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Flexible Univariate Continuous Distributions

Fernando A. Quintana∗, Mark F.J. Steel† and José T.A.S. Ferreira‡

Abstract. Based on a constructive representation, which distinguishes between a
skewing mechanism P and an underlying symmetric distribution F , we introduce
two flexible classes of distributions. They are generated by nonparametric mod-
elling of either P or F . We examine properties of these distributions and consider
how they can help us to identify which aspects of the data are badly captured
by simple symmetric distributions. Within a Bayesian framework, we investigate
useful prior settings and conduct inference through MCMC methods. On the basis
of simulated and real data examples, we make recommendations for the use of our
models in practice. Our models perform well in the context of density estimation
using the multimodal galaxy data and for regression modelling with data on the
body mass index of athletes.

Keywords: density estimation, location-scale, modal regression, moment existence,
skewness, unimodality

1 Introduction

In many applications, modelling continuous variables using simple default distributions,
such as the normal, may not be appropriate and we need to consider more flexible
alternatives. In adopting such general models, however, we typically leave one question
unanswered: which aspect of normality was inappropriate in the context of the specific
application? Was it symmetry, unimodality, or the light tails? Or some combination of
these? In other words, we wish to assess which features of the default distribution are
not well supported by the data. Therefore, we will consider flexible modelling within a
constructive framework, provided in Ferreira and Steel (2006), which applies a skewing
mechanism (a probability density function p on the unit interval) to an underlying
symmetric distribution, say, F with density f . The form of the multiplicative skewing
mechanism can give us a more precise idea of what specific aspects of F are not correctly
capturing the data. This could include any of the characteristics already mentioned plus
others such as the existence of moments or different left and right tail behavior. By
separating out p and f , we maintain a certain amount of control over properties of the
distributions, as well as interpretability.

We adopt flexible representations for either p or f . In a first model, we use a
flexible skewing mechanism, based on Bernstein densities, which allows for a large variety
of distributional shapes, keeping a simple default form for f . In a second modelling
approach, we use a parametric construct for the skewing mechanism as in Ferreira and
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Steel (2006), but allow for a flexible f through a nonparametric mixture of uniforms. The
latter framework will always generate unimodal distributions, which can be desirable in
regression modelling.

In this paper, inference will be conducted within a Bayesian framework, but the
sampling models proposed here could, of course, also be analysed through other infer-
ential schemes. A Bayesian setting, however, makes it easier to control the properties
of the models through careful prior choices.

There is a substantial literature on flexible density estimation, which is far too exten-
sive to list here. Many of the existing methods are based on kernels, splines or wavelets.
The methods proposed here are set apart from the vast majority of the literature by
the focus on constructive modelling, which allows us to conduct separate inference on
various aspects of interests, such as skewness or tail behaviour. In particular, the model
with flexible skewing mechanism allows us to conduct inference on differential moment
existence in both tails of the distribution and also leads to an immediate calculation of
the Bayes factor in favour of the symmetric model F . The second model with a flexible
underlying symmetric distribution leads to straightforward inference on skewness and
on the mode of the distribution. Flexible modelling in a more structural setting is rare:
one example is Ma and Hart (2007), where a different multiplicative skewing mechanism
is estimated nonparametrically using classical local likelihood methods.

This article is structured as follows. Section 2 presents and discusses the two mod-
els, including our proposed prior definition. Section 3 applies these models to several
simulated data sets. Section 4 discusses applications to two real data sets, also consid-
ering extensions to linear regression with flexible error distributions. We conclude in
Section 5 with some final remarks and recommendations.

2 Model Definition

We adopt the general modelling strategy introduced in Ferreira and Steel (2006) based
on extending the inverse probability integral transformation. In particular, if a random
variable X has distribution P on the unit interval, consider Y = F−1(X) with F the
cumulative distribution function (cdf) corresponding to a symmetric unimodal pdf f .
This leads to a univariate probability density function (pdf) for Y of the form

h(y|F, P ) = f(y)p[F (y)], (1)

where p is the pdf of the distribution P . Throughout the paper, we will consistently use
the notation F and P for the distributions (and their cdf’s) defined above, and use H for
the distribution generated by (1). Generally, pdf’s are denoted by the corresponding
lower-case letters and π will indicate a prior pdf or probability mass function. We
will focus on random variables Y defined on the real line <, but extensions to subsets
of < are straightforward, by appropriately defining the domain of F . Note that F is
modified by the multiplicative skewing mechanism P , which is chosen so that it does
not depend on the underlying symmetric distribution F . Without this requirement,
other modelling strategies, such as the generalized skew-elliptical class of Genton and



F. A. Quintana, M.F.J. Steel and J. T. A. S. Ferreira 499

Loperfido (2005) can also be generated, but we would lose the separate interpretability
of P and F . Throughout, we assume that both p and f exist and are continuous. The
choice of p determines the form of h. For instance, p(x) = 1 for all x ∈ (0, 1) means
h(y) becomes just f(y). Other interesting properties are related to the limiting values
of p. For example, p(0) = 0 implies a downweighting of the left tail, while p(1) = 0 does
the same for the right tail. By making the limits of p zero or infinity, we can make the
order of moment existence of h(y) different from that of f(y).

For modelling purposes, consider the location-scale family corresponding to (1), de-
fined as

h(y | F, P, µ, σ) =
1
σ

f

(
y − µ

σ

)
p

[
F

(
y − µ

σ

)]
. (2)

A general model for density estimation problems based on a sample of size n assumes
that

Y1, . . . , Yn | F, P, µ, σ ∼ h(y | F, P, µ, σ),

with h defined as in (2). Extensions to regression models are immediate, as discussed
in Subsection 4.2.

A flexible model based on (2) will be constructed using either of the two procedures
we describe next. In the first, which we will call the Bernstein-skew model, we adopt
a parametric form for the pdf f and model p(x) nonparametrically using Bernstein
densities. The other model, named the flexible unimodal construct considers a
parametric definition of p(x) and a flexible definition of f(y) through a nonparametric
mixture of uniforms. The two approaches have different properties and motivations.
The flexible model for p(x) will support multimodality of the resulting pdf h(y); the
other approach, however, is constructed with the specific purpose of generating only
unimodal outcomes.

Density estimation is formalized by means of the posterior predictive density p(Yn+1 |
y1, . . . , yn) which can be obtained via posterior simulation using MCMC algorithms.

