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Analyzing Spatial Point Patterns Subject to
Measurement Error

Avishek Chakraborty∗ and Alan E. Gelfand†

Abstract. We address the issue of inference for a noisy point pattern. The
unobserved true point process is modelled as a nonhomogeneous Poisson process.
For modeling the underlying intensity surface we use a scaled Gaussian mixture
distribution. The noise that creeps in during the measurement procedure causes
random displacement of the true locations. We consider two settings. With a
bounded region of interest, (i) this displacement may cause a true location within
the boundary to be associated with an ‘observed’ location outside of the region
and thus missed and (ii) we have the possibility in (i) but also vice versa; the
displacement may bring in an observed location whose true location lies outside
the region. Under (i), we can only lose points and, depending on the variability in
the measurement error as well as the number of true locations close to boundary,
this can cause a significant number of locations to be lost from our recorded set of
data. Estimation of the intensity surface from the observed data can be misleading
especially near the boundary of our domain of interest. Under (ii), the modeling
problem is more difficult; points can be both lost and gained and it is challenging
to characterize how we may gain points with no data on the underlying intensity
outside the domain of interest. In both cases, we work within a hierarchical Bayes
framework, modeling the latent point pattern using a Cox process and, given the
process realization, introducing a suitable measurement error model. Hence, the
specification includes the true number of points as an unknown. We discuss choice
of measurement error model as well as identifiability problems which arise. Models
are fitted using an markov chain Monte Carlo implementation. After validating
our method against several synthetic datasets we illustrate its application for two
ecological datasets.

Keywords: Gaussian mixture model, measurement error model, intensity surface,
Markov chain Monte Carlo, Neymann-Scott process, nonhomogeneous Poisson pro-
cess

1 Introduction

Spatial point processes (Diggle 2003) are employed to model a set of random locations
within a bounded region where some particular event or set of events has been observed
to take place. These locations are represented through coordinates in, say, D ⊂ Rd

for some d > 0; d = 2 provides the usual spatial setting. Illustrative examples arise in
ecology where points might denote species locations, in disease mapping where points
denote locations of disease cases, and in the development of cities where points de-
note locations of building construction. See, e.g., Baddeley et al. (2005) and Gatrell
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et al. (1996) for further examples. We may be interested in learning how incidence and
prevalence for a particular species varies over the region. We may be interested in the
extent of disease spread in different parts of a region. The “null” behaviour assumed for
point patterns is complete spatial randomness, characterized by a homogeneous Poisson
process. Alternatives are often specified through a nonhomogeneous Poisson process
characterized by an intensity function which is the approach we adopt here.

More specifically, an “intensity” surface is a natural concept for point patterns to reflect
expectation of more points in some portion of the region, fewer in others. Models based
on nonconstant intensity surfaces are called nonhomogeneous Poisson process (NHPP).
When these intensity surfaces are realizations of a stochastic process, the models are
usually referred to as Cox processes. See, e.g., Cressie (1993), Møller and Waagepetersen
(2002). General model specification for intensities is usually supplied through paramet-
ric representations or as a process realization, e.g., from a Gaussian process. Intensities
can be designed to capture specific mechanistic behaviour. For instance, the case where
points related to each other tend to stay close and produce aggregated patterns (like
offspring of the same parents) is generally addressed through cluster processes, which
typically use an initial point process model convolved with a growth function to produce
the aggregating behaviour. Discussion and interesting applications can be found in, e.g.,
Neyman and Scott (1958) and Faÿ et al. (2006). See section 4.1 for details.

Customarily, the point pattern literature starts with a set of locations as raw data and
fits a point process model to this set Our contribution is to consider the setting where
the observed locations are measured with error and we seek to assess the resultant effect
on the object of our interest, the intensity function. Intuitively, adding noise will “blur”
the intensity surface, making detection of its features more difficult. This problem is in-
creasingly relevant as more and more automated map construction systems are coming
into play, generating large amounts of spatial data. The degree of accuracy attached to
such procedures influences the quality of databases generated using them. It is quite
likely that, in recording locations, measurement error is introduced. Noise that creeps
into the data comes from the degree of accuracy of the measuring instrument as well
as factors influencing detection of event occurrences within the region such as thinning
and censoring.

Measurement error is well-studied by now. Fuller (1987) explored measurement error
in normal regression models in detail. Relevant work in GLMs can also be found in
Stefanski and Carroll (1987). Most of the literature in this area focuses on epidemio-
logical studies where the exposure information is assumed to be recorded with error.
The Bayesian perspective on this problem takes the approach of relating data, parame-
ters, and unmeasured variables through a graphical model structure and implementing
Markov chain Monte Carlo (MCMC) to fit that model specification. Such models were
investigated by, e.g., Richardson and Gilks (1993) and Mallick and Gelfand (1995). In
our setting, if for instance, data on locations of trees are collected say, by imaging the
forest from above, then the locations of trees in the image can differ from the true loca-
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tions. This might be due to the quality of the imaging procedure, the height at which
the device was placed, or other factors such as air transparency, clouding, or congestion
within the forest. Retrieving the original set of locations may be of interest in this
situation. But, as noted above, inference about the intensity surface will be degraded
and we seek to quantify the increased uncertainty. A novel version of our problem arises
in data confidentiality situations, where location acts as an identifier for a record in a
database. If we seek to publicly release such databases then location must be perturbed
by adding some random noise. Understanding the implications of perturbation enables
specification of mechanisms that will retain essentially the same spatial structure under
perturbation.

Modeling point patterns using intensities requires restriction to a bounded subset of the
plane. As a result, such measurement noise can push locations in and out of the study
domain. Thus we are not only observing a noisy version of the original realization, but
it is also possible that we are missing some of the true events and also observing some
which are not truly in the study region. For patterns having high event aggregation near
the boundary of the region, this problem can be quite significant. In Sections 3, 4 and
5 we show different illustrative examples. Expressed in different words, in our setting,
measurement error results in a form of censoring to yield the actual dataset Modeling
of censored data is common in the survival analysis literature where one observes the
event exactly only if it occurs in a certain time interval. Relevant literature can be found
in Breslow (1974), Cox and Oakes (1984), Sinha and Dey (1997), Kalbfleisch (1978).
Below, similarities and differences are pursued further.

