predict pregnancy. The fact that the sign of γ1 is positive
indicates that individuals with higher random intercepts for the adhesion measurements
tend to have a higher probability of becoming pregnant. However the credible interval
is very wide (1.2, 19.8) and this parameter is less well-estimated than the other param-
eters of the model. This could be due to complete or quasi-separation induced by the
estimated U parameters in the logistic regression model. Briefly, (quasi-) separation
occurs when group membership can be (nearly) perfectly predicted by the model.

To check the fit of the model, we plotted residuals from the longitudinal submodel
against time. For mixed models, numerous types of residuals have been defined. The
marginal residuals are defined as

rm
ij = yij − xT

i α̂

where xT
i = (xij1, . . . , xijp) and conditional residuals (conditional on random effects)

as
rc
ij = yij − xT

i α̂ − zT
i Ûi

where zT
i = (zij1, . . . , zijq). Figure 2 shows plots of studentized residuals, which are

the above residuals, divided by their respective estimated standard errors. These plots
did not indicate any systematic lack of fit. As another approach, we tested the lin-
ear submodel for the longitudinal data against more complicated models. Models with
higher-order polynomials (up to the fourth degree) for the mean response did not im-
prove the fit over the linear model for the mean, as measured by AIC and BIC. A model
that allowed different means at each time point also did not fit better than the simple
linear model.

The longitudinal submodel assumes that individual-level random effects, Ui, have
a normal distribution. It is well known (see for instance Verbeke and Lesaffre (1997);
Heagerty and Kurland (2001)) that if this assumption is not satisfied, inferences can
be compromised, and this problem also occurs with joint models (Li et al. 2004). We
examined histograms and qqplots of the random effects and conducted a Shapiro-Wilks
test which did not indicate signifcant deviation from normality (p=0.6725). For a joint
model which does not assume any distribution for the random effects, see Li et al.
(2004).

Furthermore, the model used here assumes that the measurement errors, εij , are
independent and identically distributed (i.i.d.) from a normal distribution. While the
assumption of a normal distribution is wide-spread in the literature and often suitable
(perhaps after a transformation), the assumption of i.i.d. errors should be carefully
checked. To test the i.i.d measurement error assumption, we fit a longitudinal submodel
with AR(1) covariance structure. This did not fit the data as well as the random
intercept model, as measured both by AIC and BIC. We also fit a model where the
variance was allowed to be different in the two groups. Again this model did not fit
better than the simple random intercepts model.

The joint model also produces predicted probabilities of becoming pregnant (see
Table 1). Here the posterior mean is used as a point estimate of the predicted probability
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and 95% credible intervals (CI) are also shown. The intervals are wide, but would
presumably be narrower with a larger data set. If we take a predicted probability of 50%
or higher as predicting pregnancy, then the predictive accuracy of the model was 83%,
i.e. the pregnancy outcomes for 15 out of the 18 women were correctly predicted by the
model. Specifically, 5 out of 7 women were correctly predicted to become pregnant, and
10 out of 11 were correctly predicted to remain not pregnant. These calculations were
made by using the same data to fit and test the model and so are overly optimistic. As
an alternative, cross-validation was performed by leaving one response out, re-fitting the
model, and predicting the response for the omitted observation. With cross-validation,
the predictive accuracy was estimated as 77.8%.

The model predictions can be used to counsel women who participated in the study,
but did not achieve pregnancy during the study. For instance, the joint model predicts
that the probability of pregnancy for woman 1 is 0.657 (95% CI=(0.143, 0.980)). On
the basis of these results, woman 1 may decide to continue with fertility treatments
since her point estimate is greater than 0.5 and the upper limit of her 95% CI is close
to 1. On the other hand, woman 2 may decide to forgo future treatments as her point
estimate is only 0.053 with 95% CI (0.000,0.313). However, the decision to continue
with further treatments is very emotional and these model-based probabilities will be
only a small factor in the decision-making.

