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A Stochastic Partitioning Method to Associate
High-dimensional Responses and Covariates

Stefano Monni∗ and Mahlet G. Tadesse†

Abstract. We consider the problem of variable selection in data sets with many
response variables and many covariates. A method is proposed that allows some
covariates to affect some response variables and not others, and that clusters re-
sponses which have similar dependence on the same set of covariates. A Markov
chain Monte Carlo procedure is employed to sample from the space of pairwise
partitions of covariates and outcomes, where a pair consists of a subset of all out-
comes and their associated covariates. We assess the performance of the method
on simulated data and apply it to genomic data.

Keywords: multivariate model selection, mixture model, Markov chain Monte
Carlo, parallel tempering, CGH analysis

1 Introduction

Large data sets with thousands of high-dimensional variables collected on few experi-
mental units have become common in many applications. Several procedures have been
proposed to relate these data to univariate outcomes and identify relevant predictors.
Methods that are particularly useful when the number of regressors is substantially
larger than the sample size include the Bayesian stochastic search variable selection
(SSVS) technique (George and McCulloch 1997) and the elastic net procedure (Zou and
Hastie 2005). However, with q > 1 outcomes, these methods can only be applied by
fitting each outcome independently, which gives rise to q separate models. The cor-
relation structure of the outcomes is thus necessarily ignored. In addition, even when
doing separate univariate variable selection appears to be an appropriate scheme, it can
quickly become impracticable for large q. In the context of variable selection, one of
the few methods of which we are aware that deals with few outcomes simultaneously
is that of Brown et al. (1998), which extends the SSVS algorithm to a multivariate
setting. In the latter paper, the same regressors are selected for all outcomes. This is
reasonable only if the number of outcomes is small, which is the case in the examples
therein considered. In the presence of many outcomes, one should however expect some
covariates to affect some response variables and not others. One can try to overcome
this limitation by first clustering the outcomes and then applying Brown et al. (1998)’s
multivariate regression method on the clustered outcomes, one cluster at a time. This
approach is justifiable but it has some shortcomings as we will demonstrate in Sec-
tion 4.1. On more general grounds, this two-stage procedure would treat the clusters
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as known, would ignore the uncertainty in estimating the cluster memberships when
searching for relevant predictors, and thus would inevitably introduce some bias into
the analysis (Bryant and Williamson 1978).

In this paper we are interested in cases where not only is the number of regressors
much larger than the sample size but so too is the number of responses. This important
problem has not received the attention it deserves, especially in light of the multivariate
nature of the data with which one is usually confronted. The method we propose allows
for each response to be determined by its own covariates, and at the same time identifies
outcomes that are acted upon by the same covariates. Namely, we present a stochastic
algorithm that searches for sets of covariates associated with sets of correlated outcomes.
This is achieved by constructing a Markov chain in the space of pairwise partitions of
the set of regressors into (possibly) non-disjoint subsets and of the set of responses
into disjoint subsets. Each element of a partition is a pair of subsets, one composed
of covariates and the other composed of their correlated outcomes; with the additional
requirement that each outcome should belong to one and only one pair. To improve
mixing and reach convergence more rapidly, we also implement parallel tempering. We
apply the procedure to a genomic data set, to examine the relationship between com-
parative genomic hybridization (CGH) profiles from 261 clones and mRNA expression
levels from 3291 probe sets, and locate DNA copy number variations associated with
changes in mRNA transcript levels.

Various partition methods have previously appeared in the literature to relate co-
variates with a univariate response. For example, in tree models (Breiman et al. 1984;
Chipman et al. 1998), the basic idea is to partition the coordinate space by hyperplanes
(see also Holmes et al. (2005) for similar partition methods in Bayesian decision theory).
Here instead we partition the index space of the variables and consider multivariate re-
sponses. A recent model along these lines was proposed by Lau and Green (2007) who
considered the problem of clustering multivariate outcomes in the presence of a small
number of covariates. Their method focuses on determining the optimal partition of
the response variables using all regressors and is not concerned with identifying cluster
specific covariates, which is instead our goal.

Our proposed model combines the ideas of mixture models, regression models, and
variable selection to identify group structures and key relationships in high-dimensional
data sets. This model was motivated by genomic applications, where there is a growing
effort to relate gene expression data with other genome-wide technologies to better
understand regulatory mechanisms. We rely on the common premise that genes with
similar expression profiles share similar regulatory mechanisms. Thus, co-expressed
genes would be co-regulated and share the same regression relationship, whereas genes
in different clusters would have different regression models. Although this formulation
may be too simple to capture adequately the complex underlying biological processes,
which is the case for most models, it can provide some insights. As all methods for high-
dimensional data analysis, this is an exploratory technique that can help investigate and
discover important features in the data.

The paper is organized as follows. Section 2 describes the model and presents details
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on the prior specification. In Section 3 the Markov chain is defined and strategies for
its implementation are discussed. In Section 4 the method is tested on some simulated
data and its robustness to deviations from the assumptions of normality and linearity
is examined. Further, the method is compared with other methods, and applied to
genomic data. Section 5 concludes the paper with a brief discussion.