There is a small previous literature on degraded point patterns. That is, points within
the study region may be contaminated with points not belonging to the true pattern,
points may be lost, and points may be subject to displacement. A general description is
that the observed pattern is a random transformation of the true pattern. For instance,
Diggle (1993) viewed the transformation as a conditionally independent random defor-
mation of the true pattern and examined its effect on the familiar K function which is
used to capture the expected number of points within a given distance of a given point
(Ripley 1977). Intensity estimation from a dataset that is incompletely geocoded can
be found in Zimmerman (2008). We look at the problem as a two-stage specification
- model the true pattern and given the true pattern, model the random transforma-
tion. Work in this spirit appears in Lund and Rudemo (2000) and Lund et al. (1999).
There, the distinction is made between inferring about the properties of the true point
pattern and reconstructing the true point pattern. In particular, Lund and Rudemo
(2000) formulate the problem as one of maximum likelihood estimation. They assume
that both the true and observed patterns are available. Under a conditional likelihood
that incorporates thinning, displacement, censoring, and superposition, and is induced
under a cluster process for the true pattern, they obtain maximum likelihood estimates
(MLE’s) of the noise model parameters (using likelihood approximations). See, also,
Baddeley and Van Lieshout (1993, sec. 5) in this regard. On the other hand, Lund et al.
(1999), using a similar degradation model, assume that the true pattern is unknown but
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that the model parameters are known (say, through training data) and infer about the
true pattern. A Gibbs point process with a pairwise interaction function provides the
prior for the true pattern.

Within the fully hierarchical framework we adopt, there is no need to separate the
point process parameter estimation and pattern reconstruction problems. Both can be
addressed through suitable posterior inference and we show how this can be done for
fairly general Cox processes. We can infer about uncertainty ( which is not available
in the MLE approach ) and the only prior knowledge we assume relates to the extent
of measurement error. We consider two scenarios. First, we assume that events can
only occur inside D so a shift of a location due to noise can only throw a point from
D to Dc. But, since no event is allowed to take place outside D, each of the noisy
locations observed corresponds to some true location in D. What we are assuming is
that there will not be any intrusion of points from Dc to D. This requires that D is
reasonably well ’isolated’ from other possible areas where the event is expected to be
observed. Events in those areas have no impact on our experiment within D. We term
this setting an “island” model; Section 3 is devoted to formal development. We employ
an intensity surface which is a scaled mixture model where the scale parameter captures
the expected number of points in D. Then, we remove this restriction by assuming that
our region of interest is actually a subset of a bigger region of possible event findings
(e.g., mapping tree locations in a specific part of a forest). Now events outside can also
enter D because of noise; we refer to this case as a “subregion” model and address it in
section 4. We note that the island model is less useful in practice than the subregion
model but is inferentially much easier. The subregion model presents a more difficult
problem since it is unclear what the “full” region should be as well as how to charac-
terize the intensity outside of the subregion. Here, we employ an intensity surface that
is driven by a Poisson cluster process model, in fact a Neymann-Scott process. In Lund
and Rudemo (2000) and in Lund et al. (1999) this issue is avoided through the use of
an artificial superposition intensity (in fact, a known constant intensity) which simply
adds random locations in D.

We consider measurement error in additive form. It is evident that measurement error
will tend to result in a more scattered point pattern for the observed data than for
the true pattern and this will become even more so with increasing uncertainty in the
measurement error process. Again, the impact of noise on event locations is that it can
take points within the region to outside and vice versa. Thus, the observed number
of points within the study region, particularly near its boundary can be quite different
from that in the true pattern and the extent of difference will depend on the magnitude
of the variability of the measurement error. For a bounded study domain D and a true
location x, we assume the recorded location y = x+ε, where ε is the measurement error.
There may be other noise mechanisms like false detections and/or random missingness
but our discussion is limited to such displacement mechanisms. Also, as noted in Lund
et al. (1999), we can introduce a systematic displacement u, writing y = u + x + ε, if
appropriate.) Hence, we can have (i) x ∈ D, y ∈ D, (ii) x ∈ D, y ∈ Dc or (iii) x ∈ Dc,
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y ∈ D.

We propose the usual measurement error model (MEM) specification, i.e., an error
model of the form f(y|x, θ). The Berkson error model works with the form f(x|y, θ).
The latter is computationally attractive to work with because, by conditioning on ob-
served y’s, we have fixed locations to insert into a spatial correlation function, hence
into the associated covariance matrix. With the MEM we would have unknown loca-
tions in this matrix. Since the inverse of this matrix appears in the Gaussian likelihood,
computation becomes very challenging. For this reason, Barber et al. (2006) have used
the Berkson model in constructing maps for feature locations. But, for us, x is viewed
as latent, a member of a point pattern whose intensity we seek to infer about. So,
the MEM is required for our hierarchical specification and our main concern turns to
how to specify a classical measurement error model which enables feasible computation
and produces sensible results. Barber et al. (2006) discuss the relative features of these
two approaches. Another discussion on comparison of these two specifications, in the
context of assessing radon exposure, can be found in Heid et al. (2004).

The dataset is viewed as arising from a point process model along with a measurement
error model. So, the observational data by itself will be unable to separate the uncer-
tainty in these two components. We need an informative prior for the uncertainty in at
least one of them. This issue is of separating modeling error from measurement error is
common to measurement error modeling in general. The degree of accuracy/uncertainty
of a measuring instrument and its variation in performance across different conditions
can sometimes be obtained from the manufacturer. In cases such as animal counts
in conservation related studies, we may have some prior knowledge about the average
range of movement for an animal around its habitat. More generally, Richardson (1995)
talks about different sources for obtaining additional information about the measure-
ment error process. One way is repeated measurement, not an option in our setting.
Another approach - the inclusion of a validation group or a training dataset - can be of
help here. Use of training datasets is familiar in the statistical literature, e.g. Helmers
and Bunke (2003). We may run a controlled experiment where we have both true and
observed locations using the same measurement procedure. With an appropriate (per-
haps spatial) model we can learn about measurement error variability.

We assume conditionally independent homogeneous displacements in the MEM scenario
as employed in Diggle (1993), i.e., Ω, the covariance matrix for ε, is constant across x.
Of course, marginally, the y’s are spatially dependent. In some contexts we might imag-
ine that the error variability has spatial structure. That is, points closer to each other
are exposed to similar levels of factors that affect location accuracy, so the extent of
shift from the true values are also expected to be similar. Also, the variability of noise
induced at location x can be influenced by factors present there. Thus, the homogeneous
covariance Ω would be replaced with a Ω(z(x)) for some covariate vector, z(x). For ex-
ample in the case of imaging, the elevation and slope at a particular location may affect
how much error we are likely to make in capturing that location. However, since the x’s
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are unknown, such specification produces a complicated posterior full conditional for x
and, in our experience, overall model fitting is unstable.

