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Model-based Clustering of Categorical Time
Series

Christoph Pamminger∗ and Sylvia Frühwirth-Schnatter†

Abstract. Two approaches for model-based clustering of categorical time series
based on time-homogeneous first-order Markov chains are discussed. For Markov
chain clustering the individual transition probabilities are fixed to a group-specific
transition matrix. In a new approach called Dirichlet multinomial clustering the
rows of the individual transition matrices deviate from the group mean and follow
a Dirichlet distribution with unknown group-specific hyperparameters. Estimation
is carried out through Markov chain Monte Carlo. Various well-known clustering
criteria are applied to select the number of groups. An application to a panel of
Austrian wage mobility data leads to an interesting segmentation of the Austrian
labor market.

Keywords: Markov chain Monte Carlo, model-based clustering, panel data, tran-
sition matrices, labor market, wage mobility

1 Introduction

In many areas of applied statistics like economics, finance or public health it is often
desirable to find groups of similar time series in a set or panel of time series through
the use of clustering techniques. However, distance-based clustering methods cannot
be easily extended to time series data, where an appropriate distance-measure is rather
difficult to define, see e.g. the review by Liao (2005).

As opposed to that, Frühwirth-Schnatter and Kaufmann (2008) demonstrated re-
cently that model-based clustering based on finite mixture models (Banfield and Raftery
1993; Fraley and Raftery 2002) extends to time series data in quite a natural way. In
such an approach, each time series yi, i = 1, . . . , N , in a panel of N time series is consid-
ered to be a single entity and a finite mixture model with H components is assumed as
data generating process for yi. Clustering is achieved as for a traditional finite mixture
model by assigning each time yi to one of the H groups. The component specific den-
sity p(yi|ϑh) of the finite mixture model, also called clustering kernel, plays a crucial
role in the corresponding clustering procedure and has to capture salient features of the
observed time series yi. Various such clustering kernels were suggested for panels with
real-valued time series observations by Frühwirth-Schnatter and Kaufmann (2008). Re-
cently, Juárez and Steel (2010) suggested to use skew-t distributions to capture skewness
in the cluster-specific sampling density.
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The present paper focuses on clustering discrete-valued time series obtained by ob-
serving a categorical variable with several states. Our application in Section 5 deals
with a panel reporting the wage category in successive years for young men entering the
Austrian labor market between 1975 and 1980, see Figure 1. The panel contains almost
ten thousand of such wage careers and we are searching for clusters of individuals with
similar wage mobility behavior.
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Figure 1: Individual wage mobility time series of seven randomly selected employees;
x-axis: time t (in years); y-axis: income class k (k ranging from 0 to 5).

For discrete-valued time series it is particularly difficult to define distance measures
and model-based clustering appears to be a promising alternative. We consider cluster-
ing kernels which are based on first-order time-homogeneous Markov chain models. One
approach, called Markov chain clustering, assumes that all time series within a cluster
could be sufficiently described by the same cluster-specific transition matrix. Earlier
applications of this approach include Cadez et al. (2003) who clustered users according
to their behavior on a web site, Ramoni et al. (2002) who clustered sensor data from
mobile robots and Frydman (2005) who considered an application to bond ratings mi-
gration. Fougère and Kamionka (2003) considered a mover-stayer model in continuous
time which is a constrained mixture of two Markov chains to incorporate a simple form
of heterogeneity across individual labor market transition data. Our second clustering
approach, called Dirichlet multinomial clustering, could be viewed as a finite mixture
of random-effects models designed specifically to capture unobserved heterogeneity in
the transition behavior across time series within the same cluster. Such a model may
be regarded as a finite mixture of Markov chain models where within each cluster the
individual transition matrix of each time series deviates from an average group-specific
transition matrix according to a Dirichlet distribution.

The remaining paper is organized as follows. Section 2 discusses Markov chain
clustering as well as Dirichlet multinomial clustering. Bayesian estimation using a two-
block Markov chain Monte Carlo sampler as in Frühwirth-Schnatter and Kaufmann
(2008) is considered in Section 3. In Section 4 we give a short review of some well-
known criteria for selecting the number of clusters. Model-based clustering is applied
in Section 5 to a large panel of Austrian wage mobility data extending earlier work by
Fougère and Kamionka (2003) for the French labor market. Section 6 concludes.
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2 Clustering through Finite Mixtures of Markov Chain
Models

Let {yit} , t = 0, . . . , Ti be a panel of categorical time series observed for N units i =
1, . . . , N on Ti occasions with yit taking K potential states labeled by {1, . . . , K}. Let
yi = {yi0, . . . , yi,Ti} denote an individual time series. Model-based clustering assumes
that H hidden clusters are present and the clustering kernel p(yi|ϑh) with cluster-
specific parameter ϑh could be used for describing all time series in group h, h =
1, . . . , H, i.e. p(yi|Si, ϑ1, . . . , ϑH) = p(yi|ϑSi

), where Si ∈ {1, . . . , H} is a latent group
indicator. The group indicators S = (S1, . . . , SN ) are a priori independent and Pr(Si =
h) = ηh, where

∑H
h=1 ηh = 1.

2.1 Markov Chain Clustering

An important building block for clustering discrete-valued time series is the first-order
time-homogeneous Markov chain model characterized by the transition matrix ξ, where
ξjk = Pr(yit = k|yi,t−1 = j), j, k = 1, . . . , K. Each row of ξ represents a probability
distribution over the discrete set {1, . . . , K}, i.e.

∑K
k=1 ξjk = 1.

Markov chain clustering is based on choosing such a Markov chain model with
cluster-specific transition matrix ξh as clustering kernel. Hence, the group-specific pa-
rameter ϑh is equal to ξh and the clustering kernel p(yi|ξh) reads:

p(yi|ξh) =
Ti∏

t=1

p(yit|yi,t−1, ξh) =
K∏

j=1

K∏

k=1

ξ
Ni,jk

h,jk , (1)

where Ni,jk = #{yit = k, yi,t−1 = j} is the number of transitions from state j to state
k observed in time series i. Note that we condition in (1) on the first observation yi0

and the actual number of observations is equal to Ti for each time series.

A special version of this clustering method has been applied in Fougère and Kamionka
(2003) who considered a mover-stayer model where H = 2 and ξ1 is equal to the identity
matrix while only ξ2 is unconstrained. Frydman (2005) considered another constrained
mixture of Markov chain models where the transition matrices ξh, h ≥ 2, are related
to the transition matrix ξ1 of the first group through ξh = I − Λh(I − ξ1) where I is
the identity matrix and Λh = Diag (λh,1, . . . , λh,K) with 0 ≤ λh,j ≤ 1/(1 − ξ1,jj) for
j = 1, . . . , K.

In contrast to these approaches we assume that the transition matrices ξ1, . . . , ξH

are entirely unconstrained which leads to more flexibility in capturing differences in the
transition behavior between the groups.