2.1 The Bernstein-Skew Model

We start by specifying a convenient symmetric density f(y). We choose a Student tν
distribution with unknown degrees of freedom ν. Next, we adopt a flexible representa-
tion for the skewing mechanism p(x). Given the constructive representation of skewed
distributions introduced above, a completely unrestricted nonparametric treatment of
the skewing mechanism may look appealing. As P can be any distribution in (0, 1), the
possibility to model it in an unrestricted fashion seems tempting. However, this would
effectively generate the entire class of continuous distributions and, thus, we would lose
control over the properties of the resulting skewed distributions.

Here we try to reach a compromise between an unrestricted nonparametric skewing
mechanism and one for which some interesting results are still available. We make use
of Bernstein densities (see, e.g. Petrone 1999; Petrone and Wasserman 2002) to model
p. Given a positive integer m and a weight vector wm = (wm

1 , . . . , wm
m), a Bernstein
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density is defined as

p(x | m,wm) =
m∑

j=1

wm
j Be(x | j, m− j + 1), (3)

where m ∈ {1, 2, . . .}, wm is constrained by wm
j ≥ 0 for all 1 ≤ j ≤ m and

∑m
j=1 wm

j = 1,
and we use the Beta pdf’s

Be(x | j, m− j + 1) =
m!

(j − 1)!(m− j)!
xj−1(1− x)m−j , 0 ≤ x ≤ 1.

Bernstein densities have characteristics that make their use as flexible skewing mech-
anisms quite attractive. Observe that m = 1 leads us back to the original model F .
Also, for any choice of m, if we take wm

i = 1/m, i = 1, . . . ,m, then P is Uniform which
implies that we retain the original symmetric distribution F . Further, as long as there
is a j∗ ∈ {1, . . . , m∗}, with m∗ = m/2 if m is even and m∗ = (m− 1)/2 otherwise, such
that wm

j∗ 6= wm
m−j∗+1, then p(x|m,wm) is asymmetric.

Members of the class of distributions generated by this skewing mechanism are often
multimodal. Multimodality becomes more common as m increases. Intuitively, as m
gets larger the skewing mechanism in (3) averages over Beta pdf’s that are more “spiked”
and relatively large values of the weights that are far apart (in terms of j) then easily
lead to multimodality.

For a given ν, our choice of f(y) has finite moments up to order less than ν. We
now present the following definitions to characterize tail behaviour.

Definition 1. Let G be the distribution of a random variable Y in <. We define:

(i) Largest left moment of G : MG
l = sup{q ∈ <+ :

∫ 0

−∞ |y|qdG < ∞}.
(ii) Largest right moment of G : MG

r = sup{q ∈ <+ :
∫∞
0

yqdG < ∞}.
(iii) Largest moment of G : MG = min{MG

l ,MG
r }.

If distribution G is symmetric with continuous pdf, as is the case for F , then MG
l =

MG
r = MG. As examples, the Normal and Logistic distributions have MG = ∞ while

the heavier tailed tν has MG = ν.

As the parameters of the Beta distributions in the mixture in (3) are never smaller
than unity, p(x|m, wm) is bounded and, therefore, one can easily deduce that
MH

l ,MH
r ≥ MF . Actually, if we exclude zero weights we obtain MH

l = MH
r = MF

from Theorem 3 in Ferreira and Steel (2006). Now we discuss how to allow for more
flexible tail behaviour.

The next Theorem presents a useful result regarding tail behaviour of h(y). For
the sake of brevity, we only analyse the effect on MH

l . Treatment for MH
r is entirely

analogous.
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Theorem 1. If limy→−∞
p[F (y)]
|y|b is positive and finite for some b ∈ <, then MH

l =
MF − b.

The result in Theorem 1 is particularly interesting when f(y) is a Student-t pdf,
since we can derive the following:

Theorem 2. In the model (2) with skewing mechanism (3) and a Student distribution
with ν degrees of freedom for F , the restriction wm

1 = · · · = wm
k = 0 implies that

MH
l = (k + 1)ν. Similarly, wm

m−k+1 = · · · = wm
m = 0 implies MH

r = (k + 1)ν.

Therefore, we have a specific interest in the case where some of the weights at the
extremes are zero. This is done by means of a prior distribution that assigns positive
probability to such events. For simplicity, we consider here only the case k = 2, i.e., we
assess whether the data supports existence of two or three times the number of original
moments, in the left or the right-hand tail. The tail(s) that is (are) not affected by
zero weights will have the same moment existence as F and will, in principle, allow us
to learn about ν. In practice, when faced with very multimodal data, we will need to
use fairly large values for m and we will then often fix ν to avoid introducing too much
flexibility.

In summary, the Bernstein-skew model accommodates very general distributional
shapes, with e.g. multimodality, but does allow us to control or monitor the relative
tail behaviour (in terms of left and right moment existence) by manipulating the weights.
By allowing for k zero weights on either end, we give the data the opportunity to inform
us on differences in moment existence up to a factor of k + 1. Finally, both the skewing
mechanism in (3) and the symmetric density f are smooth functions, which means that
the Bernstein-skew model will generate smooth skewed distributions.

Prior specification

In the sequel, wm
−i represents the wm vector with the coordinates in i ⊂ {1, . . . ,m}

removed. Also a point-mass distribution at a is denoted by δa(·). In view of the
discussion following Theorem 2, we adopt the following prior for the weights in (3)

π(wm | m, cm, θl
1, θ

l
2, θ

r
1, θ

r
2) = θl

1(1− θl
2)

[
δ0(wm

1 ),Dirm−1(wm
−1 | cm

−1)
]

+θl
1θ

l
2

[
δ(0,0)(wm

1 , wm
2 ),Dirm−2(wm

−(1,2) | cm
−(1,2))

]

+θr
1(1− θr

2)
[
δ0(wm

m),Dirm−1(wm
−m | cm

−m)
]

+θr
1θ

r
2

[
δ(0,0)(wm

m−1, w
m
m), Dirm−2(wm

−(m−1,m) | cm
−(m−1,m))

]

+(1− θl
1 − θr

1) Dirm(wm | cm), (4)
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for known constants θl
i, θ

r
i ∈ [0, 1), i = 1, 2 such that θl

1 + θr
1 < 1. Here

Dirk(zk | ck) =
Γ(ck

1 + · · ·+ ck
k)

Γ(ck
1) · · ·Γ(ck

k)
z

ck
1−1

1 · · · zck
k−1

k

denotes the Dirichlet pdf, given a parameter vector of positive entries ck = (ck
1 , . . . , ck

k),
and where zk = (z1, . . . , zk) is constrained by zi > 0 for all 1 ≤ i ≤ k and

∑k
i=1 zi = 1.