2 Proposed method

2.1 Model formulation

Our data consist of N independent samples with p covariates, X = (X1, . . . , Xp), and
q outcomes Y = (Y1, . . . , Yq). As we have outlined in the previous section, in order
to identify sets of outcomes that have the same dependence on a set of predictors, we
consider partitions of the variables into sets of pairs S = (XI , YJ), with I ⊂ {1, . . . p} and
J ⊂ {1, . . . q}. A partition of the data will be henceforth referred to as a configuration,
its pairs as the components of the configuration and the number of the latter as the
length of the configuration. Each response Yj is assigned to one and only one component,
whereas a predictor Xr may belong to many components. The rationale for this choice,
which is inherent in the asymmetric role of predictors and responses, is the possibility
that a given predictor may affect different subsets of Y differently. If one views the model
as a form of clustering, this is tantamount to considering non-intersecting clusters of
responses. As a simplification, when we do not need to make the variables composing
each component explicit, we label the latter by the count of its variables and write the
partition accordingly. For example, the following configuration of length K

S1 ⊕ . . .⊕ SK = (XI1 , YJ1)⊕ . . .⊕ (XIK
, YJK

)

will be also written as
(|I1|, |J1|)⊕ . . .⊕ (|IK |, |JK |),

where 0 ≤ |Ik| ≤ p, 0 ≤ |Jk| ≤ q, and
∑K

k=1 |Jk| = q. The ⊕ symbol is our way of
indicating that the union of variables is disjoint for the Y and not necessarily disjoint
for the X variables.

On the space of partitions we associate a probability function to the response vari-
ables. The probability of each configuration will be defined as the product of the prob-
abilities of its components, because we assume the outcomes in distinct components of
a given partition to be independent.

The model we consider is a multivariate Gaussian mixture model with an unknown
number of components, in which the mean and the scale of each component are deter-
mined by a regression model on a subset of predictors. Namely, the distribution of the
outcomes Yt1 , . . . , Ytnk

of a component Sk = (mk, nk) is assumed to be:

Yji|Sk
iid∼ N (αj + µk, σ2

k), j = t1, . . . , tnk
, i = 1, . . . , N.

We write the location of the distribution as the sum of two terms αj and µk =
gk(Xs1 , . . . , Xsmk

) to emphasize that possible dispersions in the baselines αj are ir-
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relevant and that responses are clustered together if they are similarly affected by the
same predictors. Responses associated with the same set of predictors can however be-
long to different components if their dependence on these predictors is dissimilar. We
are therefore fitting a mixture of regression models, where the effects of the regressors
on the response variables are the same within a component, but vary from one compo-
nent to another (Jiang and Tanner 1999). The component means, µk, instead of being
estimated based on the Y variables alone, as is commonly done in Gaussian mixture
models, are estimated based on a linear regression model that captures the association
between the Y s and the covariates X. We are also simultaneously performing variable
selection to identify the relevant regressors for each component.

If we write the regression model as:

Yji = αj +
mk∑
r=1

βksr
·Xsri + εji, εji ∼ N (0, σ2

k), (1)

the likelihood function for Sk = (mk, nk) is given by:

φ(mk, nk) = C · exp



−

1
2σ2

k

N∑

i=1

nk∑

j=1

[
Ytji − αtj −

mk∑
r=1

βksr ·Xsri

]2


 ,

with the normalizing constant being C = (2πσ2
k)−nkN/2.

In a component of type (0, f), which corresponds to having no regressor associated
with f response variables, the Yji are distributed asN (αj , σ

2
k). In standard model-based

clustering, the clusters are what in our model would be (0, n) components. However,
contrary to standard model-based clustering where variables are clustered if they are
centered around a common mean and exhibit similar variability, we group variables only
on the basis of the scale of their distributions, irrespectively of the location. This is
similar to fitting a standard model-based clustering on centered data, where all compo-
nents would have mean 0 and be distinguished by their variances only. The likelihood
function of such a component is therefore given by:

φ(0, f) = (2πσ2
k)−fN/2 exp



−

1
2σ2

k

N∑

i=1

f∑

j=1

(Ytji − αtj )
2



 .

Notice that in the above model components of type (v, 0) are equivalent to compo-
nents of type (1, 0) since X is viewed as a fixed covariate matrix and the corresponding
functions are φ(1, 0) = 1 = φ(v, 0). For this reason we only allow components (1, 0) to
be present in a configuration, and focus on (0, n) and (m,n) components with n > 0
and m > 0. Put it differently, one can view the variable space as q copies of each of the
p X variables, and a copy of the q Y variables and consider partitions with components
(1, 0), (m,n), with m ≥ 0 and n > 0 with the only requirement that no variable be
present more than once in each component.
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2.2 Prior specification

Let us now specify the prior probability distributions for the model parameters. We take
conjugate priors and exploit the conjugacy for computational efficiency by integrating
out the component parameters. Let θT

k = (αt1 , . . . , αtnk
, βs1 , . . . , βsmk

) be the (nk+mk)-
vector of regression coefficients. We choose:

θk ∼ N (θ0k, H0σ
2
k)

σ2
k ∼ IG(σ2

0 , ν)

where θT
0k = (α0t1 , . . . , α0tnk

, β0s1 , . . . , β0smk
), H0 = diag(h01nk

, h1mk
) with 1n an n-

vector with all components equal to one, and IG the inverse-gamma distribution. H0

controls the strength of the prior information on the regression coefficients with larger
values of h0 and h corresponding to a wider spread around θ0k. After integrating out
the model parameters, the marginalized likelihood for a component (mk, nk) reduces
to an nkN -dimensional multivariate t-distribution with 2σ2

0 degrees of freedom, mean
Wθ0k, and scale

(
WH0W

T + InkN×nkN

)
ν/σ2

0 , where W = (1N⊗Ink×nk
XT ⊗1nk

)
is an nkN × (nk + mk) matrix of covariates:1

f(mk, nk) =
Γ( 2σ2

0+nkN
2 )

Γ(σ2
0)

(2πσ2
0)−nkN/2

{
det

(
ν

σ2
0

(WH0W
T + I)

)}− 1
2

×
{

1 +
1

2σ2
0

(Y −Wθ0)T

[
ν

σ2
0

(WH0W
T + I)