2.2 Dirichlet Multinomial Clustering

Model-based clustering using a finite mixture of Markov chain models implies that
each time series yi is generated by a Markov chain model with individual transition
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matrix ξs
i . While under Markov chain clustering ξs

i is equal to the cluster-specific
transition matrix ξh for all time series in cluster h, we suggest a generalization which
takes unobserved heterogeneity within each cluster into account, i.e. for each time series
in cluster h the individual transition matrix ξs

i is allowed to deviate from the cluster-
specific transition matrix ξh. To describe this deviation, the Dirichlet multinomial
model is applied to each row of ξs

i . We assume that the rows of ξs
i are independent and

that each row ξs
i,j·, j = 1, . . . ,K, follows a Dirichlet distribution with cluster-specific

parameter eh,j· = (eh,j1, . . . , eh,jK):

ξs
i,j·|(Si = h) ∼ D (eh,j1, . . . , eh,jK) , j = 1, . . . ,K. (2)

For H = 1, this model is closely related to the Dirichlet multinomial model as for each
row ξs

i,j· of ξs
i the multinomial distribution for the number of transitions starting from

state j is combined with a Dirichlet prior on the cell probabilities. For H > 1, such
a Dirichlet multinomial model is used as clustering kernel, hence the method is called
Dirichlet multinomial clustering. The group-specific parameter ϑh is identical with the
(K ×K)-dimensional parameter matrix eh = {eh,j·, j = 1, . . . , K} appearing in (2).

Despite unobserved heterogeneity, each cluster is characterized by a “typical” cluster-
specific transition matrix ξh given by the expected value of ξs

i in group h. The elements
of ξh read:

ξh,jk = E(ξs
i,jk|Si = h, eh) =

eh,jk∑K
l=1 eh,jl

. (3)

It follows immediately that each row of eh determines the corresponding row in the
cluster-specific transition matrix ξh. The matrices ξ1, . . . , ξH may be compared with
the corresponding matrices in the Markov chain clustering approach studied in Subsec-
tion 2.1.

The variability of ξs
i within each cluster is given by the variance of the individual

transition probabilities ξs
i,jk:

Var(ξs
i,jk|Si = h, eh) =

eh,jk

∑
l 6=k eh,jl(∑K

l=1 eh,jl

)2 (
1 +

∑K
l=1 eh,jl

) . (4)

It can easily be shown that

Var(ξs
i,jk|Si = h, eh)

E(ξs
i,jk|Si = h, eh) (1− E(ξs

i,jk|Si = h, eh))
=

1

1 +
∑K

l=1 eh,jl

. (5)

Thus the row sums Σhj =
∑K

l=1 eh,jl of eh are a measure of heterogeneity in the corre-
sponding rows of ξs

i in group h. The smaller Σhj , the more variable are the individual
transition probabilities and the larger deviations of ξs

i,j· from the group mean ξh,j· are
to be expected. On the other hand, if Σhj is very large, then variability in row j is very
small meaning that the individual transition probabilities are nearly equal to the group
mean ξh,j·. If this is the case for all rows in all groups, Dirichlet multinomial clustering
reduces to Markov chain clustering.
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A distinctive advantage of modeling the distribution of heterogeneity in this way
is that the clustering kernel p(yi|Si = h, e1, . . . , eH) = p(yi|eh) where ξs

i is integrated
out is available in closed form. This is easily verified by combining the conditional
distribution p(yi|ξs

i ) with (2):

p(yi|eh) =
∫

p(yi|ξs
i )p(ξs

i |eh)dξs
i =

=

∏K
j=1 Γ(

∑K
k=1 eh,jk)

∏K
j=1

∏K
k=1 Γ(eh,jk)

∏K
j=1

∏K
k=1 Γ(Ni,jk + eh,jk)

∏K
j=1 Γ(

∑K
k=1(Ni,jk + eh,jk))

. (6)

Hence, the clustering kernel may be entirely characterized by the group-specific parame-
ter eh. It is evident from (6) that this clustering kernel no longer is a first-order Markov
process but allows for higher order dependence.

Finally, note that Dirichlet multinomial clustering provides a very parsimonious way
of introducing group-specific unobserved heterogeneity in individual transition matrices.
While the dimension of the group-specific parameter ϑh = ξh is equal to K(K − 1)
for Markov chain clustering, the dimension of ϑh = eh is equal to K2 for Dirichlet
multinomial clustering, introducing only K additional parameters for each group. Each
of these K parameters controls group-specific unobserved heterogeneity in exactly one
row of ξs

i .

2.3 Clustering Using an Inhomogeneous Markov Chain

If additional covariate information is available, an interesting extension is to use an
inhomogeneous Markov chain as clustering kernel. Clustering could be based on mod-
eling the rows of the transition matrix in group h through a dynamic multinomial logit
model:

ξh,jk = Pr(yit = k|yi,t−1 = j, Si = h) =
exp(γh,jk + xitβh,k)∑K
l=1 exp(γh,jl + xitβh,l)

, (7)

where βh,k is a group and category specific regression parameter capturing the effect of
the covariates xit. To achieve identifiability, it has to be assumed for each j = 1, . . . , K
that γh,jk0 = 0 for some baseline category k0. If no covariates are present, then (7)
reduces to Markov chain clustering with the transition matrix ξh being parameterized
in terms of γh,jk.

3 Bayesian Inference for a Fixed Number of Clusters

The latent group indicators S are estimated along with the group-specific parameters
(ϑ1, . . . , ϑH) and the group sizes η = (η1, . . . , ηH). We assume prior independence
between ϑ1, . . . , ϑH and η ∼ D (α0, . . . , α0). As in Frühwirth-Schnatter and Kaufmann
(2008), we use an MCMC sampler described in Algorithm 1, see also the short note
by Ridgeway and Altschuler (1998):
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1. Bayes’ classification for each individual i: draw Si, i = 1, . . . , N, from the discrete
probability distribution Pr(Si = h|yi, η, ϑ1, . . . , ϑH) ∝ p(yi|ϑh)ηh, h = 1, . . . , H.

2. Sample mixing proportions η = (η1, . . . , ηH): draw η from the Dirichlet distribu-
tion D (α1, . . . , αH) where αh = #{Si = h}+ α0.

3. Sample component parameters ϑ1, . . . , ϑH : draw ϑh from p(ϑh|S,y), h = 1, . . . ,H.

Fougère and Kamionka (2003) applied a similar MCMC sampler to the mover-stayer
model. Alternatively, Ramoni et al. (2002) applied a heuristic Bayesian search method
for finding a good partition S of the data based on the marginal likelihood function
p(y|S) where ϑ1, . . . , ϑH are integrated out.