Finally, in most cases studied in the MEM literature, we have a set of observations {Y}
generated by mixing some noise distribution with an actual set of underlying observa-
tions {X} and the job is to learn about the distribution of X from the data Y . We have
identified (X, Y ) pairs. In our setting, the number of X’s differs from the number of
Y ’s and we have no pairing. This issue is formalized in Lund and Rudemo (2000) and
in Lund et al. (1999) through the introduction of a matching s which matches displaced
y’s with associated x’s. s is unknown but marginalization requires summing over a
very large number of possible s’s. Instead, Lund et al. (1999) retain s as a latent vari-
able, employing a demanding reversible jump MCMC to sample it. In both our island
model and our subregion model, we are able to circumvent this issue, as we clarify below.

The format of the paper is as follows. Section 2 develops nonhomogeneous Poisson
process model for unobserved points. Section 3 deals with development of the Bayesian
modeling of noisy locations, prior specification, posterior computation and inferences in
the case of island types of datasets. Two illustrative simulated examples are given. Sec-
tion 4 generalizes the earlier methodology to the case of a subregion model, again with
an example. Section 5 presents application of the methodology to a couple of ecological
datasets. Section 6 highlights some of the possible directions of extending our work in
terms of modeling and computation.

2 Intensity function modeling

To model the set of true locations inside a bounded domain D ∈ R2, we use a spatial
nonhomogeneous Poisson process, NHPP (Van Lieshout 2000) with intensity λ : D →
R+∪{0}, i.e. we are making two basic assumptions about distribution of points in D.

(i) Given any Borel set B ⊆ D, number of locations inside B, N (B) ∼ Poi(
∫

B
λ(s)ds)

(ii) If B1, B2, ..., Bk are disjoint Borel subsets of D for any k ∈ N, thenN (B1),N (B2), .
..,N (Bk) are independent.

We need λ(·) to be a Borel measure, and
∫

D
λ(x) dx < ∞. In the subsequent analysis,

we will work with simple point processes, i.e., processes that don’t allow multiple repli-
cations of the same location.

To specify the likelihood associated with a realization {s1, s2, ..., sn; n ∈ N∪{0},si ∈ D},
we use the fact that, conditional on number of events in D, locations inside D are
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independent draws from λ(·), normalized to a density over D. Thus we have,

L(λ(s), s ∈ D|n; s1, s2, ..., sn) ∝ e−
∫

D
λ(s) ds

∏n
i=1 λ(si)

n!
(1)

We now focus on modeling the intensity function λ(·) on D. From the conditional in-
dependence property stated above, the NHPP can be thought as a two stage process,
first determining the count and then conditional on the count, generating that number
of points from a density over D. Consistent with that, we employ a specification that
proposes a density surface over D and elevates the surface to the level of the expected
actual count. That is, we model λ(s) = λf(s) , s ∈ D as proposed in Kottas and Sansó
(2007). This separable λf formulation is easy to interpret; separate parameters take
care of the elevation and the orientation of the surface, respectively. Here λ controls
the expected number while f is a density which integrates to 1 over D and determines
how they should be located. In different words, λ(·) provides absolute intensity while
f(·) provides relative intensity.

Flexibility in the choice of f allows for a wide range of specifications. Mixture models
provide a path. We can provide mixture distributions with a fixed number of compo-
nents or an unknown, say random number of components. In the same spirit, one can
consider a nonparametric choice using Dirichlet process, as in Kottas and Sansó (2007)
or Ji et al. (2009). In the sequel, we choose f as Gaussian mixture distribution restricted
to D with fixed number of components, anticipating model comparison across various
choices for the number of components.

3 The Island Model

Under the island model we assume our study region D contains the support of the true
point process i.e. P(x ∈ Dc) = 0 for any event location x. So now we we can only have
(i) x ∈ D, y ∈ D, (ii)x ∈ D, y ∈ Dc.

3.1 Model Specification

Again, in a bounded region D ⊂ R2, we assume n observed event locations (y1, y2, ..., yn),
which are a noisy version of a set of m actual locations (x1, x2, ..., xm) representing the
complete realization of the point pattern in D. So, m is unknown but m ≥ n and, when
we recorded our observation, (m−n) of these locations fell outside of D. For x ∈ D we
adopt the Gaussian noise distribution suggested in Section 1. Also, conditional on the
true location x, y is independent of every other location. Relabeling the x′s so that,
for i = 1, 2, ..., n, xi is the true location corresponding to yi with the last (m − n) x′s
corresponding to y locations outside D, we obtain the following model:
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yi
ind∼ φ2(·;xi, Ω), i = 1, 2, ..., n

π(x1, x2, ..., xm) = NHPP (λ(.))

λ(x) = λfD(x) = λ

K∑

k=1

qkφ2,D(x|µk,Σk) (2)

where φ2,D denotes the restriction of the bivariate normal density to D and qk are the
mixing weights. We refer to (2) as the Island measurement error model.

In all subsequent analysis, we work with fairly vague priors: diffused bivariate normals
for µ’s, inverse Wishart with small degrees of freedom for Σ’s, Dirichlet with uniform
cell weights for p, and a flat prior on R+ for λ. However since point patterns such
as species distribution do not change rapidly over time, one might propose to use past
records to construct the prior. But, as we show in next few examples, if the past data
was inclusive of measurement error, using a moderate or strong prior centered around
that information can lead to posterior inference quite different from the truth. How-
ever, under the λf intensity formulation and a mixture such as f , past data or external
information may be useful with regard to the number of mixture components.

3.2 Computational Details

Since our primary inference objective is to estimate the intensity surface, posteriors
for {q1:k}, {µ1:k}, {Σ1:k} and λ are sought. Note that the intensity surface involves a
Gaussian probability density function (pdf) which has to be truncated within D. We
start with the likelihood computation. It has two parts, one from the observed loca-
tions (y1, y2, ..., yn) (say L1), the other from the unobserved y′s known to be in Dc

(say L2). Upon associating the xi’s with yi’s, the likelihood takes the form L = L1L2

(as in Lund and Rudemo 2000; Lund et al. 1999) where L1 =
∏n

i=1 φ2(yi|xi,Ω) and
L2 =

∏m
i=n+1 Φ̄2(D;xi, Ω), with Φ̄2(A; a,B) = P (x /∈ A|x ∼ N(a,B))

In writing the NHPP prior we assume that the first n of the x′s are identified with the
observed y′s. In fact, there are m!

(m−n)! possible matchings which have been collapsed
into a single case. So, the prior density is, in fact,

π(x1:n, xn+1:m) =
m!