Also, θl
1 and θr

1 in (4) represent the marginal prior probabilities that wm
1 = 0 and

wm
m = 0, respectively. Likewise, θl

2 and θr
2 represent the conditional probabilities that

wm
2 = 0 and wm

m−1 = 0, given that wm
1 = 0 and wm

m = 0, respectively. If, for instance,
wm

1 = wm
2 = 0, then (wm

3 , . . . , wm
m) have a joint Dirichlet distribution in the appropriate

space. By taking θl
1 = θr

1 = 0, we restrict left and right moments to be the same as
that of the underlying symmetric distribution, since p(x | m,wm) will then always be
strictly positive. The square brackets in (4) indicate a mixed distribution with point
masses on some weights and a continuous Dirichlet distribution on the remainder.

The conditional prior for the weights in (4) implicitly assumes that m > 2; we do not
impose this but simply adapt the prior on the weights accordingly for smaller values of
m. We treat the number of components m as unknown, and adopt a prior for it based
on a Poisson distribution. In particular, we choose 0 < ψ < 1 and λ > 0 and define
π(m) as

π(1) = ψ, π(m) =
(1− ψ)λm exp(−λ)

m!(1− exp(−λ)− λ exp(−λ))
, m = 2, 3, . . . . (5)

The use of a point mass at one implies that the symmetric model F is assigned a positive
prior probability equal to ψ.

The prior on (m,wm, µ, σ, ν) is then chosen as

π(m, wm, µ, σ, ν) = π(m)π(wm | m)π(µ)π(σ)π(ν),

where π(ν) = U(0, νmax), π(σ) = U(0, S), π(µ) = N(µ0, τ), and π(wm | m) and π(m)
are given by (4) and (5), respectively. Choices for the Dirichlet parameters cm in (4)
will be discussed in the next subsection.

Choices for Dirichlet parameters

In the prior for wm in (4), the choice of the Dirichlet parameter vector cm is critical.
As we know, equal weights wm

i = 1/m result in maintaining the original symmetric
distribution F , and centring the prior over F might be a reasonable choice. In the
situation when all weights are positive (i.e. abstracting from the point masses at the
extremes), this is obtained for equal values of cm

i , say cm
i = b. This will lead to

E(wm
i ) =

1
m

and Var(wm
i ) =

m− 1
m2(mb + 1)

,

implying a coefficient of variation equal to

CV(wm
i ) =

√
m− 1
mb + 1

.
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As m increases, the sample information on each wm
i will normally decrease, so it might

be reasonable to impose more prior structure. This reasoning would have CV(wm
i )

decrease with m, which suggests choices for b that are increasing in m. For example
b =

√
m/10 would lead to a coefficient of variation of 1.374 for m = 5 and 0.667 for

m = 500.

Another consideration, however, is that accounting for outlying observations far out
in the tails through the incorporation of extra (smaller) modes might be difficult if the
prior on the weights is too tight. Such modes have to be accommodated by one or at
best a few Bernstein densities with j close to 1 (in the left tail) or m (in the right tail).
This implies that many of the weights out in the tails will have to be very close to zero.
The densities building up the centre of the distribution (corresponding to j around m/2)
do not have this problem, as there is rarely need to let the resulting density dip down
all the way to zero in the central part of the distribution. This would suggest that the
prior on the extreme weights should be less concentrated, and can be accommodated
by taking e.g. for some d > 0

cm
i =

√
m(

d + (m+1
2 − i)2

) , (6)

which for d = 10 leads to coefficients of variation 50 times as large in the extremes than
for the central weights (using m = 300). In addition, this makes the mean weights in
the centre much larger than in the tails, which seems a priori reasonable. This also
concentrates the skewing mechanism to assign a relatively large amount of mass to the
centre of the distribution. Of course, now we lose the exact centring over F as the
prior weights are no longer all the same. A less extreme version of the prior above is
generated by taking d = 50 in (6), which leads to a CV inflation by a factor 22 in the
tails for m = 300.

In the sequel, we shall investigate a number of prior choices for cm, denoted as
follows:

• Prior 1: cm
i = 1

• Prior 2: cm
i =

√
m/10

• Prior 3: cm
i =

√
m/50

• Prior 4: the prior in (6) with d = 10

• Prior 5: the prior in (6) with d = 50.

For prior 1 the coefficient of variation slowly increases with m, while for all other priors
it decreases. Prior weights are exchangeable for Priors 1-3, but not for Priors 4 and 5
as explained above. Other choices for cm (such as cm

i = 1/m) were also examined, but
found to work less well in practice.
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2.2 The Flexible Unimodal Construct

The Bernstein-skew model is especially targeted to density estimation problems, where
the goal is to provide as much flexibility as possible, without imposing restrictive con-
ditions on the shape of the distribution. The flexible unimodal construct involves a
different modelling strategy. Here we start with a general unimodal symmetric dis-
tribution, and incorporate a skewing mechanism p that is constrained to be unimodal
with mode at 1/2. From Theorem 2 in Ferreira and Steel (2006), this ensures that
the resulting skewed distribution is unimodal with the same mode as f , a necessary
property in the context of modal regression models. In particular, we follow Ferreira
and Steel (2006) and choose their constructed skewing mechanism with proportional
tails p(x) = p(x | δ, r). An explicit description of this skewing mechanism is rather
complicated, so we refer the interested reader to the original paper for more details.
This particular choice of p accommodates skewness around the mode and in the tails
of the distribution, without altering moment existence. Both tails are proportional to
each other and MH

l = MH
r = MF . The parameter δ ∈ < controls skewness around the

mode, while r > 0 is the ratio of the right to the left tail, which induces skewness in the
tails. For δ = 0 and r = 1 we recover the original symmetric distribution F . Positive
values of δ indicate positive (right) skewness in the central part of the distribution, and
r > 1 leads to more mass in the right tail than in the left.