3.1 Bayesian Inference for Markov Chain Clustering

We assume that the rows of ξh are a priori independent each following a Dirichlet dis-
tribution, i.e. ξh,j · ∼ D (e0,j1, . . . , e0,jK) with prior parameters e0,j· = (e0,j1, . . . , e0,jK)
for j = 1, . . . , K. This prior is conjugate to the complete data likelihood and allows
straightforward implementation of Algorithm 1 with ϑh = ξh, h = 1, . . . , H. Classifica-
tion in Step 1 is based on the clustering kernel p(yi|ξh) defined in (1). The complete
data posterior distribution p(ξ1, . . . , ξH |S,y) appearing in Step 3 is of closed form:

p(ξ1, . . . , ξH |S,y) ∝
N∏

i=1

p(yi|ξSi)
H∏

h=1

p(ξh) =
N∏

i=1

K∏

j=1

K∏

k=1

(ξSi,jk)Ni,jk

H∏

h=1

p(ξh)

∝
H∏

h=1

K∏

j=1

(
K∏

k=1

(ξh,jk)Nh
jk+e0,jk−1

)
,

where Nh
jk =

∑
i:Si=h Ni,jk is the total number of transitions from j to k observed in

group h and is determined from the transitions Ni,jk for all individuals falling into that
particular group.

The various rows ξh,j · of the transition matrices ξ1, . . . , ξH are conditionally inde-
pendent and may be sampled line-by-line from a total of KH Dirichlet distributions:

ξh,j ·|S,y ∼ D (
e0,j1 + Nh

j1, . . . , e0,jK + Nh
jK

)
j = 1, . . . , K, h = 1, . . . , H.

The Bayesian approach offers several advantages in the context of Markov chain clus-
tering compared to EM estimation as in Cadez et al. (2003) or Frydman (2005). First,
in many applications the diagonal elements in the transition matrices are expected to
be rather high whereas the off-diagonal probabilities are comparatively low and the
Bayesian approach allows to incorporate this information by setting the prior parame-
ters adequately, see also Section 5.

Second, the Bayesian approach based on a Dirichlet prior D (e0,j1, . . . , e0,jK) where
e0,jk > 0 is able to deal with zero transitions, while the EM algorithm breaks down,
if no transitions starting from j are observed in group h, i.e.

∑K
k=1 Nh

jk = 0 for some
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j. In this case the observed-data likelihood function p(y|ξ1, . . . , ξH ,S) is independent
of the jth row ξh,j· of ξh and no estimator for ξh,j· exists in the M-step. Additionally,
the EM algorithm fails if not a single transition from j to k is observed for the whole
panel. In this case Nh

jk = 0 for all h = 1, . . . ,H and the M-step leads to an estimator of
ξh,jk that lies on the boundary of the parameter space, i.e. ξ̂h,jk = 0 for h = 1, . . . ,H.
This causes difficulties with the computation of Pr(Si = h|yi, η̂, ξ̂1, . . . , ξ̂H) for all
observations in all groups in the subsequent E-step. To avoid these problems, Agresti
(1990) suggests to add a small constant, e.g. e0,jk = 0.5 to the number of observed
transitions. It is easy to verify that this is equivalent to combining the observed-data
likelihood p(y|ξ1, . . . , ξH ,S) with the Dirichlet prior D (e0,j1, . . . , e0,jK) for each row
ξh,j· within a Bayesian approach.

3.2 Bayesian Inference for Dirichlet Multinomial Clustering

In contrast to Subsection 3.1, no conjugate prior allowing straightforward MCMC es-
timation is available for the group-specific parameters eh, h = 1, . . . , H. To avoid all
problems with empty transitions that have been discussed in Subsection 3.1 we assume
that eh,j· ≥ 1 for all rows in all groups. The structure of the complete-data likelihood
suggests to assume that all rows of eh,j· are independent within and across each group.

To take dependencies between the elements of row eh,j· into account we assume that
eh,j·− 1 is a discrete-valued multivariate random variable following a negative multino-
mial distribution, eh,j·−1 ∼ NegMulNom (pj1, . . . , pjK , β), where pjk = N0ξ̂jk/(α+N0).
The prior density reads:

p(eh,j·) =
Γ(β −K +

∑K
k=1 eh,jk)

Γ(β)
∏K

k=1(eh,jk − 1)!
pβ

j0

K∏

k=1

p
eh,jk−1
jk ,

where pj0 = 1−∑K
k=1 pjk, while expectation and variance are given by:

E(eh,jk) = 1 +
β pjk

pj0
=

β

α
N0ξ̂jk,

Var(eh,jk) =
β pjk(pjk + pj0)

p2
j0

= E(eh,jk − 1)
(

E(eh,jk − 1)
β

+ 1
)

.

The negative multinomial distribution arises as a mixture distribution, if the K ele-
ments of eh,j· are independent random variables from the following Poisson distribu-
tion: eh,jk − 1 ∼ P (γλjk) with γ ∼ G (α, β). Marginally, after integrating over γ,
eh,j· − 1 ∼ NegMulNom (pj1, . . . , pjK , β) with pjk = λjk/(α +

∑K
l=1 λjl). This repre-

sentation suggests the following hyperparameters: λjk = N0ξ̂jk, where N0 is the size of
an imaginary experiment, e.g. N0 = 10, and ξ̂ is a prior guess of the transition matrix,
while α and β are small integers, e.g. α = β = 1.

The parameters e1, . . . , eH , η and the hidden indicators S are jointly estimated using
Algorithm 1 where ϑh = eh. Classification in Step 1 is based on the clustering kernel
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p(yi|ϑh) = p(yi|eh) defined in (6). To implement Step 3 the complete data posterior
distribution p(e1, . . . , eH |S,y) has to be derived:

p(e1, . . . , eH |S,y) ∝
N∏

i=1

p(yi|eSi)
H∏

h=1

p(eh) ∝
H∏

h=1

K∏

j=1

p(eh,j·|y,S)

p(eh,j·|y,S) ∝ p(eh,j·)
Γ(

∑K
k=1 eh,jk)Nh

(∏K
k=1 Γ(eh,jk)

)Nh

( ∏

i:Si=h

∏K
k=1 Γ(Ni,jk + eh,jk)

Γ(
∑K

k=1(Ni,jk + eh,jk))

)
, (8)

where Nh is the number of time series in group h. Note that the KH rows eh,j· of
e1, . . . , eH are independent, however, the conditional posterior p(eh,j·|y,S) is no longer
of closed form. The group-specific parameters e1, . . . , eH are sampled line-by-line by
drawing each row eh,j· from p(eh,j·|y,S) by means of a Metropolis-Hastings algorithm.
As the computation of p(eh,j·|y,S) is rather time-consuming we decided to update only
l ≤ K elements per row simultaneously while the other elements remained unchanged.
We propose each element eh,jk to be updated independently from a discrete random
walk proposal density q(eh,jk|e(m−1)

h,jk ). If e
(m−1)
h,jk ≥ 2 we add with equal probability

−1, 0 or 1, if e
(m−1)
h,jk = 1 we add 0 or 1. This proposal is equivalent to a uniform

distribution on [max(1, e
(m−1)
h,jk − 1), e(m−1)

h,jk + 1]. We accept the proposed value enew
h,j·

with probability min(1, r) where

r =
p(enew

h,j· |y,S) q(e(m−1)
h,j· |enew

h,j· )

p(e(m−1)
h,j· |y,S) q(enew

h,j· |e(m−1)
h,j· )

.