(m− n)!
λm

m∏

i=1

fD(xi)
e−λ

m!
(3)

In the sequel we assume Ω for the measurement error process is known, obtained in
some fashion following the discussion in Section 1, and is suppressed in our notation.
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Hence, the full posterior for the model parameters becomes

π(m,x1:m, λ, µ1:K , Σ1:K , q1:k | y1:n)

∝
(

m

n

)
e−λ λm

m!

m∏

i=1

fD(xi|µ1:K ,Σ1:K , q1:K)
n∏

i=1

φ2(yi | xi)

×
m∏

i=n+1

Φ̄2(D | xi)π(λ, µ1:K , Σ1:k, q1:K) (4)

We implement a Markov chain Monte Carlo (MCMC) algorithm to fit the model and
sample from the posterior full conditionals in the following sequence: (i) λ, µ1:k, Σ1:k, q1:k

|x1:m,m and (ii) x1:m,m|λ, µ1:k, Σ1:k, q1:k via m|λ, µ1:K ,Σ1:K , q1:K followed by x1:m|m, λ,
µ1:K , Σ1:K , q1:K .

With fD as in (2), the full conditional for µ1:K , Σ1:K , q1:K becomes

π(µ1:K , Σ1:K , q1:K |m,x1:m) ∝
∏m

i=1

∑K
j=1 qjφ2(xi|µj , Σj)

(
∑K

j=1 qjΦ2(D|µj , Σj))m
π(µ1:K , Σ1:K , q1:K) (5)

In the absence of truncation, this is routinely sampled using augmentation with latent
mixture component indicator variables (Diebolt and Robert 1994). For a truncated
Gaussian distribution, the posterior is non-standard; we use a nontruncated version of
the distribution as proposal for the Metropolis step. One of the issues in the data aug-
mentation method is the exchangeability of components or label switching. To identify
each (µk, Σk, qk), one needs to put an order constraint on the set of parameters that
can efficiently distinguish each component. For example, putting an order restriction
on the component weights can work well only if no pair of components have weights
close to each other. One can choose scalar functions of component parameters say, ||µi||
or µT

i Σ−1
i µi, which are most likely to be distinct for different components except in

very pathological examples. For the applications done in this article, where component
weights were similar, we arranged by first component of the mean. See Stephens (2000)
for a review of this problem as well as techniques for handling it.

The full conditional distribution for m can be simplified by integrating out the x′s
yielding

π(m|λ, µ1:K ,Σ1:K , q1:K , y1:n)

∝
m∏

i=n+1

∫

D

Φ̄2(D; xi,Σ)fD(xi)dxi

(
m

n

)
λm

m!

∝
(∫

D

Φ̄2(D;x, Σ)fD(x)dx

)m−n
λm−n

(m− n)!
(6)
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i.e., m is distributed as n+v where v ∼ Poi(λ
∫

D
Φ̄2(D; x, Σ)fD(x)dx). This matches our

intuition since λ is the expected number of observations in D and
∫

D
Φ̄2(D; x, Σ)fD(x)dx

is the probability that a random location from this point process will be thrown outside
of D because of noise.

For x1, ..., xn, the full conditionals turn out to be Gaussian. For xn+1, xn+2, ..., xm, the
full conditional consists of contributions from f and Φ̄2. We generate samples from f
and employ the accept-reject method with Φ̄2.

Next, we attempt to provide insight to clarify that, with informative knowledge of the
measurement error uncertainty, we can expect good behaviour in the estimation of the
point process intensity. We investigate analytically, whether we can expect to retrieve
the true number of observations m or corresponding parameter λ from the Gibbs sam-
pler. Suppose we use a starting value of m0 = n in our MCMC. At each iteration we
are simulating m from a shifted Poisson distribution with mean parameter λ(1−p) and
shift n, where p =

∫
D

Φ2(D;x, Σ)fD(x)dx. Notice that p does not depend on either
m or λ; it depends only on the parameters of f and Σ. Under a noninformative prior
for λ, at each stage, λ is updated from a Gamma(m+1, 1) distribution. Then, iteratively,

E(mt|y, mt−1, pt−1) = n + (mt−1 + 1)(1− pt−1)

So E(mt−mt−1|y, mt−1, pt−1) = n+(1−pt−1)−mt−1pt−1. Thus E(mt−mt−1|y,mt−1,
pt−1) ≥ 0 if and only if n + (1 − pt−1) ≥ mt−1pt−1 which we can rewrite as mt−1 ≤

n
pt−1

+ (1−pt−1)
pt−1

. Also, E(n|λ, p) = λp, so E(n
p |λ, p) = λ. Thus, if the pt sequence is

well-behaved then we can expect n
pt−1

to be close to λ and thus, to learn about m. This
suggests that mt is expected to increase from its starting value but eventually we expect
mt to behave well since E(mt|λ, p) will converge to λ + 1−p

p .

3.3 Examples

We consider two simulation examples to illustrate our methodology. In the first case,
we generate data from an intensity surface with f as a bivariate normal distribution
(not a mixture) with parameter values given in Table 1. Our observation window is a
unit square in R2, [0,1]×[0,1] so f is normalized to this square and the expected number
of points is 200. We simulate the x’s and then add a Gaussian zero-mean noise with
dispersion

(
0.036 0.002
0.002 0.021

)
to obtain the y’s. Initially there were 197 points in the window,

but, with the addition of noise, only 180 were left, so we have lost about 8% of the
points. (The expected fraction of points lost can be calculated using the intensity and
error parameters. It turns out to be 8.34%.) Figure 1 shows the original and perturbed
point patterns. One can clearly see the increased spread in the perturbed pattern.

Again, the inference goal is to learn about m, λ, and f , and to display the estimated
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Figure 1: Original (left) and Perturbed (right) point patterns

intensity with associated uncertainty. We also offer a comparison, fitting the island
model and fitting a NHPP model assuming there is no measurement error. Table 1
and Figure 2 show the comparison between the two models (parameters that notice-
ably differ are in bold). As expected, the Island model substantially improves over
the NHPP model; also, it is able to retrieve the model parameters which generated
the actual point pattern. Plots of the actual intensity along with the estimated inten-
sity using the Island model and the NHPP model reveal the benefits of the Island model.

Parameters µ(1) µ(2) Σ(1, 1) Σ(1, 2) Σ(2, 2) λ

True Values 0.64 0.61 0.016 0.0007 0.020 200

Island Model 0.6366 0.6085 0.0165 0.0002 0.0148 199.3371
Estimates (0.5969, 0.6730) (0.5798, 0.6393) (0.0087, 0.0263) (−0.0069, 0.0062) (0.0060, 0.0228) (168.2863, 233.7119)

Noiseless NHPP 0.6073 0.5985 0.0422 0.0005 0.0313 181.0947
Estimates (0.5786, 0.6368) (0.5735, 0.6237) (0.0343, 0.0524) (−0.0047, 0.0063) (0.0257, 0.0384) (155.4500, 208.2373)

Table 1: Comparison of models with and without measurement error in case of bivariate
Gaussian intensity. Point estimates are given with 95% equal tail interval estimates in
parentheses.