In order to aid the interpretation of P as a skewing mechanism, this approach for-
mally restricts the class of P such that the only P leading to a symmetric h is the
uniform. We choose the skewing mechanism such that p has two continuous derivatives.
However, the smoothness of P will not be inherited by the resulting distribution H,
as the symmetric distribution F (to be defined below) will not have the same smooth-
ness properties. As a consequence, the flexible unimodal construct will not necessarily
generate smooth predictives, but it will have a lot of flexibility to adapt to the data.

Thus, in this approach, we maintain unimodality and control skewness. An inter-
esting skewness measure for unimodal distributions is the one proposed by Arnold and
Groeneveld (1995), defined as 1 minus twice the mass to the left of the mode (denoted
by AG skewness, henceforth). Ferreira and Steel (2006) give an expression for AG skew-
ness as a function of δ and r, which applies here as we are using their proposal for P ,
and the choice of F does not affect this measure of skewness.

To model F in a flexible manner, we use the representation of unimodal symmetric
densities as mixtures of uniform distributions:

f(y) =
∫ ∞

0

1
2θ

I{y ∈ (−θ, θ)} dG(θ), (7)

as discussed in Brunner and Lo (1989), where I{·} is the indicator function and where
G is a distribution function on the positive real numbers. In particular, for G in (7) we
adopt a stick-breaking prior distribution with a finite number of terms. Thus, G can be
expressed as

G(·) =
N∑

i=1

wiδθi(·), (8)
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where, for independent random variables V1, . . . , VN−1 with Vi ∼ Be(ai, bi) and known
ai and bi, we set w1 = V1 and wk = Vk

∏k−1
j=1 (1−Vj) for k = 2, . . . , N , and VN = 1, which

guarantees P (
∑N

i=1 wi = 1) = 1. Furthermore, θ1, . . . , θN are i.i.d. draws from some
absolutely continuous centering probability measure G0 on the positive real numbers,
and independent of the weights wi. Under this specification, the resulting G will be
centered around G0 for any given N , in the sense that for any Borel measurable subset
of <+, E(G(B)) = G0(B). A natural choice is an exponential G0 with mean 1/ζ,
which is thus the mean and the standard deviation of the atoms θ1, . . . , θN . We also
experimented with different forms for G0, such as a Gamma distribution with shape
parameter 2 and unknown scale, but results were virtually identical.

The reason for using a finite representation in (8), rather than the more common
infinite one (giving rise, for constant ai = 1 and bi = M to Dirichlet process priors) is
that it allows explicit expressions for f and F in (1) or (2). In the particular implemen-
tation used for the examples, we have taken N fixed, but we could, in principle, also
allow for unknown N . However, we feel that taking, say, N = 50 allows for sufficient
flexibility in practice.

The resulting skewed density function can be expressed as before in (2), where F (y)
now corresponds to the pdf in (7) and we use the constructed skewing mechanism
p(x | δ, r). The resulting distribution will be unimodal with mode equal to µ. We adopt
ai = 1 and bi = M for 1 ≤ i ≤ N − 1 so that a priori E(wk) = Mk−1/(M + 1)k for
1 ≤ k ≤ N − 1 and E(wN ) = [M/(M + 1)]N−1, which describes the expected weight
given to each of the different atoms in (8). The prior on the remaining parameters is
taken to be

π(µ, σ, δ, r,M, ζ) = π(µ)π(σ)π(δ)π(r)π(M)π(ζ),

where π(µ) = N(µ0, τ), π(σ) = U(0, S), π(r) corresponds to a log-normal with scale τr,
and π(δ) to a t distribution with νδ degrees of freedom and scale parameter τδ. Thus,
the prior is centred over symmetry. For π(M) we take a Gamma distribution with shape
parameter αM and mean αM/βM , and the prior for ζ is a Gamma with shape parameter
αζ and unitary mean. Making ζ and M stochastic allow us to learn about the spread of
the N atoms and the different weights assigned to each of them. Flexibility on ζ allows
the data to choose a sensible centring distribution, so that even with relatively small N
a good fit can be obtained.

3 Results with simulated data

For all applications (on simulated data in this section and on real data in the next), we
use the following prior settings. The Bernstein-skew model is used with ν ∼ U(0, 100),
σ ∼ U(0, 100), µ ∼ N(0, 1002). Throughout, we take θl

1 = θr
1 = 0.24 and θl

2 = θr
2 = 1/6

and ψ = 0.1. Furthermore, we vary prior choices for cm and λ in the priors (4) and (5),
and sometimes we keep ν fixed.

In the flexible unimodal construct, we use the same priors for µ and σ as in the
Bernstein case and choose the prior hyperparameters τr = 5, τδ = 25, νδ = 5, αM = 0.4,
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βM = 0.2 and αζ = 0.1. We base the model on a stick-breaking prior for G with N = 50.

For both models, the prior is centred over symmetry.

3.1 Student t

We simulate samples of n = 100 and n = 2000 observations from a Student-t distribution
with 5 degrees of freedom.
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Figure 1: Simulated Student-t data, Bernstein-skew model: Posterior predictive densi-
ties, overplotted with the normalized data histogram. Left panel: n = 100, using Prior
5 for λ = 10 (solid line) and λ = 20 (dashed line). Right panel: n = 2000, with Prior 5
for λ = 10 (solid line) and λ = 20 (dashed line).

For the Bernstein-skew model, we use fairly low values for λ in the prior for m (see
(5)), as these are obviously very regular and unimodal data. Posterior predictive results
are virtually unaffected by the choice of cm (see Subsection 2.1) and by the selection
of λ = 10 or λ = 20, especially when we use Priors 4 and 5 in (6). For the sample
of 100 observations, the left-hand panel of Figure 1 shows the predictive densities for
Prior 5 with λ = 10 and λ = 20, overplotted on the normalized data histogram. For
both samples, the generated data display a slight right skew (as measured by the AG
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skewness) and, as a consequence, the posterior probability of m = 1 is actually smaller
than its prior counterpart, taken to be ψ = 0.1, for almost all combinations of cm and
λ. This implies that the Bayes factor for the Bernstein-skew model versus the (correct)
Student-t model is greater than unity. Nevertheless, the predictive results with the
Bernstein-skew model are very smooth and similar to the actual data generating process.