Note that our MCMC implementation avoids sampling of the individual transition ma-
trices ξs

1, . . . , ξ
s
N because the special structure of the distribution of heterogeneity un-

derlying Dirichlet multinomial clustering leads to a closed form density p(yi|eSi). Such
a step would be extremely time consuming as it requires drawing the K rows ξs

i,j· of ξs
i

for each i = 1, . . . , N from ξs
i,j·|(Si = h, eh,y) ∼ D (eh,j1 + Ni,j1, . . . , eh,jK + Ni,jK).

For the labor market application in Section 5, for instance, dealing with nearly 10 000
time series and 6 categories, this would require sampling from about 60 000 Dirichlet
distributions for each MCMC sweep.

3.3 Label Switching and Post-Processing MCMC

Like for any finite mixture model, label switching may occur during MCMC sampling
both for Markov chain clustering as well as for Dirichlet multinomial clustering, see
Jasra et al. (2005) or Frühwirth-Schnatter (2006, Section 3.5) for a recent review.

In some applications of our clustering methods it may be sufficient to constrain the
parameter space appropriately to prevent label switching. For instance, when clustering
binary time series where the cluster-specific transition matrix ξh is characterized by the
two persistence probabilities ξh,11 and ξh,22, it might be possible to identify simple
constraints such as ξ1,11 < ... < ξH,11 or ξ1,22 < ... < ξH,22. However, it may be difficult
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or even impossible to extend this method to clustering time series with more than two
categories K.

Subsequently, we follow Frühwirth-Schnatter (2006, p. 96f) to identify the finite
mixture model both for Markov chain clustering as well as Dirichlet multinomial clus-
tering. We apply k-means clustering to all MH posterior draws of the vector xm,h =
(ξ(m)

h,11, . . . , ξ
(m)
h,KK)T containing the posterior draws of the group-specific persistence prob-

abilities. The whole method is based on the idea that MCMC draws belonging to the
same group will cluster around the same point in the point process representation. If
label switching occurred between subsequent draws, then the classification sequence
resulting from k-means clustering indicates how to rearrange the group-specific pa-
rameters. Provided that the simulation clusters are well-separated, the classification
sequence (d(m)

1 , . . . , d
(m)
H ) corresponding to (xm,1, . . . ,xm,H) is a permutation of the la-

bels {1, . . . , H}. This classification sequence is used for each m = 1, . . . ,M to relabel the
H MCMC draws (ϑ1, η1)(m), . . . , (ϑH , ηH)(m). Finally, the same permutation is used
to relabel the MCMC draws S(m) = (S(m)

1 , . . . , S
(m)
N ) of the hidden group indicators.

4 Selecting the Number of Clusters

Let θH = (ϑ1, . . . , ϑH , η1, . . . , ηH) denote the parameter in a finite mixture model
with H components and let dH be the number of parameters. Let p(y|θH) denote the
likelihood function for fixed H, while p(y,S|θH) denotes the complete-data likelihood
function.

The selection of H may be based on the posterior distribution p(H|y) ∝ p(y|H)p(H)
which is determined either by computing the marginal likelihood p(y|H) for various
values of H or by running some model space methods, see e.g. Frühwirth-Schnatter
(2006, Chapter 4 and 5). However, selecting H in this way does not necessarily lead to
H distinct clusters.

This potential discrepancy is particularly well-documented for the BIC criterion
(Schwarz 1978) BIC(H) = −2 log p(y|θ̂H) + dH log n, where θ̂H is the ML estimator,
and n is the sample size. In the present context of panel data it is not obvious how to
choose n (Kass and Raftery 1995). As each time series is modeled independently by
a mixture model, the number N of time series is a natural choice for the sample size,
i.e. n = N . On the other hand, since multiple observations are available for each time
series, one might prefer the total number of observations as sample size, i.e. n =

∑N
i=1 Ti.

The correct BIC penalty should be based on some measure of information in the data,
as derived e.g. by Kim (1998) in the context of non-stationary time series models.

The AIC criterion (Akaike 1974) defined by AIC(H) = −2 log p(y|θ̂H) + 2 dH is
independent of the sample size, but is well-known to be inconsistent and leads to overfit-
ting mixtures. BIC(H) is known to be consistent for the number of components, if the
component density is correctly specified (Keribin 2000), although in small data sets it
tends to choose models with too few components (Biernacki et al. 2000). On the other
hand, simulation studies reported in Biernacki and Govaert (1997), Biernacki et al.
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(2000), and McLachlan and Peel (2000, Section 6.11) show that BIC(H) will overrate
the number of clusters under misspecification of the component density. Since BIC(H)
is an asymptotic approximation to minus twice the marginal likelihood −2 log p(y|H),
see e.g. Kass and Raftery (1995), it is not surprising that selecting H as to maximize
the marginal likelihood p(y|H) or the posterior probability p(H|y) may not be ade-
quate either, as demonstrated in various applications of model-based clustering, see
e.g. Frühwirth-Schnatter and Pyne (2010).

Several alternative criteria such as approximate weight of evidence AWE(H) (Ban-
field and Raftery 1993) are able to identify the correct number of clusters even when the
component densities are misspecified. Biernacki and Govaert (1997) expressed AWE(H)
as a criterion which penalizes the complete data log-likelihood function with model com-
plexity, i.e AWE(H) = −2 log p(y, Ŝ|θ̂C

H) + 2 dH( 3
2 + log n), where (θ̂C

H , Ŝ) maximizes
log p(y,S|θH).

Various criteria involve the quality of the resulting partition measured through the
entropy EN(H, θH) = −∑H

h=1

∑N
i=1 tih(θH) log tih(θH), where tih(θH) = Pr(Si =

h|yi, θH) is the posterior classification probability defined in Algorithm 1. The entropy
is close to 0 if the resulting clusters are well-separated and increases with increasing
overlap of the mixture components. The CLC criterion (Biernacki and Govaert 1997)
penalizes the log likelihood function by the entropy rather than by model complexity,
i.e. CLC(H) = −2 log p(y|θ̂H)+2 EN(H, θ̂H), while the ICL-BIC criterion (McLach-
lan and Peel 2000) penalizes the log likelihood function both by model complexity and
the entropy, i.e. ICL-BIC(H) = BIC(H)+2 EN(H, θ̂H). Simulation studies reported
by McLachlan and Peel (2000, Section 6.11) showed that ICL-BIC is able to identify
the correct number of clusters in the context of multivariate mixtures of normals even
when the component densities are misspecified.

5 Application to Austrian Wage Mobility Data

In this section we consider wage mobility in the Austrian labor market. Wage mobility
describes chances but also risks of an individual to move between wage categories over
time (Raferzeder and Winter-Ebmer 2007). Transition between the wage categories
is described by a transition matrix which determines the income career and career
progressions for an individual. Since from an economical point of view it is expected
that the income career and career progression is different between employees we apply
both Markov chain clustering as well as Dirichlet multinomial clustering to find groups
of employees with similar wage mobility behavior.