In particular, the posterior center for µ(1) is farther from the true value than that for
µ(2). This illustrates the fact that the original sample lost more points in the horizontal
direction than in the vertical one. For Σ(1, 1) and Σ(2, 2) in the NHPP analysis the
95% posterior intervals are far from the true value. The increased uncertainty in the
parameter inference under the Island model is expected due to the added uncertainty
associated with the observed locations.

Next, we take f to be a 2-component normal mixture distribution (see Table 2 ) within



108 ME in Point Pattern

(a) (b)

(c) (d)

Figure 2: Model Analysis : (a) actual intensity surface, (b) its estimate based on
noiseless NHPP, (c) posterior intensity estimate from Island model, (d) uncertainty of
estimated intensity

the unit square and contaminate it with Gaussian noise having dispersion matrix as(
0.023 0.002
0.002 0.019

)
similar to the previous example. Now, there were 199 points initially in

the window, but after noise addition only 177 are left, roughly 11% loss of the points.
(The expected fraction of points lost can again be calculated using the intensity and
error parameters. It turns out to be 10.48%.) From Figure 3, apart from the increased
spread in the noisy pattern, the bimodality of the intensity essentially disappears. Sim-
ilar to Example 1, we fit the island model as well as the noiseless NHPP. Included in
Table 2 is the comparison between the models while Figure 4 provides comparison of
the estimated intensities. Again, we see the benefit of the measurement error model.
As expected, estimation of the Σ’s along with q and λ was severely affected by the
noise. The effect on the µ’s is noteworthy. Fitting a mixture model directly to that
data likely caused the µ’s to shift a bit to adjust for the overlap. Also in panels (c)
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Figure 3: Original (left) and Perturbed (right) point patterns

and (d), the spatial pattern for the posterior uncertainty follows that of the posterior
mean. This is intuitively sensible since, for any areal unit the count of points follows
a Poisson distribution where the mean equals the variance. In Table 2 we can see the
95% credible interval for µ1(1) produced by the noiseless NHPP excludes the true value
(again parameters that noticeably differ are in bold).

Parameters µ1(1) µ1(2) µ2(1) µ2(2) q λ

True Values 0.64 0.61 0.25 0.14 0.71 200

Island Model 0.6291 0.5965 0.2454 0.1575 0.7238 200.7096
Estimates (0.5855, 0.6689) (0.5656, 0.6291) (0.1713, 0.3243) (0.0889, 0.2292) (0.6138, 0.8140) (168.4630, 238.9672)

Noiseless NHPP 0.6053 0.5821 0.2546 0.1694 0.8150 177.7389
Estimates (0.5697, 0.6389) (0.5524, 0.6123) (0.2002, 0.3069) (0.1282, 0.2125) (0.7461, 0.8771) (152.5286, 204.9620)

Parameters Σ1(1, 1) Σ1(1, 2) Σ1(2, 2) Σ2(1, 1) Σ2(1, 2) Σ2(2, 2)

True Values 0.016 0.0007 0.018 0.007 0.0005 0.002

Island Model 0.0153 0.0003 0.0116 0.0105 0.0004 0.0037
Estimates (0.0068, 0.0275) (−0.0060, 0.0081) (0.0040, 0.0206) (0.0038, 0.0176) (−0.0050, 0.0072) (0.0015, 0.0060)

Noiseless NHPP 0.0339 0.0037 0.0271 0.0175 −0.0033 0.0096
Estimates (0.0263, 0.0432) (−0.0019, 0.0098) (0.0207, 0.0352) (0.0091, 0.0306) (−0.0093, 0.0017) (0.0051, 0.0172)

Table 2: Comparison of models with and without measurement error in case of bivariate
Gaussian mixture intensity. Again, point estimates with 95% interval estimates in
parentheses.

4 The Subregion Model

Here, we allow the possibility that all three errors are potentially present in our data,
i.e., shift within D and displacement to and from D.
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(a) (b)

(c) (d)

Figure 4: Model Analysis : (a) actual intensity surface, (b) its estimate based on
noiseless NHPP, (c) posterior intensity estimate from Island model, (d) uncertainty of
estimated intensity

4.1 Model Specification

Our formulation of this problem envisions a larger region D̄ ⊇ D, such that if a point
falls outside D̄, then the probability is negligible that the noise can bring it inside D.
With our assumed knowledge about the noise dispersion, this can be done, for example
by enclosing D in an ellipse of the form D̄ = {y ∈ R2 : (y − x)T Σ(x)−1(y − x) ≤ c} or
alternatively employing a big enough rectangle so that in either case, the chance that
the noise can take a point inside D outside of that rectangle is sufficiently small.

Given D̄, we need to model the intensity surface on it. Our objective is to estimate the
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point process intensity only within D and we are introducing D̄ only as an artifice; with
no observations in D̄−D our prior assumption will drive the intensity over it. Still, the
intensity surface needs to be defined on the whole of D̄, not just D. Below, we propose
a plausible specification, recognizing that the effects of this specification are confounded
with the effects of the noise process.

Conditional on n and fD̄, the expected number of actual points is

n

∫
D

fD̄(x)dx∫
D̄

Φ̄2(D;x, Ω)fD̄(x)dx

= n

∫
D

fD̄(x)dx∫
D

Φ̄2(D; x, Ω)fD̄(x)dx +
∫

D̄−D
Φ̄2(D;x, Ω)fD̄(x)dx

(7)

If the second integral in the denominator on the right side of (7) is not small, then it
can have a consequential effect on our inference. To deal with this problem, we adopt
a version of a Neyman-Scott cluster process over all of D̄ with the restriction that the
cluster centers are in D. Evidently, this allows true locations to be in D̄ −D. In fact,
as we now argue, apart from this restriction, this process model is essentially that of
our island model.

Recall that a Neyman-Scott cluster process model (Neyman and Scott 1958; Stoyan
1992) over D is built in 3 stages

(1) Generate K ∼ Poi(λ) and (µ1, µ2, ...µk) i.i.d ∼ Unif(D)
(2) Conditional on K, generate N1, N2, ..., NK i.i.d ∼ g
(3) Conditional on N1, N2, ..., NK , draw x1, x2, ..., xNi i.i.d∼ h(x; µi, Σ(0)) for 1 ≤ i ≤ K

A closer look at these steps reveals that, conditional on step (1), we can rewrite steps
(2) & (3) as,
(2,3)′ Conditional on K, (µ1, µ2, ...µK), generate N ∼ gK and generate x1, x2, ..., xN

i.i.d ∼ ∑K
i=1

1
K h(x; µi,Σ(0)),

(where gK is the distribution of sum of K i.i.d. variates from g and is easy to obtain
when g is a member of the exponential family). This remark connects us to the earlier
λf formulation for the intensity surface, with λ being the parameter for gK and f being
the Gaussian mixture, now with a common dispersion structure and equal weights across
components. Presuming there are clusters well within the region which have not suffered
loss of points because of the noise, we can expect to learn about the common Σ and,
hence, learn about clusters close to the boundary which are more affected with regard
to loss of points by the noise. Interpreting a Neyman-Scott process through mixtures,
it emerges that the only difference between our modeling here and that of the previous
section is that, there, K was fixed rather than random. In fact, to simplify model fitting,
here, we take K as fixed below, suggesting the same guidance regarding choice as we
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did above.