The women in this study were already undergoing COH treatment for infertility.
However the adhesion of CD56bright cells can also be studied in women who are not
currently undergoing treatment for infertility (see van Den Heuvel et al. 2005a) but
who may be deciding whether or not to attempt IVF treatment for infertility.

Table 1 also shows estimates and 95% confidence intervals from a two-stage model,
fit using SAS Proc Mixed and Proc Logistic. The parameter estimates are similar
for both the joint and two-stage approaches and the interval estimates for the mixed
submodel are similar in width. However for most parameters of the logistic model, the
two-stage approach gives narrower interval estimates. This is presumably because the
two-stage model does not account for the error in the estimates of the random effects.
As previously stated, the estimates from the two-stage model are known to be biased.

6 Conclusions

In this article, we have used a joint longitudinal/glm model developed by Wang et al.
(2000), to predict pregnancy in a group of women undergoing treatment for infertility,
based on longitudinal adhesion measurements. This procedure has the potential to
target therapy to couples who would have a high likelihood of success in treatment,
while concurrently saving couples unlikely to benefit from the emotional and financial
costs involved. While the results presented here are promising, further research is needed
to study the sensitivity and specificity of the adhesion model on a broader cohort of
women.

It is easy to envision similar applications. For instance, the incidence of type II
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diabetes is increasing in western societies. It is largely preventable by early medical
intervention which encourages healthy weight and activity levels. The joint model used
here may be useful in monitoring waistlines and/or body mass index of overweight
people and used to predict which individuals are at high risk of developing diabetes in
the next year. Alternatively, the model could use serial blood pressure measurements
to predict an individual’s risk of stroke or heart disease.

In this application, the measurement times were approximately the same for all in-
dividuals, although some missing values occurred. In many applications, measurement
times would vary across individuals but this would present no problem to either the
joint or two-stage model, as the mixed linear submodel can handle unequal measure-
ment times. Smoothing splines or functional data analysis could also be used for the
longitudinal submodel. Registration of the longitudinal profiles is also of interest. It
is possible that some women have shorter menstrual cycles than others, and so per-
haps a time scale other than day of menstrual cycle would be more appropriate. Again
functional data analysis may have something to offer in this respect.

We have estimated the parameters using a Bayesian approach. The advantage of a
Bayesian analysis is that it provides exact inferences, versus the asymptotic approxima-
tions on which maximum likelihood estimation is based. Also it can easily be fit using
available software (WinBUGS). Furthermore, specifying a prior distribution for the pa-
rameters gives the researcher the opportunity to incorporate any existing information
into the model. If little or nothing is known about a parameter, a non-informative prior
can be used.

This model has many similarities to joint models for longitudinal and time-to-event
data. A binary variable can always be constructed by downgrading a time-to-event
variable; for instance a binary variable indicating 5-year-survival can be constructed
from a variable recording time from treatment until death. However the time of death
is generally more informative and where possible this should be used. Of course, there
are some applications, such as the one considered here, where a binary response is
required.
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Joint Model Two-Stage Model

Posterior
Parameter Mean 95% CI Estimate 95% CI

Linear Mixed Effects Submodel
α0 1.389 (1.142, 1.650) 1.395 ( 1.145, 1.645)
α1 0.045 (0.000, 0.105) 0.047 (-0.012, 0.107)
σ2

1 0.137 (0.054, 0.297) 0.109 ( 0.014, 0.204)
σ2 0.136 (0.092, 0.198) 0.124 ( 0.077, 0.170)

Logistic Submodel
β0 -0.810 (-3.157, 1.149) -0.564 (-1.672, 0.545)
γ1 7.599 (1.134, 19.760) 4.462 (-0.228, 9.151)
p1 0.657 (0.143, 0.980) 0.806 ( 0.314, 0.974)
p2 0.053 (0.000, 0.313) 0.049 ( 0.003, 0.487)

Table 1: Joint Model and Two-Stage Model for the Adhesion Data
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Figure 1: Log adhesion of CD56bright cells versus measurement day for women who
became pregnant (top) and those who did not (bottom).
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Figure 2: Studentized Marginal Residuals (top) and Studentized Conditional Residuals
(bottom).