5.1 Data Description

The data were taken from the ASSD (Austrian Social Security Data Base), see Zweimüller
et al. (2009). The panel consists of time series observations for N = 9 809 men entering
the labor market in 1975 to 1980 at an age of at most 25 years. The time series represent
gross monthly wages in May of successive years and exhibit individual lengths ranging
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from 2 to 27 years with the median length being equal to 23. Following Weber (2001),
the gross monthly wage is divided into six categories labeled with 0 up to 5. Category
zero corresponds to zero-income or non-employment which is not equivalent to be out
of labor force. The categories one to five correspond to the quintiles of the income dis-
tribution which are determined for each year from all non-zero wages observed in that
year for the population of all male employees in Austria. The use of wage categories
has the advantage that no inflation adjustment has to be made and circumvents the
problem that in Austria recorded wages are right-censored because wages that exceed
a social security payroll tax cap which is an upper limit of the assessment base for the
contribution fee are recorded with exactly that limit.

5.2 Running Model-Based Clustering

To identify groups of individuals with similar wage mobility behavior, we apply both
Markov chain clustering as well as Dirichlet multinomial clustering for 1 up to 6 groups.
Concerning prior distributions, we choose α0 = 4 for the Dirichlet prior of the weight
distribution η (Frühwirth-Schnatter 2006) and take the prior information concerning
the wage categories into account. First of all, wages show considerable persistence and
staying in the same wage category is more likely than moving to another wage category.
Second, wage categories are ordered, hence transitions into adjacent categories are more
likely than into any other category. To incorporate these aspects into the prior, the
following matrix ξ∗,

ξ∗ =




0.7 0.2 0.025 0.025 0.025 0.025
0.15 0.6 0.15 0.03̇ 0.03̇ 0.03̇
0.03̇ 0.15 0.6 0.15 0.03̇ 0.03̇
0.03̇ 0.03̇ 0.15 0.6 0.15 0.03̇
0.03̇ 0.03̇ 0.03̇ 0.15 0.6 0.15
0.025 0.025 0.025 0.025 0.2 0.7




,

is chosen as prior mean. For Markov chain clustering the hyperparameter of the Dirichlet
prior is selected as e0,j· = N0 × ξ∗j· with N0 = 10, while for Dirichlet multinomial
clustering the hyperparameters of the negative multinomial distribution are chosen as
α = β = 1, N0 = 10 and ξ̂h = ξ∗. Alternative hyperparameters were considered but
showed negligible differences in the results.

We start MCMC estimation by choosing initial values for the group-indicators Si,
i = 1, . . . , N . For H > 1 we find an initial clustering by use of a k-means routine
implemented in R running on the transition frequencies. For each number H of groups
we simulated 10 000 MCMC draws after a burn-in of 15 000 draws. To update the
elements of eh in Dirichlet multinomial clustering we choose l = 2 elements per row
randomly and apply the Metropolis-Hastings algorithm described in Subsection 3.2,
leading to an average acceptance rate of 0.255.
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5.3 Selecting the Number of Clusters

The model selection criteria described in Section 4 are applied to select the number H
of clusters both under Dirichlet multinomial clustering as well as under Markov chain
clustering, see Table 1. For all criteria depending on the sample size n we consider
n =

∑N
i=1 Ti and n = N . The estimators θ̂H and (θ̂C

H , Ŝ) are approximated by the
MCMC posterior draw maximizing, respectively, the log-likelihood function and the
complete data log-likelihood function. Since this introduces a certain random element
into computing these criteria, several independent MCMC runs were performed in order
to study the effect on model selection. We found that the variance of a particular model
selection criterion across independent MCMC runs did not effect the final choice of
H. The criteria reported in Table 1 are based on determining for each H the optimal
estimators across all independent MCMC runs.

BIC AWE ICL-BIC
H AIC n1 n2 n1 n2 CLC n1 n2

Markov chain clustering
1 406098.7 406314.4 406405.8 406680.2 406862.9 406038.7 406314.4 406405.8
2 394117.6 394556.2 394742.0 396551.3 396922.8 396710.2 397270.8 397456.6
3 390431.6 391093.2 391373.4 394870.1 395430.5 395965.8 396811.3 397091.5
4 387757.7 388642.2 389016.8 393730.0 394479.2 394996.6 396127.1 396501.7
5 386243.2 387350.6 387819.6 393313.7 394251.7 394528.3 395943.8 396412.7
6 385221.0 386551.3 387114.7 393606.3 394733.1 394651.5 396351.8 396915.3

Dirichlet multinomial clustering
1 401183.0 401441.9 401551.5 401880.8 402100.1 401111.0 401441.9 401551.5
2 392033.4 392558.4 392780.7 394842.1 395286.7 395002.9 395673.9 395896.2
3 389080.9 389871.9 390206.9 394206.1 394876.0 395176.2 396187.2 396522.2
4 386851.8 387908.8 388356.5 393567.7 394463.1 394683.3 396034.4 396482.1
5 385852.4 387175.5 387735.9 393894.4 395015.0 394947.0 396638.1 397198.5
6 385004.7 386594.0 387267.0 394466.5 395812.6 395308.4 397339.6 398012.6

Table 1: Model selection criteria for various numbers H of clusters for Markov chain
clustering as well Dirichlet multinomial clustering; criteria depending on sample size are
computed with sample size n1 = N and sample size n2 =

∑N
i=1 Ti.

For both clustering kernels, AIC and BIC decrease with increasing H and suggest
at least 6 components. For BIC this holds irrespective of sample size n. However, as
outlined in Section 4, BIC is likely to be overfitting, since we cannot expect that the
Markov chain model or even the more flexible Dirichlet multinomial model is a perfect
description of the component-specific distribution for all time series in this panel. Thus it
is very likely that two or even more components in the Markov mixture model correspond
to groups with rather similar transition behavior, rather than to distinct clusters. This
hypothesis is supported by the other criteria all of which suggest a smaller number of
clusters. For Dirichlet multinomial clustering AWE takes a minimum at H = 4, again,
irrespective of sample size n. Somewhat surprisingly, CLC and ICL-BIC show a non-
monotonic behavior with two local minima at H = 2 and H = 4. For Markov chain
clustering all criteria suggest the presence of 5 clusters.
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When we compare Dirichlet multinomial clustering with Markov chain clustering for
a fixed number H of clusters using BIC, we find that Dirichlet multinomial clustering
is in general preferred to Markov chain clustering. First, this indicates that unobserved
heterogeneity is present in the clusters even after accounting for differences in the typical
cluster-specific transition behavior. Second, Dirichlet multinomial clustering is expected
to exhibit a higher robustness to untypical group members. It should be noted that the
difference in BIC gets smaller with increasing H, because adding components reduces
the within-cluster unobserved heterogeneity and allows to introduce small components
containing untypical wage careers.

When ICL-BIC – which penalizes BIC by entropy – is used to compare the clus-
tering methods we find that Dirichlet multinomial clustering dominates Markov chain
clustering up to 4 clusters. For 5 and 6 clusters Dirichlet multinomial clustering is out-
performed by Markov chain clustering although giving a higher posterior probability for
the observed data, mainly because the entropy of the resulting classification of the time
series is larger than for Markov chain clustering.