]−1

(Y −Wθ0)

}−nkN+2σ2
0

2

(2)

This can also be written (see the Appendix) as:

f(mk, nk) = f(Y |X)=
∫

φ(Y |X,α, β, σ2)p(α|σ2)p(β|σ2)p(σ2)dαdβdσ2

=
νσ2

0

(
ν + 1

2Ω
)σ2

0+Nnk/2

Γ(σ2
0 + Nnk/2)
Γ(σ2

0)
(2π)−nkN/2h−mk/2(Nh0 + 1)−nk/2

× (det A)−1/2, (3)

where the mk ×mk matrix A is

Ars =
δrs

h
+ nk · (X ·XT )rs − nkh0

Nh0 + 1

∑

i

Xri

∑

i

Xsi, (4)

1In this subsection, X and Y are the submatrices of the covariate and outcome matrices correspond-
ing to the covariates and outcomes that are present in the component.
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with δrs being the Kronecker delta, the scalar

Ω =
mk∑
r=1

β2
0sr

h
+

nk∑

j=1

α2
0tj

h0
+

∑

ij

Y 2
ji −

h0

Nh0 + 1

nk∑

j=1

(
α0tj

h0
+

N∑

i=1

Yji

)2

−V T A−1V,

and the mk-vector V is

Vr =
β0r

h
+

∑

ij

YjiXri − h0

(Nh0 + 1)


∑

j

α0j

h0
+

∑

ij

Yji


 ∑

i

Xri.

From the formulae above, one can thus see that the correlation among the outcomes in
a component is accounted for.

Owing to the independence of the components in our model, the marginalized likeli-
hood of a configuration is the product of the marginalized likelihoods of its components.

Finally, we assign a prior to each configuration

p((m1, n1)⊕ . . .⊕ (mK , nK)) ∝
K∏

k=1

ρmk·nk (5)

with 0 < ρ ≤ 1. Thus, a priori, large components are penalized, with stronger penalty
as ρ decreases. We try to favor smaller components because larger ones tend to fit the
noise. We have experimented with different choices of configuration priors and found
this to be the best at imposing some penalty without being too restrictive. As we show
with explicit simulations in Section 4, where we also give a criterion to select ρ, this
prior allows us to identify large components if there is a true signal for them.

3 Model fitting and posterior inference

3.1 MCMC implementation

An exhaustive evaluation of the posterior probabilities of all possible configurations is
unfeasible. The total number of possibilities for components that are of type (m,n),
with n > 0, is

∑q
k=1 S2(q, k)2p·k, where S2 are the Stirling numbers of the second kind

(see e.g. Abramowitz and Stegun (1972)). To sample from the probability measure, we
thus construct a Markov chain whose unique stationary distribution is the measure of
interest: starting at a random point in the configuration space, we move with probability
to an adjacent point. The transition between two adjacent configurations is implemented
by merging two components of the configuration or by splitting one component into two.
In order to ensure better mixing among both the regressors and the response variables,
we implement the Markov chain as a two-step process. At each step either a merge
or a split move is randomly chosen. The types of components involved in the moves
differ in the two steps: in the first step, only moves that allow creation (merging) of
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(1, 0) components are considered, while in the second step the components to be split
(merged) are sampled from the pool of (m, n) components with n > 1 (n ≥ 1).

Moves of the first type

Among all components (m,n) in the configuration, with m > 0, n > 0, whose number
we denote by |(+, +)|, we randomly select one component and remove one of its X
variables. In our notation,

(m,n) → (m− 1, n)⊕ (1, 0).

In the reverse move we choose one component of type (m,n) with 0 ≤ m < p and n > 0
and add to it a covariate uniformly selected among the p−m covariates not present in
the component

(1, 0)⊕ (m,n) → (m + 1, n).

We use the Metropolis acceptance function (Metropolis et al. 1953) and thus the
split move is accepted with probability

Psplit = min
{

1, λ(1)
s · f(m− 1, n)

f(m,n)
· 1
ρn

}
,

where

λ(1)
s =

m · (|(+, +)|)
(K − |(1, 0)| − |(p, +)|′) · (p−m + 1)

,

and the merge move is accepted with probability

Pmerge = min
{

1, λ(1)
m · f(m + 1, n)

f(m,n)
· ρn

}
,

where

λ(1)
m =

(p−m) · (K − |(1, 0)| − |(p, +)|)
(m + 1) · (|(+, +)|′) .

The λs are the ratios of the kernels that describe the probability of going from one
configuration to the other; K is the length of the initial configuration; |(p,+)| (|(p, +)|′)
is the number of components with p Xs and at least one Y before (after) the move;
|(1, 0)| ( |(1, 0)|′) is the number of components with one X and no Y s before (after) the
move.

Moves of the second type

In this case a random component (m,n) having n ≥ 2 is split into two components:

(m,n) → (m1, n1)⊕ (m2, n2),
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with n1 > 0 and n2 > 0, and m1 + m2 = m + c, where c is chosen uniformly in the
interval [0,m/2] when m is even and in the interval [0, (m− 1)/2] when m is odd. The
X variables are assigned to the new components by assigning c of the m X variables to
both components to account for the intersection of the subsets of the new components,
and the remaining m− c variables to one or the other component with probability 1/2.
As for Y , n1 (1 ≤ n1 ≤ n − 1) of the n variables are randomly selected and placed in
one component and the remaining n2 = n− n1 are allocated to the second component.
The split move is accepted with probability

Psplit = min
{

1, λ(2)
s · f(m1, n1) · f(m2, n2)

f(m, n)
· ρm1·n1+m2·n2−m·n

}
,

where

λ(2)
s =

(n− 1) · (m/2 + 1) · ( n
n1

) · (m
c

) · 2m−c+1 · (K − |(1, 0)| − |(+, 1)| − |(0, 1)|)
(K + 1− |(1, 0)|) · (K − |(1, 0)|) .