4.2 Computational Details

As before, assume we observe a set of n points y1, y2, ..., yn within D. Actually, there
were mD̄ points (x1, x2, ..., xmD̄

) within D̄, out of which mD fell in D. By construc-
tion of D̄, noise displacement can not take a point in D to D̄c and vice versa. Unlike
before, n can be greater or less than mD, depending on the extent of shift of locations
from D to D̄ − D and the vice versa. In particular, conceptually, we can imagine b
true locations in D that have been displaced to D̄ −D and c locations in D̄ −D that
have been displaced to D with implicit constraints that 0 ≤ b ≤ min(mD,mD̄ −n) and
0 ≤ c ≤ min(mD̄−mD, n). The net change to D is c−b, to D̄−D is b−c. Equivalently,
n = mD + c− b and mD̄−n = mD̄− (mD + c− b). Note that we do not need to identify
c− b or mD. We simply need to connect n of the true x’s with observed y’s and mD̄−n
of the x’s with unobserved y’s. So, as with the Island model, we can again write the
likelihood as product of these two pieces of information,

L = L1L2

L1 =
n∏

i=1

φ2(yi|xi, Ω, β)

L2 =
mD̄∏

i=n+1

Φ̄2(D;xi, Ω, β)

(8)

Notice that the x corresponding to an observed y may come from any part of D̄, so it
is again clear that we need to assign a prior intensity surface on the entire D̄. As with
the Island model, label the x′s, so that the first n of them correspond to y′s in the same
order. Assigning a prior λD̄(s) = λfD̄(s) on all of D̄, will render the full conditional
distributions,

π(xi|...) ∝ φ2(yi|xi, Ω, β)fD̄(xi), i = 1, 2, ..., n

π(xi|...) ∝ Φ̄2(D; xi, Ω, β)fD̄(xi), i = n + 1, n + 2, ...,mD̄

(9)

Thus, for an observed point, the position of x is governed by both the prior intensity
and a centering around the observed position. Any y falling well within D generates a
posterior for x that has little mass outside of D so x is most likely to be simulated inside
D. On the other hand, for a y close to the boundary with regard to measurement error,
there will be a considerable chance for that x to be simulated from D̄−D, and thus to
be identified as an intruding point. Conversely, for x corresponding to a missing point
y, Φ2(D;x, Ω, β) puts higher weight on the fact that x was either close to boundary of
D or was a point outside of D. The relative chances depend on fD̄.
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Estimation of the µ’s and Σ’s can again be done using data augmentation. With equal
component weights, ordering the first element of the component means identifies the
components. Noteworthy is the posterior full conditional for mD̄,

π(mD̄|λ, µ1:k, Σ(0), y1:n)

∝
mD̄∏

i=n+1

∫

D̄

Φ2(D̄ −D; xi, Σ)fD̄(xi)dxi
mD̄!

(mD̄ − n)!
λmD̄

mD̄!

∝
(∫

D̄

Φ2(D̄ −D; x, Σ)fD̄(x)dx

)mD̄−n
λmD̄−n

(mD̄ − n)!
(10)

The only change from equation (6) is that when we integrate out the x′s, it has to be
over D̄. Thus, (mD̄ −n) is to be sampled from Poi(λ

∫
D̄

Φ2(D̄−D; x, Σ)fD̄(x)dx), this
being the expected number of observations from D̄ that are displaced outside D by the
noise. The quantity of principal interest to us is mD or its expectation λ

∫
D

fD̄(x)dx, the
expected number of observations within D. The posterior distribution of the former can
be estimated by obtaining mD at each step of the MCMC run from the simulated set of
x′s. The latter can be obtained either by averaging these posterior samples or by insert-
ing posterior estimates of the intensity parameters in the expression for the expectation.

4.3 An Example

As an example, suppose the actual domain of the locations is D̄ = (0, 2.5) × (0, 2.5).
However, our interest is to explain the event occurrences within the lower left subregion
D = (0, 2)× (0, 2). Following the above, we take f to be a 3-component normal mixture
(Table 3 ) with uniform weights and common dispersion matrix across all components.
Then we add to it Gaussian noise having covariance matrix

(
0.016 0

0 0.007

)
In our generated

sample (Figure 5) there were 991 points in the bigger window out of which 867 fell into
the domain of observation, around 87.49%. (The expected fraction of points in D can
again be calculated using the intensity and error parameters. It turns out to be 87.94%.)
After noise addition, points moved in and out of D yielding 845 observed points.

As before we fitted the subregion model as well as a NHPP without noise to the observed
dataset and we compare their performance in Table 3 and Figure 6. (again, parameters
that noticeable differ are in bold). As in Figure 2 and 4, the noise-free analysis shown
in Figure 4.2 produced an intensity surface with larger spread around the modes. Due
to loss of points in the x- direction, estimation of µ2(1) was most affected. In the case
of the noiseless NHPP, its 95% posterior credible interval substantially misses the true
value. Also λD, the expected frequency of points within D was affected by the noise
addition. The NHPP analysis estimates it to be close to the observed number of records.
The subregion model accounts for the loss and gain of points and yields an estimate
which, though a bit different from the actual value, is much closer to it compared to
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Figure 5: Original locations in whole domain (left) and subregion (center), Perturbed
locations inside subregion (right)

the NHPP estimate. Ongoing experimentation with the subregion model will enable us
to better assess its performance.