5.4 Empirical Results

To provide additional insight, we decided to discuss the four-cluster solution for both
clustering methods in more detail. The MCMC draws are identified as described in Sub-
section 3.3 by applying k-means clustering to the MCMC draws xm,h = (ξ(m)

h,00, . . . , ξ
(m)
h,55),

h = 1, . . . , 4, m = 1, . . . , M . For Dirichlet multinomial clustering, posterior draws for
ξh are obtained by applying the nonlinear transformation (3) to each MCMC draw of
eh.

Pairwise scatter plots of the persistence probabilities ξ
(m)
h,00, ξ

(m)
h,11 and ξ

(m)
h,22 are pro-

vided for illustration in Figure 2. Evidently, the MCMC draws form four well-separated
simulation clusters. Thus it is not surprising that all classification sequences result-
ing from k-means clustering turned out to be permutations of {1, . . . , 4} and allowed
straightforward identification of the four-components finite mixture model.

Analyzing Wage Mobility

To analyze wage mobility in the different clusters we investigate the posterior distribu-
tion of the group-specific transition matrix ξ1, . . . , ξ4. Posterior inference is summarized
for Dirichlet multinomial clustering in Table 2, reporting for each cell E(ξh,jk|y) and
SD (ξh,jk|y), while Table 3 reports the inefficiency factors for two clusters. In addition,
the posterior expectations are visualized in Figure 3 using “balloon plots” generated by
means of function balloonplot() from the R package gplots (Jain and Warnes 2006).
These plots also show the relative size of each group. Based on these results, we assign
a labeling to the various clusters, namely “low wage”, “flexible”, “unemployed”, and
“climbers” which will be further corroborated by the long-run wage distribution as well
as by the wage careers of typical group members to be discussed later in this subsection.

A remarkable difference in the transition behavior of individuals belonging to differ-
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Figure 2: Scatter plots of the MCMC draws of the persistence probabilities (ξh,00, ξh,11)
(left hand side), (ξh,00, ξh,22) (middle) and (ξh,11, ξh,22) (right hand side) obtained under
Markov chain clustering (top) and Dirichlet multinomial clustering (bottom).

ent clusters is evident from Figure 3. Consider, for instance, the first column containing
the risk for an individual to drop into the no-income category in the next year. This
risk is much higher for the “unemployed” and the “flexible” cluster than for the other
clusters. The risk to remain in the no-income category is located in the top left cell and
is much higher in the “unemployed” cluster than in other clusters. The remaining prob-
abilities in the first row correspond to the chance to move out of the no-income category.
These chances are much smaller for the “unemployed” and the “flexible” cluster than
for the other clusters. In the “climbers” cluster chances are high to move into any wage
category while in the “low wage” cluster only the chance to move in wage category one
is comparatively high. Finally, the main diagonal refers to the probabilities to remain in
the various wage categories. Persistence is pretty high except for the “flexible” cluster.
Members of this cluster move quickly between the various wage categories. The upper
secondary diagonal represents the chance to move forward into the next higher wage
category, which is higher in the “climbers” cluster than in the other clusters.

These differences in the transition matrix have a strong impact on wage mobility
and the long-run wage career of the group members. Figure 4 shows the posterior
expectation E(πh,t|y, πh,0) of the cluster-specific wage distribution πh,t = πh,0ξ

t
h after

a period of t years. The initial wage distribution πh,0 is estimated from the initial wage
category yi0 observed for all individuals i being classified to group h. For t = 100, the
wage distribution is practically equal to the equilibrium distribution of the transition
matrix ξh. In the “unemployed” and the “flexible” cluster the equilibrium distribution
is reached after only a few years, whereas in the other two clusters this distribution is
reached after about two decades.
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“unemployed”
0 1 2 3 4 5

0 0.913(0.220) 0.047(0.121) 0.016(0.040) 0.008(0.020) 0.008(0.020) 0.008(0.020)
1 0.216(0.666) 0.602(0.778) 0.139(0.491) 0.020(0.294) 0.011(0.184) 0.011(0.184)
2 0.184(0.678) 0.098(0.546) 0.547(0.951) 0.136(0.595) 0.023(0.368) 0.012(0.135)
3 0.171(0.932) 0.033(0.234) 0.130(0.919) 0.456(1.436) 0.177(1.119) 0.033(0.234)
4 0.120(1.043) 0.024(0.266) 0.024(0.266) 0.089(0.940) 0.563(1.586) 0.180(1.467)
5 0.050(0.574) 0.010(0.102) 0.010(0.102) 0.010(0.102) 0.028(0.457) 0.892(0.778)

“climbers”
0 1 2 3 4 5

0 0.176(0.035) 0.235(0.151) 0.235(0.046) 0.176(0.035) 0.118(0.023) 0.059(0.012)
1 0.164(0.518) 0.491(0.916) 0.249(0.600) 0.064(0.323) 0.025(0.231) 0.007(0.077)
2 0.062(0.248) 0.068(0.287) 0.580(0.676) 0.255(0.486) 0.028(0.180) 0.006(0.053)
3 0.038(0.133) 0.013(0.044) 0.093(0.349) 0.647(0.597) 0.196(0.403) 0.013(0.044)
4 0.026(0.061) 0.013(0.030) 0.013(0.030) 0.102(0.252) 0.756(0.412) 0.091(0.311)
5 0.027(0.151) 0.004(0.021) 0.004(0.021) 0.004(0.021) 0.043(0.272) 0.918(0.316)

“low wage”
0 1 2 3 4 5

0 0.225(1.763) 0.502(1.307) 0.172(1.118) 0.051(0.643) 0.025(0.309) 0.025(0.309)
1 0.067(0.245) 0.823(0.419) 0.094(0.309) 0.008(0.144) 0.004(0.028) 0.004(0.028)
2 0.041(0.238) 0.083(0.395) 0.768(0.540) 0.095(0.469) 0.007(0.059) 0.007(0.059)
3 0.024(0.249) 0.024(0.293) 0.111(1.079) 0.736(1.455) 0.093(0.682) 0.012(0.110)
4 0.022(0.482) 0.014(0.209) 0.014(0.209) 0.042(0.653) 0.773(1.323) 0.136(1.174)
5 0.025(0.773) 0.022(0.659) 0.017(0.358) 0.017(0.357) 0.377(2.807) 0.542(3.502)

“flexible”
0 1 2 3 4 5

0 0.568(0.903) 0.244(0.562) 0.081(0.216) 0.054(0.144) 0.027(0.072) 0.027(0.072)
1 0.255(0.733) 0.530(0.866) 0.107(0.382) 0.054(0.191) 0.027(0.096) 0.027(0.096)
2 0.217(0.698) 0.214(0.763) 0.322(1.244) 0.153(0.620) 0.063(0.414) 0.031(0.207)
3 0.167(0.286) 0.112(0.191) 0.112(0.191) 0.386(1.048) 0.167(0.286) 0.056(0.095)
4 0.145(0.412) 0.072(0.206) 0.072(0.206) 0.145(0.412) 0.421(1.647) 0.145(0.412)
5 0.116(0.923) 0.088(1.083) 0.035(0.440) 0.035(0.440) 0.151(1.058) 0.574(2.064)

Table 2: Posterior expectation E(ξh|y) and, in parenthesis, posterior standard devia-
tions SD (ξh|y) (multiplied by 100) of the average transition matrix ξh in the various
clusters.