The probability for the move that merges two components containing Y variables

(m1, n1)⊕ (m2, n2) → (m1 + m2 − c, n1 + n2) = (m,n),

where c is the number of X variables shared by both components, is then

Pmerge = min
{

1, λ(2)
m · f(m1 + m2 − c, n1 + n2)

f(m1, n1) · f(m2, n2)
· ρm·n−m2·n2−m1·n1

}
,

where

λ(2)
m =

(K − |(1, 0)|) · (K − |(1, 0)| − 1)
(n− 1) · (m/2 + 1) · ( n

n1

) · (m
c

) · 2m−c+1 · (K − 1− |(1, 0)| − |(0, 1)|′ − |(+, 1)|′) ,

The notations are as above.

3.2 A Tempering Extension

Simplicity of the moves is the most apparent feature enjoyed by the Markov chain
defined in the previous subsection. In addition, the marginalization over the model
parameters substantially accelerates the MCMC implementation by eliminating the need
of defining appropriate re-allocations of the parameters at every step and the demand
of updating them from their posterior distributions. One may wonder if those choices
hinder the efficiency of the chain to explore the large configuration space, especially
those regions associated with the dominant contributions of the measure. In fact, the
trade-off between simplicity and efficiency is typical of all methods and is not a limitation
of Markov chain methods only. Fortunately, there exist suitable Monte Carlo techniques
that improve considerably the efficiency of the chain by increasing its mixing and limiting
the possibility for it to be trapped in restricted regions corresponding to local modes
of the probability density. One such method is parallel tempering (in the statistics
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literature see e.g. Geyer (1991)), which we have implemented. A sequence of R Markov
chains is run in the same configuration space with different stationary distributions
ψi(x) = ψ(x)1/Ti , where 1 = 1/T0 > . . . > 1/TR−1 > 0 and ψ(x) = ψ0(x) is the
posterior distribution from which we want to sample, which is ψ(C) = f(C) · p(C)
for a configuration C. The higher the index of a chain (i.e. the larger its parameter
T ) the easier it is to jump from one configuration to the next in that chain. After a
fixed number of updates in the respective Markov chains, a swap move is proposed that
exchanges neighboring T values. The swap that involves the configurations at Ti and
Ti+1 is accepted with probability

P (C(Ti+1) ↔ C(Ti)) = min

{
1,

(
f(C(Ti+1))
f(C(Ti))

p(C(Ti+1))
p(C(Ti)))

)1/Ti−1/Ti+1
}

,

so that the move will always be accepted if the posterior of the configuration at Ti+1 is
larger than that of the configuration at Ti. Therefore configurations with largest poste-
rior probabilities tend to move toward the distribution from which we shall eventually
sample but the higher acceptance rates in the peripheral chains allow a better and
faster mixing. The number and spacing of the 1/Ti are chosen so as to ensure good
acceptance rates for the swaps. It is also important to make sure that exchanges do not
only occur locally between neighboring Ti’s but also between low and high values. In
our applications, we verified this by checking that each chain spent (roughly) the same
amount of time at each temperature. As a consequence, we can be reasonably confident
that the sampler is able to escape local modes of the probability density, and therefore
the diagnostic tools we used, viz. trace-plots of the log-posterior probabilities of visited
models, similarity of marginal and pairwise posterior probability values estimated from
sets of non-correlated samples, were supporting convergence rather than localization
around some local mode.

4 Applications

In this section we apply the method to several data sets. First, we consider some
simulated data, evaluate the performance of the method under various settings, assess
its sensitivity to the choice of hyperparameters, test its robustness to the normality and
linearity assumptions, and compare it with other methods. Then, we apply the method
to genomic data. In our MCMC runs, we have recorded the maximum a posteriori
(MAP) configuration. However, as there may be some degeneracy, viz. there may be
different configurations with the same (or very similar) posterior probabilities, we have
also considered, the p × q matrix of posterior probabilities of association between a
covariate Xi and an outcome Yj , the p × p matrix of posterior probabilities that any
pair (Xi, Xj) is assigned to the same component (m,n) and the two q × q matrices of
posterior probabilities that any pair (Yi, Yj) is allocated to the same (0, n) or (m,n)
component. The contributions of different configurations are thus averaged over, and
different configurations with similar high posterior probabilities are weighted similarly.
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4.1 Simulated data

Sensitivity analysis

A data set with p = 200 covariates, X , and q = 100 responses, Y, was generated for
N = 50 samples. A configuration with K = 10 components was constructed in the
following way. The Y variables were randomly assigned to these 10 components, with
the vector (n1, . . . , n10) that counts how many outcomes are in each component sampled
from a multinomial distribution. Subsets of X with varying sizes between 1 and 25 were
randomly assigned to 7 components, allowing for overlap between the components. The
resulting configuration is listed in Table 1. The 200 × 50 entries of the matrix X were
sampled from a multivariate normal distribution with covariance cov(Xi, Xj) = 0.5|i−j|.
The nk outcomes in each component (mk, nk) with mk > 0 were then generated using
its mk covariates according to the model

Yji|Sk ∼ N (αj +
mk∑
r=1

βksrXsri, 1), (6)

with j = t1, . . . , tnk
, i = 1, . . . , N, αj drawn from a normal distribution and the regres-

sion coefficients βksr sampled in the range [−5,−2]∪ [2, 5]. For the 3 (0, n) components,
the Y s were generated with the same model but using as Xs a random set of 15 addi-
tional covariates which were not made available to the algorithm.