Parameters µ(1)(1) µ1(2) µ
(
21) µ2(2) λD

True Values 0.60 1.40 1.95 0.45 870.60

Subregion Model 0.6156 1.3933 1.9371 0.4494 857.9236
Estimates (0.5948, 0.6362) (1.3778, 1.4099) (1.9014, 1.9690) (0.4304, 0.4697) (831.4508, 884.0664)

Noiseless NHPP 0.6158 1.3927 1.8285 0.4459 845.5023
Estimates (0.5959, 0.6355) (1.3766, 1.4094) (1.8046, 1.8534) (0.4279, 0.4631) (789.1823, 905.1914)

Parameters µ3(1) µ3(2) Σ(1, 1) Σ(1, 2) Σ(2, 2)

True Values 0.68 0.86 0.020 0.0007 0.011

Subregion Model 0.6527 0.8717 0.0202 0.0012 0.0102
Estimates (0.6230, 0.6824) (0.8557, 0.8875) (0.0168, 0.0238) (−0.0007, 0.0034) (0.0086, 0.0121)

Noiseless NHPP 0.6531 0.8712 0.0323 0.0013 0.0170
Estimates (0.6238, 0.6837) (0.8550, 0.8868) (0.0292, 0.0355) (−0.0006, 0.0032) (0.0153, 0.0189)

Table 3: Comparison of models with and without measurement error in case of 3 com-
ponent subregion model

5 An Ecological Data Application

A long-standing issue in the ecological literature is to learn about the distribution of
various species of interest within a particular geographic region. See, e.g., Rosenzweig
(1995) and Gaston (2003). In many settings the raw data consist of recorded locations
over the region where the species was observed. One area of massive ecological field data
collection is the Cape Floristic Region (CFR) in South Africa. Spread over an area of
∼ 9× 104 sq.km., this region hosts thousands of plant varieties and is a global hotspot
for biodiversity research. Data are collected on presence locations for several of these
plant species with the goal of using environmental and soil type factors to explain the
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(a) (b)

(c) (d)

Figure 6: Model Analysis : (a) actual intensity surface, (b) its estimate based on
noiseless NHPP, (c) posterior intensity estimate from Subregion model, (d) uncertainty
of estimated intensity

observed pattern of locations for each species. The locations of presence are recorded
using a global positioning system (GPS) and/or topographical maps, both of which are
subject to roughly known degrees of measurement error (the latter even more than the
former). Often the point level data are gridded to cell counts in order to model them
with covariate information; the cells are determined by the areal resolution at which
this information is available. One such modeling example can be found in Gelfand et al.
(2005). Hence inaccuracy in recording exact locations can result in a grid level presence
summary different from the truth.

Here we use the CFR data with two species, Mimetes hirtus (MIHIRT ) and Pro-
tea cryophila (PRCYRO) in order to explore sensitivity of their abundance patterns
with respect to different degrees of assumed noise variability. For MIHIRT, we looked
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at its observed presence pattern within a rectangular subregion D1 = [18.35, 19.05] ×
[−34.36,−34.21] and for PRCYRO, D2 = [19.145, 19.195]× [−32.512,−32.357]. In both
cases these regions are defined in terms of degrees of latitude and longitude. The re-
sulting patterns consist of 131 and 51 locations respectively as displayed in Figure 7.
We work with the point patterns directly, avoiding gridding.

Figure 7: Observed locations for (left) MIHIRT within D1 and (right) PRCYRO within
D2

These two species are not prevalent over the CFR; they have small and disjoint ranges
and the illustrative subregions offer proposed envelopes for each species. We further
assume that these envelops provide hard boundaries for the respective species distri-
butions and that we have only sampled within these envelopes. Hence, we adopt the
island model to handle measurement error in the presence pattern within Di, i = 1, 2.
In what follows we analyze how the difference between the estimated true abundance
and the observed pattern changes with change in noise variability. Along with noise
free analysis, measurement error was tried with a scale matrix σ2

eI2 at three different
levels of σe = 0.005, 0.010, 0.020. At the scale of these regions, these correspond to error
ranges (3σe) of roughly 27, 54 and 108 meters in any direction from the true location.
These levels are plausible for a field experiment as the first one corresponds to standard
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GPS accuracy and the latter two are appropriate for topographical methods where shift
may even be well above 100 meters. Each dataset was fitted with a two component
bivariate normal mixture as suggested from the observed locations. We provide the
posterior estimates of the intensity surfaces under different σe in Figures 8 and 9 with
parameter summaries for all the models in Table 4.

Figure 8: (clockwise from left) Change in estimated MIHIRT intensity surfaces with
increasing σe = (0, 0.005, 0.010, 0.020)

From the figures, higher noise variability produces a tighter estimate of the true inten-
sity surface. This is sensible, because precision for the true surface increases when we
back out more noise. Table 4 shows that, with increasing σe, interval widths for the
intensity parameters are also increasing, which is reasonable to expect. The changes in
parameter estimates for varying σe are on the order of 10−3 or less. At the resolution
of minute-by-minute grid cells (∼ 1.5 km × 1.8 km over the study region) usually used
to model this kind of data (Gelfand et al. 2005), this can imply errors of 50 to 100
meters. Table 4 reveals differences in sensitivity of species intensity across the different
levels of σe. The sensitivity varies across mixture component too. The covariance struc-
ture is much more sensitive to change in noise than the location parameters. Mixture
weights also change with σe. For MIHIRT, with increasing σe, the first component loses
weight. This implies that points are being gained by the other component, revealing
its higher sensitivity to error. For PRCYRO, moderate measurement error suggests a
lower weight for component 1 but at the largest σe it shows the opposite trend. Finally,
by looking at λ, we see how the expected number of lost points changes with uncer-
tainty. The effect is relatively more pronounced for the less abundant species, PRCYRO.

6 Discussion

In this article we have discussed different issues in modeling a noisy point pattern. Ad-
ditional variability enters into the realization and thus, into the model. This increased
variability is reflected in wider posterior credible sets for intensity parameters. However,
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Figure 9: (clockwise from left) Change in estimated PRCYRO intensity surfaces with
increasing σe = (0, 0.005, 0.010, 0.020)

as seen in the synthetic examples earlier, the gain for this added uncertainty is that the
posterior centers are closer to the truth than their noiseless counterparts. Again, the
λf decomposition of the intensity surface is very general, so one may study different
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Species

Parameters MIHIRT PRCYRO

σe 0 0.005 0.010 0.020 0 0.005 0.010 0.020

µ1(1) 18.4302 18.4296 18.4320 18.4890 19.1672 19.1656 19.1651 19.1666
(0.0101) (0.0106) (0.0115) (0.5175) (0.0066) (0.0171) (0.0167) (0.0164)

µ1(2) −34.2744 −34.2734 −34.2732 −34.2814 −32.3886 −32.3969 −32.3936 −32.3831
(0.0123) (0.0135) (0.0142) (0.0858) (0.0111) (0.1277) (0.1263) (0.0158)

µ2(1) 18.9355 18.9351 18.9308 18.8725 19.1547 19.1553 19.1558 19.1582
(0.0392) (0.0440) (0.0465) (0.5278) (0.0076) (0.0171) (0.0158) (0.0194)