For n = 100, the posterior probabilities of zero weights in the tails tend to be
rather similar to the prior probabilities. For the large sample of 2000 observations, zero
weights get very small posterior probabilities. For both samples, posterior inference on
ν is quite concentrated around the value used to generate the data if we take λ = 10.
For λ = 20 the increased amount of prior flexibility leads to slightly more dispersed
posterior distributions for ν.
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Figure 2: Simulated Student-t data, flexible unimodal construct, n = 100: Left panel:
posterior predictive density, overplotted with the normalized data histogram. Right
panel: posterior density of AG skewness measure.

Using the flexible unimodal model on the same data, we obtain the posterior pre-
dictive results in Figure 2 for n = 100 and in Figure 3 for the large sample. The main
difference with the Bernstein-skew results is in the smoothness: the flexible unimodal
model leads to less smooth predictives, as expected, and very closely follows the shape
of the data. By construction it can not reproduce the vaguely multimodal character
of the small sample but closely fits most other aspects of the histogram. Interestingly,
the Bernstein-skew model could accommodate multimodality, but does not do so in this
case (see Figure 1) because of its inherent smoothness. Even with the large sample
of 2000 observations, the flexible unimodal model tracks some minor irregularities of
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the data. The mode of the data is estimated at around -2 (µ has median −2.08, with
first and third quartiles equal to −2.19 and −1.83). In contrast, inference for µ in the
Bernstein-skew model (where µ is not interpretable as the mode) is quite different with
a posterior median equal to −0.32 and quartiles −0.43 and −0.23.

Figures 2 and 3 also display the posterior density of the AG skewness measure, which
is in line with the slight positive skew in both samples. Taking as an example the case
of n = 2000, inference on δ and r shows that some positive skewness is present both in
the central mass of the distribution (the first and third quartiles of δ are 2.01 and 3.09)
and in the tails (first and third quartiles of r are 2.13 and 2.68).
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Figure 3: Simulated Student-t data, flexible unimodal construct, n = 2000: Left panel:
posterior predictive density, overplotted with the normalized data histogram. Right
panel: posterior density of AG skewness measure.

In addition, the posterior distribution for ζ had median 0.427 and quartiles 0.288
and 0.633 for n = 100, and median 0.379 with quartiles 0.299 and 0.476 for n = 2000,
revealing a fairly spread posterior distribution of the atoms. For M the posterior median
for n = 100 was 2.779 (with quartiles 1.405 and 5.690 and posterior mean 4.282) and
3.935 for n = 2000 (with quartiles 2.819 and 5.269). This reveals that in both examples
substantial posterior mass had to be assigned to quite a few different atoms in order
to capture the data features. However, the difference in sample sizes is reflected in the
more concentrated posterior distributions for n = 2000.
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3.2 Mixture of two Normals

A sample of n = 100 data is generated from a mixture of two Normals, with density
0.3N(−2, 4)+0.7N(4, 1), where N(µ, σ2) is the pdf of a Normal distribution with mean µ
and variance σ2. As the data are clearly bimodal, we use the Bernstein-skew model, but
given the relatively regular nature of the data, we again adopt a fairly small value for
the prior mean of m, choosing λ = 10 and 20. Figure 4 presents the posterior predictive
densities for two choices of λ and all five priors on the weights mentioned in Subsection
2.1. Prior 1 is the only one which leads to perhaps too little separation between the
two modes. Posterior means of the implied skewing mechanism are presented in Figure
5, which suggests that the behaviour induced by Prior 1 is indeed somewhat different
from the others (it is somewhat shifted towards the right). Comparing the skewing
mechanisms for λ = 20, it becomes clear that larger m allows for a lot of flexibility,
which results in rather disparate skewing mechanisms. The predictives, however, are
very similar to each-other, as the differences are largely counteracted by differences in
the inference on µ, σ and ν. This suggests that, even in this bimodal case, priors with
too much emphasis on large values of m are not required, and perhaps best avoided.
The posterior means of the skewing mechanisms clearly indicate how the bimodality is
induced and the relatively large values of p(x) close to x = 0 generate the larger spread
in the left tail. In line with this, there is strong posterior evidence for zero weights in
the right tail, but not in the left tail.

3.3 Skew-t

The distribution used to generate the data in this case is the skew-t distribution proposed
and analysed by Jones and Faddy (2003). This is an interesting distribution for our
purpose as it displays both skewness and different moment existence in each tail. In
particular, if X has a Be(a, b) distribution such a skew-t distributed random variable
can be generated as

T =

√
(a + b)(2X − 1)
2
√

X(1−X)
.

In case that a = b this results in a Student-t with 2a degrees of freedom. For a < b
we obtain left (negative) skewness and for a > b the distribution is right skewed. The
AG skewness equals 1 − 2Bz(a, b), where Bz(a, b) is the regularised incomplete Beta
function with z = (a + 1/2)/(a + b + 1). In terms of moment existence, the right-hand
tail behaves as t−[2 min (a,b)+1], whereas the left tail is always thinner in case of skewness
and behaves like t−[2 max (a,b)+1]. So tails will be proportional to those of a t-distribution
with 2 min(a, b) degrees of freedom on the right and 2 max(a, b) degrees of freedom on
the left. Finally, the distribution of T is always unimodal with mode given by

(a− b)
√

a + b√
(2a + 1)(2b + 1)

.

We generate n = 2000 observations from this skew-t distribution with a = 20 and
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Figure 4: Simulated mixture of Normals data, Bernstein-skew model: Posterior predic-
tive densities, overplotted with the normalized data histogram. Left panel: λ = 10.
Right panel: λ = 20. Priors used are Prior 1 (solid line), Prior 2 (short dashes), Prior
3 (dots), Prior 4 (dot-dashed) and Prior 5 (long dashes).

b = 2, which implies positive skewness with an AG skewness measure of 0.3645, tail
behaviour characterised by MT

l = 40, MT
r = 4 and a mode equal to 5.897.

We find that predictive results with the Bernstein-skew model are virtually identical
for each of the five prior choices on the weights, and closely match the data histogram,
as illustrated in Figure 6 (left panel). In line with the tail behaviour of the skew-
t distribution, as explained above, the posterior probabilities of the extreme weights
in the right tail being zero is virtually zero, and inference on the degrees of freedom
parameter ν is centered on fairly small values (most of the posterior mass is in the
interval (2,4) for all priors). The left tail weights, however, do get appreciable zero
probabilities, consistent with the much thinner left tails of the sampling distribution.
Table 1 shows that, especially for Priors 1,2 and 4, these posterior probabilities are
substantially higher than their prior counterparts (which are chosen to be 0.2). Thus,
overall, the tail behaviour of the sampling distribution is relatively well captured by the
Bernstein-skew model.