The parameter ρ in the priors (5) must be chosen to ensure that the Markov chain
performs correctly, which is to say that moves of both type 1 and type 2 should be
accepted with a similar ratio. This is a critical fact and indeed the Markov chain was
constructed with two types of moves to guarantee a good mixing. It is instructive
to observe what happens when one type of move is hugely favored over the other. If
much fewer type 2 moves than type 1 moves are accepted, there is a tendency to overfit
the data: in components (m, n) with large n, the number of m tends to increase and
many covariates are pulled into the configuration leading to false positives, even if the
acceptance rate is the same for both breaking and merging moves. Notice that the
limiting case in which only moves of type 1 are present is equivalent to a stochastic
search on the subspace of partitions with fixed clusters of Y s. This gives some support
to our claim that clustering first the outcomes and then fitting regression models cluster
by cluster may not be ideal. In the reverse situation, it is mainly moves of type 2 that
are responsible for the assignment of covariates to the components, but some relevant
predictors tend to be dismissed as noise. We verified these observations in several
simulations. In particular, Table 2 summarizes the results of a sensitivity analysis to the
parameter ρ in one set of simulations. It lists the components of the MAP configurations
identified for various values of ρ keeping the other hyperparameters fixed (α0 = β0 = 0,
h0 = 10, h = 1, ν = σ2

0 = 0.1). For ρ = 0.001 the ratio of the acceptance rate of
type 1 moves over the acceptance rate of type 2 moves was 0.12 and some predictive
X’s were missed in a few components. For ρ = 0.5, the ratio of acceptance rate was
121 in the initial stages of the run and in this case some non-informative X variables
were assigned to several components. ρ = 0.01 gave a good balance between moves of
the two types. The MAP configuration recorded during the ρ = 0.01 run contained
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S1 [X23, X36, X67, X77, X85, X107, X112, X122, X130, X145]
[Y1, Y14, Y15, Y16, Y17, Y19, Y25, Y33, Y38, Y46, Y47, Y51, Y64, Y70, Y71, Y82, Y85, Y90, Y98]

S2 [X1, X23, X77, X102, X135, X145, X175, X198]
[Y2, Y23, Y37, Y43, Y57, Y79, Y80, Y81, Y88]

S3 [X37, X58, X73, X83, X91, X100, X168, X173, X174]
[Y3, Y4, Y6, Y9, Y12, Y13, Y18, Y22, Y24, Y26, Y29, Y36, Y42, Y44, Y45, Y54, Y56, Y58, Y65,
Y66, Y68, Y69, Y75, Y77, Y86, Y87]

S4 [X22, X52, X82, X83, X106]
[Y5, Y11, Y91]

S5 [X12, X23, X87, X104, X135, X145, X149, X151, X176, X177]
[Y27, Y93, Y96]

S6 [X112]
[Y34, Y35, Y39, Y59, Y62, Y72, Y73, Y84]

S7 [X1, X28, X34, X61, X84, X87, X92, X155, X174]
[Y7, Y41, Y60, Y74, Y83, Y97]

S8 [∅]
[Y8, Y10, Y28, Y30, Y32, Y48, Y49, Y67, Y89, Y94]

S9 [∅]
[Y20, Y31, Y52, Y61, Y92]

S10 [∅]
[Y21, Y40, Y50, Y53, Y55, Y63, Y76, Y78, Y95, Y99, Y100]

Table 1: The simulated configuration analysed in the text for a data set with 200
covariates (X ) and 100 responses (Y).
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nine components. All seven components of type (m,n) with m > 0 were successfully
identified. The three components for which the relevant predictors were not provided
in the X matrix were well separated from the others and were not associated with any
predictor, but they were grouped into two components of type (0, n) and not into three,
as in Table 1. The outcomes in the (0, n) components in the simulation have however
very similar variances, which is probably not sufficient to discriminate between them,
because in these components we cluster in terms of the scale factor only. In fact, a
similar simulation on data enjoying greater variability across (0, n) components was
able to recover the (0, n) components of the underlying model with greater accuracy.
The ρ = 0.1 and ρ = 0.5 runs identified correctly the (m,n) components, but many
covariates were associated with the responses that in the underlying model were in
(0, n) components. This indeed exemplifies that both types of moves are necessary.
We also assessed the sensitivity of the results to the choice of other hyperparameters
by varying h0 and h from 0.1 to 10, σ2

0 and ν from 0.1 to 1. The values of h, σ2
0

and ν did not appear to affect the results. There was a bit of sensitivity to h0: the
MAP configurations obtained in runs with h0 = 1 had one or two predictors in the
components that are of type (0, n) in Table 1 and for smaller values still, some of the
largest (m,n) components of the true configuration were split into subcomponents: for
example S1 = (10, 19) in Table 1 was split into two components (10, 16) and (11, 3)
the latter having an additional regressor which is therefore a false positive; similarly,
S3 = (9, 26) appeared as two distinct components (9, 23) and (10, 3).

As we have already noted, inference for the association between X and Y variables
can also be drawn based on the marginal probabilities that each outcome be associated
with each covariate. Figure 1 displays a heatmap of these marginal probabilities. We
note that the locations with high marginal probabilities correspond to the variables in
Table 1 that are in the same component. Similarly, the pairwise posterior probabilities
that two outcome variables be allocated to the same component can be used to identify
Y variables that have similar characteristics (see Figure 2).