µ2(2) −34.3356 −34.3384 −34.3402 −34.3372 −32.5101 −32.4999 −32.5009 −32.5027
(0.0113) (0.0121) (0.0142) (0.0829) (0.0063) (0.1254) (0.1241) (0.0130)

Σ1(1, 1) 0.00061 0.00062 0.00058 0.00080 0.00010 0.00010 0.00009 0.00009
(0.00035) (0.00041) (0.00044) (0.00389) (0.00009) (0.00014) (0.00013) (0.00012)

Σ1(1, 2) −0.00052 −0.00056 −0.00058 −0.00041 −0.00005 −0.00005 −0.00004 −0.000003
(0.00037) (0.00044) (0.00050) (0.00096) (0.00011) (0.00014) (0.00016) (0.00011)

Σ1(2, 2) 0.00088 0.00093 0.00089 0.00062 0.00027 0.00024 0.00018 0.00008
(0.00051) (0.00062) (0.00073) (0.00109) (0.00026) (0.00038) (0.00031) (0.00014)

Σ2(1, 1) 0.00436 0.00443 0.00434 0.00333 0.00005 0.00006 0.00006 0.00009
(0.00382) (0.00397) (0.00402) (0.00540) (0.00008) (0.00009) (0.00011) (0.00016)

Σ2(1, 2) 0.00024 0.00028 0.00026 0.00006 −0.00000 −0.00000 −0.00000 0.00000
(0.00081) (0.00079) (0.00075) (0.00112) (0.00005) (0.00009) (0.00007) (0.00009)

Σ2(2, 2) 0.00034 0.00031 0.00021 0.00015 0.00004 0.00005 0.00005 0.00006
(0.00030) (0.00028) (0.00025) (0.00092) (0.00006) (0.00026) (0.00017) (0.00010)

q 0.6996 0.6687 0.6428 0.5904 0.7176 0.6231 0.6260 0.6885
(0.1538) (0.1724) (0.2098) (0.2126) (0.2457) (0.2614) (0.2531) (0.2776)

λ 131.7379 141.0974 150.5222 169.4646 51.8881 65.8787 72.3167 94.0949
(45.0589) (52.8167) (68.6860) (93.7239) (29.8167) (43.4248) (44.7333) (52.3775)

Table 4: Estimated intensity parameters and associated 95% interval width under
different scales of error for species data

sorts of specifications for f , as noted in Section 2.

Instead of a single point process realization over a region, we can also think of spatio-
temporal point patterns. In that setting, how the measurement error variability and
the intensity surface evolve over time are subjects of interest. Another application is
to marked point patterns. If the different patterns are affected by the same noise dis-
tribution, a joint model for the underlying true locations using interaction/dependence
can be investigated. Lastly, as we mentioned above, not knowing the actual locations
currently restricts our scope of modeling for the intensity surface, e.g., modeling as a
process realization leads to infeasible computation. Finding feasible model fitting meth-
ods for this scenario will enable us to investigate wider classes of intensities. We also
note that the examples presented here assumed rectangular regions to simplify com-
puting of multi-dimensional integrals on our study domain. For more general regions,
numerical integrations will be required. Since, within geographic information system
(GIS) software, regions are typically described through polygonal curves, this should
facilitate such integration.
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Finally, a problem which is similar to ours is that of developing random set models for
describing evolution of cells. There, we also have unobserved disc centers modelled as a
realization of point process. Instead of modeling π(y|x) and π(x), where y and x stand
for a noisy and a true location respectively, we have the same model structure but with
y being an observed point in the disc with center x. Details of such models can be found
in Baddeley and Møller (1989).
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Kottas, A. and Sansó, B. (2007). “Bayesian mixture modeling for spatial Poisson pro-
cess intensities, with applications to extreme value analysis.” Journal of Statistical
Planning and Inference, 137(10): 3151–3163. 103

Lund, J., Penttinen, A., and Rudemo, M. (1999). “Bayesian analysis of spatial point
patterns from noisy observations.” Technical report, Department of Mathematics and
Physics, The Royal Veterinary and Agricultural University, Copenhagen. 99, 100,
102, 104

Lund, J. and Rudemo, M. (2000). “Models for point processes observed with noise.”
Biometrika, 87(2): 235–249. 99, 100, 102, 104

Mallick, B. and Gelfand, A. E. (1995). “Bayesian analysis of semiparametric propor-
tional hazards models.” Biometrics, 51: 843–852. 98

Møller, J. and Waagepetersen, R. P. (2002). “Statistical inference for Cox processes.”
In Lawson, A. B. and Denison, D. (eds.), Spatial Cluster Modeling , 37–60. Chapman
and Hall/CRC. 98

Neyman, J. and Scott, E. L. (1958). “Statistical approaches to problems of cosmology
(with discussion).” Journal of Royal Statistical Society, Series B, 20: 1–43. 98, 111



122 ME in Point Pattern

Richardson, S. (1995). “Measurement Error.” In Gilks, W. R., Richardson, S., and
Spiegelhalter, D. J. (eds.), Markov chain Monte Carlo in Practice, 401–418. Chapman
and Hall, Boca Raton. 101

Richardson, S. and Gilks, W. R. (1993). “A Bayesian approach to measurement error
problems in epidemiology using conditional independence models.” American Journal
of Epidemiology , 138(6): 430–442. 98

Ripley, B. D. (1977). “Modeling spatial patterns. (with discussion).” Journal of Royal
Statistical Society, Series B, 39(2): 172–212. 99

Rosenzweig, M. L. (1995). Species Diversity in Space and Time. Cambridge University
Press, Cambridge, 1st edition. 114

Sinha, D. K. and Dey, D. K. (1997). “Semiparametric Bayesian analysis of survival
data.” Journal of the American Statistical Association, 92: 1195–1212. 99

Stefanski, L. A. and Carroll, R. J. (1987). “Conditional scores and optimal scores for
generalized linear measurement-error models.” Biometrika, 74: 703–716. 98

Stephens, M. (2000). “Dealing with label switching in mixture models.” Journal of the
Royal Statistical Society, Series B, 62(4): 795–809. 105

Stoyan, D. (1992). “Statistical estimation of model parameters of planar neyman-scott
cluster processes.” Metrika, 39: 67–74. 111

Van Lieshout, M. N. M. (2000). Markov point processes and their applications. Imperial
College Press, London, 1st edition. 102

Zimmerman, D. L. (2008). “Estimating the intensity of a spatial point process from
locations coarsened by incomplete geocoding.” Biometrics, 64: 262–270. 99

Acknowledgments

The authors wish to thank Andrew Latimer and Anthony Rebelo for providing the datasets as

well as helpful feedback about the application in section 5. This work was supported in part

by NSF DEB 0516198.