The flexible unimodal construct leads to the predictive presented in the right panel
of Figure 6, which is, again, less smooth than the Bernstein-skew predictive and follows
the data quite closely. The fit to the data is perhaps less good in the lower left tail,
where the Bernstein-skew seems closer to the actual data. This seems a consequence



F. A. Quintana, M.F.J. Steel and J. T. A. S. Ferreira 511


                                                      

                                          
                                    
                                 
                              
                             
                            
                           
                           
                           
                            
                              
                                  
                                          

                                                                                                                                                                                                                                                                                                                                                                                                                                                       

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

3.
0

 

 

 


                                                      

                                          
                                    
                                 
                              
                             
                            
                           
                           
                           
                            
                              
                                  
                                          

                                                                                                                                                                                                                                                                                                                                                                                                                                                       

0.0 0.2 0.4 0.6 0.8 1.0
0.

0
0.

5
1.

0
1.

5
2.

0
2.

5
3.

0

 

 

 

Figure 5: Simulated mixture of Normals data, Bernstein-skew model: Posterior means
of the pdf of the skewing mechanism. Left panel: λ = 10. Right panel: λ = 20. Priors
used are Prior 1 (solid line), Prior 2 (short dashes), Prior 3 (dots), Prior 4 (dot-dashed)
and Prior 5 (long dashes).

of the fact that the skewing mechanism has a fairly simple parametric form (with only
two parameters) and the rather extreme difference between the tails can not totally
be accounted for (except for scaling by a factor r). Inference on skewness through
the AG measure reveals a posterior distribution with median 0.332 and first and third
quartiles 0.321 and 0.340, which is in line with the sample value of 0.329 (and a bit
below the theoretical value of 0.3645). Evaluating the sample AG value was done by
visual (subjective) identification of the sample mode. This right skewness originates
to some extent from the central part of the distribution, but especially from the tails,
as we can judge from the fact that r has posterior median 15.49 (with quartiles 15.07
and 16.05) while δ obtains posterior median 1.161 (quartiles 0.761 and 1.382). The
posterior median of the mode µ is 5.78 (with quartiles 5.54 and 6.00), which fits with
the theoretical value of 5.897. Also, the posterior median of M was 5.304 with quartiles
4.519 and 5.878, while for ζ we obtained a posterior median of 0.344 with quartiles 0.302
and 0.353. Thus, the form of the posterior predictive is a consequence of fairly spread
atoms with relatively small weights each.

As in Subsection 3.1 the Bernstein-skew model outperforms the flexible unimodal
construct in terms of smoothness of fit and does not produce evidence of multimodal pre-
dictives, even though the model does allow for them. It is really only when inference on
the mode or skewness is required that the flexible unimodal construct is recommended.
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Figure 6: Simulated skew-t data: Posterior predictive densities, overplotted with the
normalized data histogram. Left panel: Bernstein-skew model with Prior 5. Right
panel: flexible unimodal construct.

4 Real data applications

4.1 Galaxy data

These data are velocities of 82 distant galaxies, diverging from our own galaxy. They
are described in some detail in Roeder (1990) and were used for both parametric and
nonparametric mixture modelling (see Escobar and West 1995; Richardson and Green
1997).

The normalized histogram of these data (see left panel of Figure 7) clearly shows
the multimodal nature. This means we will need a fairly large number of components,
so we take λ = 300 in the prior for m in (5). The amount of flexibility that this entails
means that we recommend fixing the degrees of freedom ν. We have used ν = 50 in
the plots presented, but ν = 5 can equally well be used. This leads to differences in the
inference on the weights wm

i and µ and σ, but results in a virtually indistinguishable
posterior predictive. The Bernstein-skew model with large m (the posterior mass for m
is concentrated in between 210 and 260) is so flexible that the weights simply compensate
for the tails of F and we can take pretty much any reasonable value for ν. Interestingly,
the fact that we can learn only very little about ν is corroborated by the posterior
probabilities of zero weights in the tails. The latter are not very different from the prior
probabilities and they hardly change if we use ν = 5 instead. However, we recommend
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Prior P (wm
1 = 0) P (wm

2 = 0|wm
1 = 0)

Prior 1 0.99 0.95
Prior 2 0.91 0.61
Prior 3 0.49 0.27
Prior 4 0.70 0.47
Prior 5 0.42 0.22

Table 1: Simulated skew-t data, Bernstein-skew model: Posterior probabilities of zero
weights in the left tail.

against taking values much smaller than ν = 5 as they tend to smooth out the posterior
predictive too much. We have used the prior structure on the Dirichlet parameters in (6)
with d = 10, but results with d = 50 are very similar. However, the use of exchangeable
prior weights through cm

i =
√

m/50 does not lead to a good fit of the data for ν = 50,
as weights remain too uniform and do not get close enough to zero (although this choice
of the prior weights does fit well for ν = 5).
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Figure 7: Galaxy data, Bernstein-skew model. Left panel: Posterior predictive overplot-
ted with the histogram of the data. Right panel: posterior means of the weights. The
degrees of freedom ν are fixed at 50, λ = 300, and the prior on the Dirichlet parameters
is (6).



514 Flexible Univariate Continuous Distributions

5 10 15 20 25

0.
00

0.
05

0.
10

0.
15

0.
20

0.
25

β0

−1 0 1 2 3

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

β1

−0.2 0.0 0.2 0.4 0.6

0
1

2
3

4

β2

−0.02 0.00 0.02 0.04

0
10

20
30

β3

0 5 10 15

0.
00

0.
10

0.
20

0.
30

σ

                                                                                                                                                                                                                                                                                                                                                                                                                                 
                                   

                     
                
             
           
         
         
        
       
       
       
      
      
      
      
      
      
      
      
      
      
       
       
        
          
                  


10 15 20 25 30 35 40

0.
00

0.
05

0.
10

0.
15

0.
20

 

Figure 8: Biomedical data: Posterior densities of regression coefficients and σ. Lower
right panel: posterior predictive density using mean values for the covariates. Models
used are the Bernstein-skew model with Prior 5 and λ = 20 (solid line), the Bernstein-
skew model with Prior 5 and λ = 100 (dashed line) and the flexible unimodal construct
(dotted line).
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4.2 Biomedical data

We now consider data on the body mass index of 202 Australian athletes. These data
were used in e.g. Azzalini and Capitanio (2003) in a location-scale context and are
included in the SN package available in R. Here we will use a linear regression model,
with a constant term and three other covariates: red cell count, white cell count, and
plasma ferritin concentration.