The long-run wage distributions shown in Figure 4 provide further evidence for the
labeling of the clusters we introduced earlier. Young men belonging to the “unem-
ployed” cluster have a much higher risk to start in the no-income category than young
men belonging to the other clusters. Furthermore, about 60% of the members of this
group have no income in the long run. For young men belonging either to the remaining
clusters there is little difference between their wage distribution when they enter the
labor market. However, in the long run considerable differences in the wage distribution
become evident due to the observed differences in wage mobility. Members of the “flex-
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Row “low wage” “flexible”

1 14.7 8.19 7.95 24.6 29.7 29.7 6.86 5.75 7.76 7.76 7.76 7.76
2 5.22 12.7 6.73 34.1 42.9 42.9 10.1 9.23 13.9 13.9 13.9 13.9
3 6.18 7.9 10.3 12.3 41.5 41.5 4.34 6.00 7.44 13.1 28.8 28.3
4 24.1 18.8 20.6 21.4 7.16 38.0 5.72 5.72 5.72 5.72 5.72 5.72
5 35.6 40.7 40.7 12.4 13.3 12.6 9.01 9.01 9.01 9.01 9.01 9.01
6 5.26 4.76 39.7 39.4 23.1 27.2 12.8 12.6 31.3 31.3 9.43 15.7

Table 3: Inefficiency factors of the MCMC draws obtained for each row j = 1, . . . , 6 of
the cluster-specific transition matrices ξh,j· for two clusters.

ible” cluster have a much higher risk to end up in the no-income category, members of
the “low wage” cluster end up in lower wage categories, while members of the “climbers”
cluster move into the highest wage categories.

Analyzing Unobserved Heterogeneity

To analyze how much unobserved heterogeneity is present in the various clusters, we
report in Table 4 the posterior expectation of the variance of the individual transition
probabilities ξs

i,jk defined in (4) as well as posterior expectation and standard deviation
of the row-specific unobserved heterogeneity measure defined in (5). These measures
vary considerably between the clusters as well as between the rows within each cluster.
Unobserved heterogeneity is highest in the “flexible” cluster and lowest in the “low
wage” cluster. In general, persistence probabilities have higher variances than the off-
diagonal elements.

Apart from a few exceptions, the amount of unobserved heterogeneity is rather
moderate for most of the cells. Thus it is to be expected that the cluster-specific
transition matrices obtained by Dirichlet multinomial clustering (DMC) are similar
to the ones obtained by Markov chain clustering (MCC). Indeed, when we studied
the transition matrices and the long-run wage distributions of the four-group solu-
tion obtained through Markov chain clustering we were able to identify clusters with
a similar meaning. For illustration, Figure 5 shows the expected posterior difference
E(ξh,jk|y, DMC)−E(ξh,jk|y, MCC) for the “unemployment” and “low wage” cluster. We
observe the biggest differences in the “low wage” cluster, where the expected chance to
remain in the highest wage category is 54.2% under DMC, while for MCC the expected
chance is as large as 99.5%. In general, differences occur mainly for the persistence
probabilities with MCC overrating persistence in relation to DMC. This phenomenon
is well-known in the analysis of dynamic panels, see e.g. Hsiao (2003), where it is often
observed that ignoring unobserved heterogeneity leads to overrating persistence.
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Figure 3: Visualization of posterior expectation of the transition matrices ξ1, ξ2, ξ3,
and ξ4 obtained by Dirichlet multinomial clustering. The circular areas are proportional
to the size of the corresponding entry in the transition matrix. Posterior expectations
of the corresponding group sizes η1, η2, η3 and η4 are indicated in the parenthesis.

Posterior Classification

Next we study for both clustering methods how individuals are assigned to the four
wage mobility groups using the posterior classification probabilities tih(θH) = Pr(Si =
h|yi, θH) for H = 4, see e.g. Frühwirth-Schnatter (2006, pp. 221) for various ways
of clustering observations based on finite mixture models. The posterior expectation
t̂ih = E(tih(θ4)|y) is estimated over the last 10 000 MCMC draws for MCC and over
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Figure 4: Posterior expectation of the wage distribution πh,t over the wage categories
0 to 5 after a period of t years in the various clusters.
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Figure 5: Each cell shows the difference between the posterior expectation of the cluster-
specific transition matrices ξh obtained by Dirichlet multinomial clustering (DMC) and
Markov chain clustering (MCC); dark gray: E(ξh,jk|y,MCC) > E(ξh,jk|y,DMC), light
gray: E(ξh,jk|y, MCC) < E(ξh,jk|y,DMC) (minimal difference: -0.4525, maximal dif-
ference: 0.3744).

the last 1000 MCMC draws for DMC (for CPU running time reasons) with a thinning
parameter equal to 10. Each employee is then allocated to that cluster which exhibits
the maximum posterior probability, i.e. Ŝi is defined such that t̂i,Ŝi

= maxh t̂i,h. The
closer t̂i,Ŝi

is to 1, the higher is the segmentation power for individual i.
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“unemployed”
row j 0 1 2 3 4 5 100/(1 + Σhj)

0 6.247 3.555 1.225 0.617 0.617 0.617 0.785(0.020)
1 21.168 29.916 14.830 2.425 1.567 1.567 1.246(0.115)
2 20.082 11.921 33.173 15.676 3.547 1.799 1.336(0.122)
3 45.030 10.306 35.066 79.321 47.562 10.306 3.200(0.280)
4 27.507 6.781 6.781 20.714 64.105 39.037 2.596(0.216)
5 4.306 0.855 0.855 0.855 2.626 8.775 0.923(0.050)

“climbers”
row j 0 1 2 3 4 5 100/(1 + Σhj)

0 80.738 99.962 99.962 80.738 57.670 30.757 5.556(0.000)
1 11.723 21.428 15.988 5.124 2.171 0.737 0.858(0.032)
2 3.251 3.545 13.553 10.584 1.533 0.310 0.556(0.019)
3 4.932 1.689 10.876 29.779 20.605 1.689 1.300(0.022)
4 3.242 1.642 1.642 11.570 23.584 10.588 1.281(0.033)
5 1.069 0.169 0.169 0.169 1.711 3.114 0.410(0.011)

“low wage”
row j 0 1 2 3 4 5 100/(1 + Σhj)

0 39.146 55.264 31.169 9.621 4.926 4.926 2.212(0.185)
1 2.692 6.263 3.642 0.359 0.180 0.180 0.425(0.006)
2 2.142 4.236 9.786 4.743 0.305 0.305 0.553(0.011)
3 2.682 2.695 11.231 22.255 9.561 1.357 1.163(0.071)
4 2.733 2.733 2.733 7.351 29.198 18.956 1.650(0.111)
5 4.765 4.188 3.569 3.569 44.497 46.598 1.872(0.261)

“flexible”
row j 0 1 2 3 4 5 100/(1 + Σhj)