Comparison with existing multivariate method

We compare the performance of our method with the multivariate method of Brown
et al. (1998). As we have pointed out in the introduction, the latter method selects
one set of covariates for all outcomes, and, consequently, if we were to apply it to our
data set, we would not recover the underlying model. To make a fair comparison, we
thus apply it to each component separately. That is, we assume that we have perfectly
clustered the Y s by some method, a result in itself not always easily attainable, and then
we select the covariates for the outcomes in each cluster (that is, in each component).
When we employed their algorithm, we successfully identified all the correct predictors
for components with few outcome variables, such as S4 and S5. However, no predictor
was identified for components with a relatively large number of response variables,
such as S1 and S3. Indeed, for the latter two components, the models with highest
posterior probabilities contained no regressor and all covariates had marginal posterior
probabilities of inclusion less than 0.1. Thus, it appears that the method performs well
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Figure 1: Heat map of
marginal posterior proba-
bilities for association of
X and Y variables in sim-
ulated data from normal
mixtures with p = 200,
q = 100, whose underlying
model is given in Table 1.
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Figure 2: Heat map of
pairwise posterior proba-
bilities for Y variables be-
ing assigned to the same
component in simulated
data from normal mix-
tures with p = 200,
q = 100, whose underlying
model is given in Table 1.



S. Monni and M. G. Tadesse 427

in the presence of few correlated outcomes, but is not as suited as ours for variable
selection with many response variables.

Performance in the presence of high collinearity

It is reasonable to assume that the presence of highly correlated covariates may com-
plicate the identification of relevant predictors. To investigate the performance of the
method in these circumstances, we generated two new covariates

Z1 = X37 + X58

Z2 = X37 + X58 + X73 + X83,

as sums of predictors from one component (S3) of the configuration summarized in Table
1. We were interested in seeing whether the two variables Z1 and Z2 would appear in
the two MAP configurations found by the algorithm using as new covariates (X , Z1)
and (X , Z1, Z2) and the same outcomes Y. We carried out one run for each extended
data set with parameters α0 = β0 = 0, h0 = 10, h = 1, ν = σ2

0 = 0.1, ρ = 0.01. The
MAP configurations selected by the algorithm in both cases recovered all components
of Table 1 except for substituting Z1 for X58 in the component S3, which shows that
the algorithm is reasonably resistant to collinearity between predictors.

Performance under deviations from normality

We assessed the robustness of the method to deviations from the assumption of normal-
ity. We generated the outcome variables, Y , from a mixture of t-distributions, rather
than a mixture of normal densities. The nk outcomes in component Sk were simulated
using the mk regressors in the same component according to the model

Yji|Sk = αj +
mk∑
r=1

βksrXsri + εij , where εij ∼ tdf .

The algorithm was able to discriminate between the different components, although they
were split into smaller subcomponents. This is to be expected since the t-distribution
has heavier tails than the normal density. Similarly to what happens in the standard
model-based clustering with Gaussian mixtures, observations in the tail area of the t-
distribution appear atypical for a component under the normal assumption and tend to
be allocated to new components (Peel and McLachlan 2000). We also noticed that the
subcomponents contained some, but not all, of the relevant mk covariates. We repeated
this simulation using t distributions with various degrees of freedom and, as anticipated,
the performance improved with larger df since the t distribution then approaches the
normal distribution.

Performance under nonlinear relationships

We also considered nonlinear relationships between the response variables and the co-
variates. We used the matrix of covariates, X , generated in the previous simulated
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example and the same configuration provided in Table 1. The nk outcomes in each
component (mk, nk), however, were drawn from the following model:

Yji|Sk =
mk1∑
r=1

βk,sr exp (Xsr,i) +
mk2∑

r=mk1+1

βk,sr (Xsr,i)
2 +

mk∑
r=k2+1

βk,sr (Xsr,i)
3 + εji,

εji ∼ N (0, 1)

with 1 ≤ mk1 < mk2 < mk. We successfully clustered the Y s in ten groups. How-
ever, for most of these components only two or three relevant predictors were identified
and for a few components several false positives were selected. These results are not
surprising since the linearity assumption inherent to the model is violated. In such
situation, transformations of the variables would be required (Breiman and Friedman
1985; Tibshirani 1988).

Analysis of high-dimensional simulated data

Finally, we tested our method on a large data set, with p = 1000 covariates, q = 1000
outcomes, N = 50 samples, and smaller effect sizes, with the regression coefficients, βsr ,
sampled in the range [−1.5,−0.5]∪[0.5, 1.5]. As shown, with the smaller simulated data,
the multivariate Bayesian variable selection method of Brown et al. (1998) does not per-
form well in the presence of many response variables. Here, we compare the performance
of our method with the univariate Bayesian stochastic search variable selection (SSVS)
algorithm (George and McCulloch 1997) applied to each response variable separately.
The results we report for the SSVS were obtained using the same hyperparameter values
for all 1000 regression models: α0 = β = 0, h0 = 10, h = 1, ν = σ2

