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Desiderata for a Predictive Theory of Statistics

Bertrand Clarke∗

Abstract. In many contexts the predictive validation of models or their associated
prediction strategies is of greater importance than model identification which may
be practically impossible. This is particularly so in fields involving complex or high
dimensional data where model selection, or more generally predictor selection is
the main focus of effort. This paper suggests a unified treatment for predictive
analyses based on six ‘desiderata’. These desiderata are an effort to clarify what
criteria a good predictive theory of statistics should satisfy.
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1 Validation

The central issue in this paper is how to ensure inferences from a specific data set validate
beyond a specific context. To address the validation challenges, we propose a list of
six desiderata that may provide a framework for addressing a large class of statistical
problems predictively. These six desiderata are not formal enough to be a paradigm
or analytic framework, however, they are formal enough that their prescriptions can be
meaningfully interpreted. For the sake of giving it a name, this set of desiderata is called
a Coordinating Theory in the hope that it may inter-relate many of the foundational
ideas in statistics. It will be seen that the approach advocated here is not purely
Bayesian, but is much closer to Bayesian than it is to any other existing school of
statistical thought.

The six desiderata themselves are an effort to complete the Prequential approach,
see Dawid (1984) and below, to an effective alternative to the main philosophies such
as Bayes, Frequentist, Conditional Likelihood and Information-theoretic. Note that use
of the word “complete” is meant to convey the belief that, while many properties of
the Prequential approach are known, there are statistical issues conceptually disjoint
from online prediction (narrowly defined) that are important and should be integrated
into Prequentialism to help make it a full prescription for statistical analysis. The
benefits of proposing an ideal analysis include identifying what features of modeling
are generically most important to address and identifying what features of a statistical
problem are most important to be used in further study. We hope this Coordinating
Theory will be well suited to complex data for which conventional modeling does not
scale up well.

Briefly, the six desiderata are (i) predictive optimality subject to the Prequential
principle, (ii) the use of prediction errors to update the prediction scheme, (iii) a proper
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treatment of all sources of variance and bias, (iv) that the complexity of the prediction
procedure should be related to the difficulty of approximating the true model, (v) a com-
plete robustness analysis, and (vi) a sanity check that the procedure behaves properly
in limiting senses. Taken together these six desiderata will be termed a Coordinating
Theory since they are intended to inter-relate a collection of ideas coherently.

It is easy to imagine alternative desiderata – many have argued that Savage’s axioms
for Bayesian inference, von Neumann’s axioms for decision theory or Rostek’s axioms
for percentile based inference are quite satisfactory and little more is needed. Also, it is
not hard to imagine revamping the set of six desiderata by using ideas from sequential
hypothesis testing or data compression and transmission in place of those for prediction.
However, the argument that the six desiderata presented here are more appropriate than
these alternatives rests on the notion that prediction is the central optimality property
to seek and that there are subsidiary criteria that we want an ideal prediction scheme
to satisfy. Thus, the Coordinating Theory perspective on batch analysis in general is
not that it is bad but, rather, if batch analysis succeeds, it does so by achieving good
prediction, in effect satisfying the six desiderata.

The three most novel features of the six desiderata are that they introduce the
concept of going outside the Bayesian paradigm to rechoose a decision problem in (ii), a
comprehensive variance bias decomposition in (iii) and a complete robustness analysis
in (v), distinguishing between local and global perturbations. It must be reiterated
that the point of the desiderata is to provide structure for a generic problem, not to
criticize existing methods per se. The criticism of methods below based on validation
probably arises from the use of those methods under criteria derived from fit rather
than validation. The intent here is to situate existing methods in a predictive structure
to compare their performance.

It will be seen that the relationship between a Coordinating Theory and Bayes or
Frequentist philosophies is intricate. From the Coordinating Theory perspective, other
schools of thought such as Bayes, Frequentist, Conditional Likelihood, and Information-
theoretic are techniques by which to construct predictors with certain properties. Co-
ordinating Theory would be a way to compare the predictors, on the basis of the six
desiderata. The setting of desideratum (i) is decision-theoretic and hence more Bayesian
than Frequentist (since the class of Bayes actions is complete). Desideratum (ii) is, at
root, a Frequentist criterion meant to quantify bias and variance over repeated sam-
pling. Desideratum (iii) recognizes that Bayes is optimal in a given decision problem
but that choosing which decision problem to solve to get a good predictor is usually not
Bayesian. Desideratum (iv) is neither Bayes nor Frequentist; it is imported from the
minimum description length philosophy of statistics. Desideratum (v) invokes a sort
of objective Bayes robustness. Desideratum (vi) is again a Frequentist property from
repeated sampling. Taken together, the Desiderata provide much more structure for
inference than the usual Machine Learning view which rests on predictive performance
almost exclusively.

The structure of this paper is as follows. In the next Section the conventional mod-
eling framework is discussed and evaluated and the Prequential approach is described
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as the basis of an alternative. In Section 3, the six desiderata of Coordinating Theory
are stated and explained. Section 4 then discusses the relationship of the Coordinating
Theory to existing schools of thought in Statistics, focusing on Bayes and Frequentist
thinking. In Section 5, several aspects of the first four desiderata are explored in a
computed example. Section 6 discusses several of the implications of the perspective
developed here.

