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Comment on Article by Monni and Tadesse

Hal Stern∗

Abstract. The article by Monni and Tadesse introduces a model for relating large
numbers of predictors and responses. That situation typically occurs when inves-
tigators are in an exploratory mode. This discussion argues that in such situations
the fairly strong assumptions of Monni and Tadesse (e.g., linear regression models
with common coefficients for all variables within a cluster of responses) may be
counterproductive. If such models are to be used, it is critical that model fit be
assessed before relying on their results.
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1 Introduction

Monni and Tadesse (MT) deserve credit for the introduction of a novel model that
addresses the situation in which scientific researchers want to relate a large number (p)
of predictors with a large number (q) of responses. They have also developed a clever
Markov chain Monte Carlo algorithm for exploring the posterior distribution of the
model parameters (especially over the possible configurations of response and predictor
subsets). Their simulations confirm that the model achieves the various advantages they
advertise. Specifically the model uses the correlation of the responses to obtain better
results than can be obtained from a sequence of q separate multivariate regressions. In
addition the model allows for different regressors to be selected for different subsets of
the responses which is a considerable benefit relative to trying to find a single set that
describe all responses. The model is somewhat sensitive to its assumptions, especially
linearity, but this is to be expected. In this discussion several concerns about the
approach are raised: each of the concerns is closely related to wondering exactly what
scientific question MT are trying to solve and whether their specific parametric form is
likely to be helpful for scientistis.

2 What is the question being addressed?

MT remark about their setting (where the number of regressors and responses are both
larger than the sample size) that “This important problem has not received the atten-
tion it deserves,...”. It is surely true that the explosion of available data, especially in
the biological and health sciences, has led scientists to contemplate multiple sets of high-
dimensional multivariate data more often than ever before. My own work in a brain
imaging collaboration has tried to integrate genetic data (100,000+ single nucleotide
polymorphisms or SNPs per individual) and functional magnetic resonance imaging
(fMRI) brain activity data (200,000+ voxels per individual). But in the face of these
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large data sets it is important to ask exactly what scientific problem/question we are
trying to address before developing a model. The historical recipe for statistical model
development involves a scientific issue motivating a mathematical or probability model.
Two famous examples are Gossett’s early 20th century work on the Student-t distribu-
tion motivated by the desire to understand the behavior of averages of small samples
at the Guinness brewery and Legendre’s early 19th century work on least squares mo-
tivated by a desire to fit a curve to empirical observations of an astronomical body’s
position. The modern high-dimensional data sets don’t typically come with very specific
scientific questions but rather with a desire to explore the relationships among variables.
The goal is to determine if some of the predictor variables are related to some of the
response variables. This is an important objective, but note that it is not based on any
specific hypotheses. Don’t get me wrong, there is definitely nothing wrong with a good
exploratory analysis. Such analyses are an outstanding way to generate hypotheses that
can be studied in laboratories and/or in subsequent data collections. But if “finding
relationships” is the aim, then we must ask if a mixture of regression models with fairly
strong assumptions (linear relationships with constant regression coefficients for all the
responses in a cluster) is likely to find the relationships of interest.

If we agree that the goal in the MT setting is to identify sets of responses that are
related to sets of predictors, then the competition for the MT model is not just Bayesian
regression with stochastic search variable selection. The traditional multivariate method
of canonical correlations (see, e.g., Anderson (1984)) is another possible analysis method
for this situation. Canonical correlation analysis identifies linear combinations of the
responses that are highly correlated with linear combinations of the predictors. Admit-
tedly such methods don’t work very well with small sample sizes but there are recent
efforts to extend these approaches using regularization methods (see, e.g., Gonzalez et
al. (2008)). Another method that comes to mind is partial least squares (Mcintosh et
al. 1996; Frank and Friedman 1993) which seeks linear combinations of the responses
and linear combinations of predictors with high covariances, an approach that has been
found useful in brain imaging and in chemometrics, two areas where high dimensional
data abound. It would be interesting to see some comparisons of these exploratory
methods with the MT model.

3 Assessing model fit

The preceding section questions whether a parametric model of the type proposed by
MT is appropriate for exploratory analysis. Assuming we do choose to use their model,
shouldn’t we be checking the assumptions? MT don’t mention model checking at all in
their discussion. (They do carry out a range of sensitivity analyses which are extremely
valuable.) One might use their MAP estimates to define residuals and use these residuals
to see if the data are consistent with linear models and Gaussian errors. The sensitivity
analyses of MT in Sections 4.1.4 and 4.1.5 suggest that deviations from normality and
linearity can have a big impact on the performance of their approach. It seems likely
that nonnormal data (especially outliers) and nonlinearity will be the rule rather than
the exception in large data sets, especially in the biological sciences. Residual analyses
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might suggest modifications that will improve the fit of the model. MT don’t appear to
have done any model checking in the example of Section 4.2. In fact, complete results
are not provided for the real data example. Three clusters of responses and predictors
are illustrated but how many others were there and what information do they convey?

4 Computation

MT have clearly put a great deal of effort into developing computational approaches
that seek global posterior modes and efficiently sample the space of partitions of vari-
ables. Convergence of the MCMC algorithm is a concern given the size of the space on
which the algorithm samples but MT are satisfied that they have an effective algorithm.
The limited evidence provided suggests that their approach leads to consistent results
from different starting values. MT advocate examining both posterior modes (their
MAP configuration) and marginal/posterior probabilities that average over a variety of
configurations. This is good advice given the form of their model. But it is also true
that the goals of an analysis have an impact on how we think about computational
issues. Viewing the MT situation as a problem of data exploration should mitigate
some of the computational concerns. Are full posterior distributions even necessary in
an exploratory analysis? It may well be sufficient to identify lots of different modes and
determine what they tell us about the data.

5 Summary

The stochastic partitioning mixture of regression models proposed by MT for associating
high dimensional responses and covariates is extremely clever and thought provoking.
They have made a real contribution by pointing us in the direction of situations in which
the goal is to relate multiple high-dimensional multivarite data sets. This discussion
has argued that other (less restrictive) models may prove more useful in the exploratory
settings for which MT’s model will be used.

References
Anderson, T. W. (1984). An Introduction to Multivariate Statistical Analysis. New

York, NY: John Wiley. 454

Frank, I. and Friedman, J. (1993). “A statistical view of some chemometrics regression
tools.” Technometrics, 35(2):109–148. 454

Gonzalez, I., Dejean, S., Martin, P.G.P., and Baccini, A. (2008). “CCA: An R package
to extend canonical correlation analysis.” Journal of Statistical Software, 23(12). 454

Mcintosh, A.R., Bookstein, F.L., Haxby, J.V., and Grady, C.L. (1996). “Spatial pattern
analysis of functional brain images using partial least squares.” Neuroimage, 3:143–
157. 454



456 Comment on Article by Monni and Tadesse

Acknowledgments

The author would like to thank Editor-in-Chief Brad Carlin for his comments on an earlier

draft of this discussion. This work was partially supported by NSF award ATM-0530926 and

NIH award RR-0021992.