So, in the model (2) for Yi, we replace µ by x′iβ, where xi groups the covariate
values for observation i and β = (β0, . . . , β3) is the four-dimensional vector of regression
coefficients. The priors for the βi’s are independent normals with mean zero and variance
10,000.

We use the flexible unimodal construct, as this imposes unimodality and does not
affect the mode, which is a desirable property in this regression context, which can
then be interpreted as modal regression. Even though it was not designed for this case,
we also apply the Bernstein-skew model to these data, with prior 5 as in (6) and two
different priors on m, using λ = 20 and λ = 100. The resulting posterior densities
for β and σ are presented in Figure 8, which also displays the posterior predictive
density given the mean values of the covariates. Interestingly, inference on the regression
coefficients corresponding to the three variable covariates is not affected much by the
choice of model. The main differences are in the intercept β0 and σ, but even these
are not dramatically different. Of course, the latter parameters do not have the same
interpretation for the Bernstein-skew and flexible unimodal construct models. Thus,
despite its lack of unimodality constraints, the Bernstein-skew model leads to very
similar inference on the parameters that can be compared across models (β1, . . . , β3)
and, especially for the case with λ = 100, leads to very similar conditional predictive
densities as the flexible unimodal construct.

Posterior inference on the degrees of freedom parameter ν in the Bernstein-skew
model clearly indicates very heavy tails for the regression error term, with the first
three quartiles equal to 1.16, 1.59, 2.21 for the case with λ = 20 and 0.90, 1.53, 2.38 for
λ = 100. The number of components used in the Bernstein-skew model does vary quite
a bit with the prior assumptions, as it ranges from 8 to 30 for λ = 20 and from 93 to
133 if we adopt λ = 100. However, the resulting predictives and the inference on the
other parameters are quite similar, with the model with many components generally
closer to the flexible unimodal construct. So even with λ = 100 there is no suggestion
that serious violations from unimodality have occurred. This is confirmed by Figure
9, which presents the posterior mean of the skewing mechanisms for all three models.
Both Bernstein mean skewing mechanisms suggest unimodality, with a slight squeeze
in the tails, especially the left tail. Yet, there is no strong evidence of zero weights, so
this does not really counteract the very small values for ν we found. It also shows that
the skew-Bernstein model with λ = 100 almost retains the mode of F (since p has a
single mode at approximately 0.5), so that the regression function can approximately
be interpreted as the mode, whereas there is a more noticeable shift for λ = 20 (which
affects the posterior for β0 in Figure 8). Note also the bump in the right hand shoulder
of p for λ = 100, which is reflected in a similar bump in the predictive, mimicking that of
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the flexible unimodal construct. Clearly, the flexibility of F is what drives inference in
the flexible unimodal construct, with very little added through the skewing mechanism.
This is in line with a small amount of skewness. Indeed, this model identifies only a
slight positive skew in the error distribution with median AG skewness equal to 0.09
and first and third quartiles 0.05 and 0.14, with small contributions of both the centre
of the distribution and the tails. Interestingly, the posterior median of ζ was 0.923,
with first and third quartiles 0.696 and 1.207 while for M the posterior median was
3.639 with quartiles 2.727 and 4.828. Again, the posterior weights are fairly small but
the atoms are not so dispersed as in the previous examples using simulated data, which
leads to a relatively smooth predictive pdf.
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Figure 9: Biomedical data: Posterior means of p, the pdf of the skewing mechanism.
Models used are the Bernstein-skew model with Prior 5 and λ = 20 (solid line), the
Bernstein-skew model with Prior 5 and λ = 100 (dashed line) and the flexible unimodal
construct (dotted line).

5 Recommendations and Conclusions

Based on a constructive representation, we have proposed two flexible modelling strate-
gies for univariate continuous distributions. The general constructive representation we
use separates the skewing mechanism P from the underlying symmetric distribution F .
The Bernstein-skew model is defined by a nonparametric model for P through Bern-
stein densities, in combination with a Student tν specification for F . This can generate
very general distributions and is ideal for density estimation. The flexible unimodal
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construct adopts a parametric specification for P and takes a very flexible form for F
through a nonparametric mixture of uniforms. This imposes unimodality with control
over the mode and was designed with modal regression modelling in mind.

Our constructive approach helps us in more precisely identifying the key features of
the data for which a simple model would be inappropriate. In particular, the Bernstein-
skew model allows us to investigate moment existence and also leads to an easy calcula-
tion of the Bayes factor in favour of the symmetric model F . The flexible unimodal con-
struct leads to straightforward inference on skewness, both emanating from the centre
and the tails of the distribution. For both models, considering the skewing mechanism
p is helpful in finding out how mass is shifted with respect to the underlying symmetric
model F .

The question naturally arises which of the two proposed models to use in which
situations. For multimodal data, we would naturally use the Bernstein-skew model, as
it alone can accommodate multimodality. In cases of relatively “regular” (e.g. smooth,
bimodal) data shapes, we would recommend to use relatively small λ and free ν. For
situations with more irregular data, we think larger λ should be used (to induce sufficient
flexibility) in combination with keeping ν fixed at an intermediate value. If the data
are unimodal, the best model to use depends on the interests of the investigator: if the
interest is primarily in density estimation or in the tail behaviour, it may still be best
to use the Bernstein-skew model. If the main interest of the analysis is in inference on
the mode or the skewness properties, the flexible unimodal construct would be the best
option.