0 65.173 49.016 19.916 13.672 7.033 7.033 2.652(0.077)
1 50.251 65.833 25.581 13.571 6.981 6.981 2.642(0.090)
2 53.139 52.344 67.911 40.216 18.890 9.773 3.122(0.195)
3 74.856 53.290 53.290 125.494 74.856 28.338 5.330(0.124)
4 82.087 44.478 44.478 82.087 163.497 82.087 6.686(0.094)
5 34.880 26.682 10.826 10.826 42.957 80.337 3.273(0.354)

Table 4: Posterior expectation of the variance of the individual transition probabilities
100ξs

i,jk (in percent) in the various clusters as defined in (4); last column: posterior ex-
pectation and, in parenthesis, posterior standard deviation of the amount of unobserved
heterogeneity in row j defined in (5) as 1/(1 + Σhj) and multiplied by a factor 100

Table 5 analyzes the segmentation power for both clustering methods by reporting
the quartiles and the median of t̂i,Ŝi

within the various groups as well as for all individ-
uals. We find that the overall segmentation power is rather high. 3 out of 4 individuals
are assigned with at least 70.3 % (MCC) and 71.5 % (DMC) to their respective groups.
For 1 out of 4 individuals assignment probability amounts to at least 98.9 % (MCC) and
98.1% (DMC). Segmentation power is the highest for the “unemployed” and the lowest
for the “flexible” cluster. Markov chain clustering has a slightly higher segmentation
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power than Dirichlet multinomial clustering in these clusters, while the segmentation
power is smaller for the other clusters.

Markov chain clustering Dirichlet multinomial clustering
1st Qu. Median 3rd Qu. 1st Qu. Median 3rd Qu.

“unemployed” 0.8902 0.9930 0.9994 0.8616 0.9844 0.9976
“climbers” 0.6829 0.8803 0.9732 0.7199 0.8852 0.9635
“low wage” 0.6487 0.8671 0.9796 0.6587 0.8682 0.9748
“flexible” 0.6574 0.8719 0.9775 0.6419 0.8436 0.9660

overall 0.7026 0.9113 0.9891 0.7154 0.9064 0.9811

Table 5: Segmentation power of Markov chain clustering (left hand side) and Dirichlet
multinomial clustering (right hand side); reported are the lower quartile, the median
and the upper quartile of the individual posterior classification probabilities t̂i,Ŝi

for all
individuals within a certain cluster as well as for all individuals.

To obtain an even better understanding of the various wage mobility groups typical
group members are selected for each cluster and their individual time series are plotted in
Figure 6 which shows for both clustering methods the members with the 1st, 5th, 10th,
20th and 50th highest classification probability to belong to a particular cluster. This
figure further emphasizes the interpretation of the wage mobility groups given above
and is surprisingly robust to the clustering method. The “flexible” cluster obviously
represents the more flexible and fluctuating employees. Typical members of the “low
wage” cluster stay mainly in the lowest wage category. The “unemployment” cluster
contains the employees who fall into the no-income category more often and remain
there much longer than members of the other clusters. Finally, the “climbers” cluster
comprises of employees who get out of the no-income category more easily and make
rather straight career advancements. Such huge differences in the wage mobility in the
Austrian labor market have never been documented before.

6 Concluding Remarks

In this paper we discussed model-based clustering of categorical time series based on
time-homogeneous first-order Markov chains with unknown transition matrices. In the
Markov chain clustering approach the individual transition probabilities are fixed to
a group-specific transition matrix. In a new approach called Dirichlet multinomial
clustering it is assumed that within each group unobserved heterogeneity is still existent
and is captured by allowing the individual transition matrices to deviate from the group
means by describing this variation for each row through a Dirichlet distribution with
unknown hyperparameters.

We discussed in detail an application to modeling and clustering a panel of Austrian
wage mobility data describing the wage career of nearly 10 000 young men entering
the labor market during the second half of the 1970s. Model choice criteria indicated
that Dirichlet multinomial clustering outperforms Markov chain clustering and that for
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Figure 6: Typical group members within each cluster: wage careers of the individuals
no. 1, 5, 10, 20 and 50 in the posterior classification probability ranking; left hand side:
Markov chain clustering; right hand side: Dirichlet multinomial clustering.

this cohort study the labor market should be segmented into four groups. The group-
specific transition behavior turned out to be very different across the clusters and led to
a meaningful interpretation from an economic point of view showing four types of wage
careers, namely “unemployed”, “low wage”, “flexible” and “climbers”. The amount of
unobserved heterogeneity within each cluster turned out to be small compared to the
differences between the clusters, hence model-based clustering turned out to be robust
to the choice of clustering kernel and the meaning of the clusters obtained by Markov
chain clustering under a four-group solution was comparable to Dirichlet multinomial
clustering. We found for both clustering methods that the segmentation power of the
four-group solution is rather high: 3 out of 4 individuals are assigned with at least
70.3% (MCC) and at least 71.5% (DMC) probability to their respective cluster.

We conclude that both clustering kernels are a sensible tool for model-based cluster-
ing of discrete-valued panel data, in particular, if no background information is available.
For our case study we were able to identify various sensible types of wage careers, al-
though important covariates like education or profession were unobserved. Nevertheless,
other clustering kernels might be sensible for clustering discrete-valued time series. One
interesting extension of our approach is to use a kth order instead of a first-order Markov
chain in order to extend the memory of the clustering kernel to the past k observations,
see e.g. Saul and Jordan (1999). MCMC estimation as discussed in this paper is easily
extended to this case.

A very general clustering kernel is obtained through a dynamic multinomial logit
model with random effects, see e.g. Rossi et al. (2005). Such a clustering kernel is able
to capture rather general dependence patterns in the distribution of unobserved hetero-
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geneity, while under Dirichlet multinomial clustering the dependence structure is rather
restricted. Under Dirichlet multinomial clustering, individual transition probabilities
ξs
i,jk and ξs

i,j′l appearing in different rows of ξs
i are independent, while for transition

probabilities ξs
i,jk and ξs

i,jl appearing in the same row of ξs
i the following holds:

Cov(ξs
i,jk ξs

i,jl|Si = h, eh)
E(ξs

i,jk|Si = h, eh)E(ξs
i,jl|Si = h, eh)

= − 1

1 +
∑K

k′=1 eh,jk′
.

Thus the dependence structure within each row is rather restricted and, apart from
the sign, is controlled by the same expression which controls the total amount of unob-
served heterogeneity in that row, see also (5). However, using a dynamic multinomial
logit model with random effects as clustering kernel complicates MCMC estimation con-
siderably, because no explicit expression for the marginal distribution where the random
effects are integrated out is available. Thus we leave this for future research.
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Fougère, D. and Kamionka, T. (2003). “Bayesian inference of the mover-stayer model
in continuous-time with an application to labour market transition data.” Journal of
Applied Econometrics, 18: 697–723. 346, 347, 350

Fraley, C. and Raftery, A. E. (2002). “Model-based clustering, discriminant analysis,
and density estimation.” Journal of the American Statistical Association, 97: 611–
631. 345
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