0 = 0.1 and ω = 20,
where ω is the number of covariates expected a priori in the model. In theory, one could
tune these values for each univariate analysis and improve on the results. However, this
is not practically feasible with 1000 outcomes. With regard to this, we should empha-
size that the method we have presented has the same number of hyperparameters to
contend with as one univariate model, irrespectively of the number of outcomes. We
carried out several MCMC runs and we compare the results of the univariate analy-
ses with those obtained by our method using the hyperparameter choices that led to
the worst performing run. The configuration we constructed had 35 components: five
(0, n), two (1, n) and 28 (m > 1, n) components. We were able to recover with good
accuracies 14 of the (m > 1, n) components and only eight regressors were wrongly
identified, four of which were in one component. Among the remaining 14 components
of type (m > 1, n), 13 were each split into two subcomponents with overlapping regres-
sors among the latter, and only 20 false positives were included across all components.
The component of the true model that was recovered with the least accuracy had most
of its Y s assigned to one component in the MAP configuration, but the few remaining
outcomes were grouped in (0, n) components with other outcomes belonging to (0, n)
components in the true model. The almost totality of the true (0, n) components were
split into smaller components and were not associated with any covariate. Only two
subcomponents expected to be (0, n) contained one regressor. In other runs, our al-
gorithm identified a MAP configuration with fewer split components and fewer false
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positives, although some do remain. Our result based on non-tuned hyperparameters,
however, is quite good, and much better than the results from the univariate SSVS. For
many outcomes, the univariate analyses missed many of the predictors used to simulate
the data; generally, only one to three regressors were correctly identified and several
false positives were selected. Outcomes that in the true model were in the same compo-
nent had at best few common covariates. In fact, for components with many regressors,
there was often no overlap among the covariates selected by each univariate model. The
problem was even acuter for the (1, n) and (0, n) components. For most of the Y s in
the (1, n) components, the correct regressor was not identified; instead, different sets
of false positives were selected. Similarly, different sets of covariates were associated to
the outcomes of the (0, n) components, while no covariate should have been selected.
To summarize, the univariate SSVS clearly does not compete with our method in iden-
tifying relevant predictors. Furthermore, trying to reconstruct the components of the
underlying model by grouping outcomes that are associated to the same set of regressors
by the SSVS procedure fails. Our model achieves both grouping of correlated outcomes
and identification of their associated regressors with few hyperparameters to tune.

4.2 Real data: CGH and gene expression profiles

Array comparative genomic hybridization (CGH) technologies are designed to measure
DNA copy numbers and allow the detection of gains or losses of chromosomal segments.
Some of these structural changes may have no obvious phenotypic consequences. Others
may affect mRNA transcript levels and, in turn, cause genetic diseases. In an attempt to
identify relationships between DNA copy number and mRNA expression level in cancer
tissues, Bussey et al. (2006) used the NCI-60 cell line panel, which consists of 60 human
cancer cell lines from nine tissue types. They computed Pearson correlation coefficients
between all pairs of CGH and mRNA expression levels collected on these samples. This
procedure raises a problem of multiplicity. In addition, it does not assess the joint
effect of multiple markers nor does it make use of the correlation among transcripts.
Our method overcomes these limitations, although it retains the normality and linear
association assumptions underlying their analysis.

The processed CGH data and the Affymetrix HG-U133A RMA gene expression esti-
mates were downloaded from CellMiner (discover.nci.nih.gov/cellminer). The X matrix
of covariates consists of the CGH data, which are continuous and correspond to log2

CY3/CY5 intensity ratios. One of the cell lines did not have gene expression estimates
and was removed, leaving N = 59 samples for the analysis. We considered q = 3291
probe sets that showed variability across tissue types, which are representative of 2500
genes, and p = 261 CGH clones. The goal of this analysis is to identify groups of cor-
related gene expression profiles (Y) and their associated DNA copy number variations,
represented by some continuous surrogates, the intensity ratios (X ).

The model was fit with hyperparameters α0 = β0 = 0, h0 = h = 1, σ2
0 = ν = 0.1, ρ =

0.01, and the sampler was run for 20 million iterations. A number of components of type
(m,n) were in the MAP configuration. Some components captured known associations
and grouped probe sets of genes which are involved in similar biological processes.
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Some genes were represented in one component by more than one of their probe sets.
Figure 3 shows the 4 outcomes of a (2, 4) component of the MAP configuration, which
are the transcript abundances of CD69, HIST1H3D, LMO2, and TAL1. These are
genes involved in hematopoietic development and lymphocyte proliferation, known to
be implicated in a subset of human T-cell leukemia. Indeed, one can see that they have
higher transcript abundance in some of the NCI-60 leukemia cell lines. The two CGH
clones (covariates) in the component are ABL1, which is deleted in leukemia cells, and
GNG10. Figure 4 displays the expression profiles for four probe sets that correspond to
CD24, a gene which is expressed in various tumors: the NCI-60 cell lines indicate in fact
that it has consistently lower transcript abundance among the leukemia and melanoma
samples. All these four probe sets were selected in one component that had the clone
RYBP as a covariate. This same clone is also associated with changes in the expression
levels of other genes. For example, RYBP appears as a covariate in a component of
the MAP configuration that includes as outcomes the expression levels of GPNMB,
MLANA, and SOX10, which are consistently higher in the melanoma tissues, as the
NCI-60 data show (Figure 5). We also considered the inference using marginal and
pairwise posterior probabilities. We observed good agreement between the associations
identified by the two inference strategies. For example, any two outcomes described
above as being in the same component of the MAP configuration had also pairwise
posterior probabilities greater than 0.75 of being allocated to the same component.
Similarly, any clone-probe pair had marginal posterior probability of association greater
than 0.75.

As we outlined in Section 3.2, to assess convergence we analysed the trace-plots of
the log-posterior probabilities of the visited models and we monitored the effectiveness
of the tempering exchanges. We also compared the pairwise posterior probabilities of
pairs of variables computed using sets of models sampled at different distant times.
In addition, we ran several MCMC chains with the same hyperparameter setting but
different initial points. There was good concordance across the results: Figure 6 displays
a representation of a subset of the pairwise posterior probabilities obtained from two
MCMC chains with different initial configurations.

5 Conclusion

In this paper, we have described a Bayesian stochastic approach designed to find sets
of covariates associated with correlated outcomes. This is implemented via an MCMC
procedure which sweeps through the space of possible configurations, by attempting
to partition or combine subsets of variables. Owing to the large space of possible
configurations and the multimodal nature of the posterior distribution, the ergodicity
of the simulated Markov chain may be compromised. We have implemented a parallel
tempering algorithm in order to overcome this problem.