Note, finally, that the Bernstein-skew model generally leads to smooth predictives
and the flexible unimodal construct tries to get as close to the data as it can, without any
clear preference for smoothness. However, the (sparse) parametric form of the skewing
mechanism underlying the flexible unimodal construct does not always lead to sufficient
flexibility. Overall, the Bernstein-skew model seems more useful for density estimation
(it leads to smoother, more flexible shapes and can be used for multimodality) and
should be recommended generally, except in those cases where we really wish to impose
unimodality and where we are mainly interested in the location (as in modal regression)
or in direct inference on skewness.
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Appendix: Proofs

Proof of Theorem 1. If limy→−∞
p[F (y)]
|y|b is finite then, as P is a continuous distribu-

tion, it is possible to find 0 < K1 ≤ K2 < ∞ such that K1|y|b ≤ p[F (y)] ≤ K2|y|b and
thus

K1

∫

<−
|y|r+bf(y)dy ≤

∫

<−
|y|rdH(y|F, P ) ≤ K2

∫

<−
|y|r+bf(y)dy.

Now, as the largest moment of F is MF , the left and right-hand side of equation above
are finite if and only if r + b < MF and consequently MS

l = MF − b. ¤

Proof of Theorem 2. We shall apply Theorem 1 and, thus, consider the limiting
behaviour of p[F (y)]. For a Student t distribution, F (y) is

F (y) = 1− 1
2
Bz(ν/2, 1/2), if y > 0, and F (y) =

1
2
Bz(ν/2, 1/2), otherwise,

where 1/z = [1 + (y2/ν)] and Bt(a, b) is the incomplete Beta function, regularized such
that B1(a, b) = B(a, b). As we are considering limits for y2 → ∞ we need to consider
small values of z. For these values Bz(ν/2, 1/2) will behave like zν/2 and thus like |y|−ν .
As a consequence, in the extreme left tail we will obtain

p[F (y)] ≈
m∑

j=1

wm
j

1
B(j,m− j + 1)

|y|−ν(j−1),

so that if wm
1 > 0, we see that p[F (y)] will behave like a constant and MH

l = MF = ν.
However, if the first k weights are zero, the relevant behaviour of p[F (y)] will be as
|y|−kν and using Theorem 1 we then obtain MH

l = MF + kν = (k + 1)ν. Results for
the right-hand tail are derived in a totally analogous manner. ¤



520 Flexible Univariate Continuous Distributions

Supplemental Material: Computational Details

To fit the Bernstein-skew model defined by (2), (3), (4) and (5) we use a strategy based
on the reversible jump algorithm (Green 1995), with birth and death moves similar
to those in Richardson and Green (1997) and random walk-type proposals for various
parameters.

Let I be a model index defined as

I =





1 if only w1 = 0
2 if only w1 = w2 = 0
3 if only wm = 0
4 if only wm−1 = wm = 0
5 if all wi 6= 0

Our assumptions imply that P (I = 1) = θl
1(1− θl

2), P (I = 2) = θl
1θ

l
2, etc. We also note

that the prior on (I,m) discussed earlier adopts a special form when m = 1 or m = 2.
Indeed, for our model to make sense we need P (I = 5 | m = 1) = P (I ∈ {1, 3, 5} | m =
2) = 1.

A change in either I or m implies a dimensional variation in the vector of weights
w. Therefore, we construct a Markov chain for posterior simulation by first randomly
choosing to modify either I or m (but not both). In what follows, the Metropolis-
Hastings ratios (MHRs) are readily derived and therefore omitted from the presentation.

(A) If proposing a move for m: Following the birth-and-death scheme, we randomly
propose a move to either m − 1, m or m + 1, with the obvious restrictions if the
current m lies at or close to the boundaries of its range. For the purpose of stat-
ing the algorithm, we re-interpret m as the number of nonzero terms in w. For
instance, if I = 2, the number of nonzero terms is m− 2.

If proposing a move to m + 1: We generate U ∼ Beta(cm+1
1 ,

∑m+1
j=2 cm+1

j ) and
propose w∗ = g(U,w) = (U, (1 − U)w1, . . . , (1 − U)wm). The associated
Jacobian factor is (1− w∗1)−m.

If proposing a move to m− 1: We view this step as reversing an hypothetical
proposal, under the previous step, of a move from m − 1 to m where the
proposed w∗ is the current w, so the MHR is easily derived.

If proposing to keep m: We randomly select a coordinate ` that corresponds
to a nonzero element of w and draw an auxiliary truncated normal random
variable v ∼ N(0, s2

w)I{(−w`,∞)}, where s2
w is a tuning parameter, and then

propose w∗ with

w∗i =
{

(w` + v)/(1 + v) if i = `
wi/(1 + v) if i 6= `

This is basically an implementation of random walk-type moves at the coor-
dinate levels.
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(B) If proposing a move for I: Here we restrict the proposed moves to those that
imply a number of nonzero elements of the weight vector differing by at most
one from the current state. In addition, we only allow changes at either the
beginning or end of w. That means, for instance, that from I = 1 the allowed
moves are to I∗ ∈ {1, 2, 5}, from I = 5 to I∗ ∈ {1, 3, 5} and from I = 2 to
I∗ = {1, 2}. Therefore, we can use exactly the same procedure as described in
(A), starting with a randomly chosen move to an allowed model index I∗ and then
considering w∗ as above, depending on whether the number of nonzero elements
stays, increases by one or decreases by one, respectively.

(C) Updating the regression coefficients vector β: Here we propose random
walk-type moves, i.e. β∗ ∼ N(β,B) for some tuning covariance matrix B, which
for simplicity, may be taken to be of diagonal form.

(D) Updating the scale parameter σ: We consider again a random walk-type move,
with σ∗ ∼ N(σ, s2

σ)I{(0,∞)}, another truncated normal with tuning variance s2
σ.

(E) Updating the degrees of freedom ν when using a t distribution: We con-
sider moves generated as ν∗ ∼ N(ν, s2

ν)I{(0,∞)}, with tuning parameter s2
ν .

Finally, to fit the flexible unimodal model, we use random walk-type moves for all
parameters involved, with normal proposals centered at the current values (truncated
to the appropriate range if applicable) and with tuning variance parameters, exactly as
in (C) or (D) above. The details are straightforward and therefore omitted.

We evaluate the posterior predictive densities over a suitable grid of points at each
MCMC iteration. To do so we take advantage in (2) of the explicit formulas for p, f
and F that are implied in both constructions. Specifically, for a given m and a set of
imputed weights, (3) can be evaluated explicitly, while (7) can be also evaluated as a
step function that is determined by the imputed wi and θi parameters in (8).
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