Like all multivariate methods, the one we have presented here provides substantial
improvement over the radicated practice of fitting univariate regression models on each
covariate, or of applying variable selection separately on each response variable. More-
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Figure 3: Expression pro-
files of CD69 (solid/black),
HIST1H3D (dashed/red), LMO2
(dotted/blue), TAL1 (dot-
dashed/green). These genes
are the 4 outcomes of a (2, 4) com-
ponent of the MAP configuration
for the CGH data.
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Figure 4: Expression profiles for 4
probe sets of gene CD24, which ap-
pear in the same component of the
MAP configuration for the CGH
data.
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Figure 5: Expression profiles
of DCT (solid/black), GP-
NMB (dashed/red), MLANA
(dotted/blue), SOX10 (dot-
dashed/green).

The tissue type labels in Figures
3, 4 and 5 correspond to: BR –
breast; CNS – central nervous sys-
tem; CO – colon; LE – leukemia;
ME – melanoma; LC – lung; OV –
ovarian; PR – prostate; RE – renal.
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Figure 6: Heat maps of a subset of the posterior probabilities of association between
CGH clones and gene expression probes for two MCMC chains started from different
initial configurations.
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over, it is a method that takes account of the correlation between response variables
and assesses the joint effect of multiple covariates on these correlated outcomes, while
allowing different subsets of predictors to be associated with different sets of outcomes.
For this reason, it is more general and more flexible than the few existing variable se-
lection methods in multivariate regression. We have formulated a model which is quite
simple and yet can still capture the key features and the relationships between two
high-dimensional data sets. We have verified this fact by evaluating its performance on
some simulated examples. Furthermore, to show that the method is suited to analyse
data where the number of responses (in the thousands) is comparable with that of the
covariates, we have applied it to two genomic data , which consist of 261 continuous
regressors and 3291 outcomes. We notice that the method is also applicable to cate-
gorical data by suitably re-expressing the variables. For example, we have applied the
method to identify polymorphisms in DNA sequences that explain changes in mRNA
transcript levels. In this analysis, known as eQTL, which we have not presented in this
paper, we used a data set with 3554 responses, gene expression levels, and 2455 single
nucleotide polymorphisms (SNPs), which are categorical covariates. Statistical methods
for analyzing such data are especially needed now that several high-throughput genomic
experiments are being conducted with the goal of integrating the data to understand
molecular processes better. Indeed, many efforts are being carried out to correlate
molecular data from SNP genotyping, DNA microarray technology and proteomics.

We have considered two standard ways of inference. On the one hand, we have con-
sidered the MAP configuration, which provides important information on higher order
relationships between variables. But since it is a single configuration, if we limit our
analysis to it, we neglect additional information coming from potentially very different
configurations with similar posterior probabilities. On the other hand, we have used
marginal and pairwise posterior probabilities to identify covariates associated with par-
ticular outcomes and to locate correlated outcomes. We thus average over different
configurations, but we have to forgo higher-order statistics. We feel it best to employ
both inferential strategies in light of their somewhat complementary features.

One can modify the method in different directions. There may be additional infor-
mation that can be incorporated to elicit the priors and that could be used to design
proposals for merging/splitting components. We have, however, preferred to use stan-
dard priors, as we do not want to obfuscate the general applicability of the method.
In situations where one chooses to use other prior distributions, the model parameters
could be updated in the MCMC procedure instead of integrating them out. This may
not be practical in high-dimensional problems, since all parameters would need to be
updated at each MCMC iteration and appropriate reallocations would need to be de-
vised at each merge and split moves. The marginalization over the model parameters
provides a substantial gain in computational speed and efficiency.

The method is based on some assumptions, such as normality of the mixture com-
ponents, which may not always be adequate and which one could modify, still main-
taining the same computational framework. One could, for example, consider mixtures
of t-distributions or mixtures of gamma distributions. More general procedures for
handling situations where the normality and/or linearity assumptions are not satisfied
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would require nonparametric methods, such as spline models, or, even transformations
of outcomes and covariates (Breiman and Friedman 1985; Tibshirani 1988). Data trans-
formation can reasonably be implemented when the dimensions of the data are small.
However, when dealing with thousands of variables, estimating the optimal transforma-
tion for each variable is a daunting task and is not practically feasible. Further research
is required to develop efficient algorithms for identifying structures and nonlinear rela-
tionships between high-dimensional data sets with arbitrary density.

Appendix

In this appendix we sketch the equivalence between formulae (2) and (3). By definition
we have

H−1
0 + WT W =

[
(N + h−1

0 )Ink×nk

(
X1N ⊗ 1T

nk

)T

X1N ⊗ 1T
nk

h−1Imk×mk
+ nkXXT

]
.

One can easily show that the Schur complement of the first block matrix (N+h−1
0 )Ink×nk

is indeed the matrix A given in (4). By applying standard properties of the determinant,
we then have

det
(
WH0W

T + I
)

= det(I) det(H0) det
(
H−1

0 + WT W
)

= hnk
0 hmk(N +h−1

0 )nk det(A).

Similarly, it can be shown that

Ω = (Y −Wθ0)T
(
WH0W

T + I
)−1

(Y −Wθ0)

using the equality

(
WH0W

T + I
)−1

= I −W
(
H−1

0 + WT W
)−1

WT ,

and
[
Nh0 + 1

h0

(
H−1

0 + WT W
)]−1

=
[

Ink×nk
+ h0

(Nh0+1)

(
X1N ⊗ 1T

nk

)T
A−1

(
X1N ⊗ 1T

nk

) − (
X1N ⊗ 1T

nk

)T
A−1

−A−1
(
X1N ⊗ 1T
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)
Nh0+1
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A−1

]
.
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