2 Conventional Modeling vs Prequentialism

The conventional model for inference rests on using outcomes of random variables such
as X : (Ω,F , P ) → (IR,B(IR)) to select from a class of objects say P. Often P is
a parametric family, but may be a nonparametric class of densities, distributions, or
functions or a class of decisions, among other possibilities. A probability measure PX

can be induced on the image of X in which case the range measure space is written
(IR,B(IR), PX); it is the “visible” part of the random variable. That is, (IR,B(IR), PX) is
the part of a phenomenon that we model; the underlying triple, (Ω,F , P ), is essentially
masked from us and not modeled. The idea is that the macroscopic world of real data
that we analyze arises from an unseen world and we use our data analysis and P in a
effort to uncover P . From this point, mainstream statistical analysis roughly separates
into two philosophies, Bayes and Frequentist.

2.1 Limitations of the Conventional Model

Conventional models, while amazingly successful, can be criticized from two directions.
The first direction is that it is not at all clear how well a given conventional model scales
up to high dimensional and complex data. Indeed, it is not necessarily clear that the idea
of a true model is even very useful in settings with complex and high dimensional data.
Wrong but simple models that are good approximations to a complex true model may
give better results than the true model for realistic sample sizes and certain collections
of covariates, see Yang (1997) and Wainwright (2006) for instance.

In the Bayesian context, the problem with scaling up to high dimensions is seen in
the phenomenon of dilution – a sufficient number of wrong but good models may split
the posterior probability so finely that a genuinely poor model may appear better, see
Chipman and McCulloch (1992). An extension of this idea is that the posterior may
in fact converge to zero if the model list is permitted to grow too quickly and includes
enough good models that they all dilute. Steps can be taken to correct this, see George
(2001), but they rest on ‘uniformizing’ the prior over models on neighborhoods severely
limiting the choice of prior. Pericchi (2005) reviews objective priors for Bayes factors in
model selection. He proposes that lack of robustness in prior selection can some times be
overcome by techniques such as intrinsic priors or expected posterior priors. When such
techniques give similar results, i.e., we have robustness, the inferences may be more
reliable. Nevertheless, prior selection and posterior exploration in high dimensional
contexts remains hard.
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Current efforts to scale up linear regression models to high dimensions via shrinkage
criteria include SCAD (Fan and Li (2001)), Elastic Net (Zou and Hastie (2005)), Adap-
tive LASSO (Zou (2006)), and Adaptive COSSO (Storlie et al. (To appear)) among
others. This class of techniques derives its justification from the oracle property, see
Fan and Li (2001) that effectively requires p not be too large relative to n. In practice,
it is unclear in what this growth rate means, but for the Adaptive elastic net, p = nγ

for γ < 1, see Zou and Zhang (2009) and for the SCAD penalty Huang and Xie (2007)
require p = o(

√
n). Commonly this is violated by -omics data where p ≈ 20, 000 and

n ≈ 50. These methods may reduce to Hodges’ super-efficiency, see Leeb and Pötscher
(2001). Another open question is the assignment of SEs to all parameter estimates in
these methods. Also, it is unclear how well they perform relative to forward, backward,
and stepwise selection, and they can give poor results with dependent covariates.

There are other methods such as clustering and data summarization to achieve
variable selection or dimension reduction. While these methods are helpful and often
give improved performance, most have limitations. One of the most important recent
techniques is called sure independence screening (SIS), see Fan and Lv (2008). While SIS
does scale up to the case that p is exponential as a function of n, it rests on correlation
and so is essentially a linear, marginal procedure subject to the usual problems of
such methods. (For instance, if (Y, X1, X2) = (3, 3, 1), (4, 4, 1), (5, 5, 1), (3, 8, 2), (4, 9, 2)
and (5, 10, 2) both X1 and X2 have correlation zero with Y even though Y clearly
depends strongly on both.) It is not clear yet how well this method performs on complex
data. For instance, Webster et al. (2009) used SIS and permutation methods to reduce
one million dimensional SNP data to around 250,000 dimensions. Even so, shrinkage
methods will routinely break down in such cases.

Classical and Bayesian nonparametrics are also efforts to deal with complex and
high dimensional data. The usual problem with classical nonparametrics is that it
suffers the Curse of Dimensionality. There are regression techniques such as neural
networks and projection pursuit that evade the Curse, see Barron (1993) and Zhao
and Atkeson (1993). However, neural networks are notoriously unstable (even with
regularization) and projection pursuit does not seem to have been investigated as well
as it deserves. Bayes nonparametrics remains promising, but to a large extent is still
under development. Gaussian process priors and Dirichlet process priors have been the
main choice for several years. More recently, numerous extensions and generalizations
have been proposed. See, for instance, the recent contribution of Kim et al. (2009) and
the summary of Lijoi and Prünster (2009) and the references therein. Overall, prior
selection remains an open question.

The second direction of criticism of conventional models is that there is a strong
tendency for them to fail to validate for complex data. Ransohoff (2004) and Ransohoff
(2005) document many examples from the cancer literature where the results of stud-
ies failed to stand up under repeated testing, despite the conclusions having seemed
persuasive. Ransohoff (2004) identifies overfitting as the most obvious shortcoming of
otherwise plausible analyses and Ransohoff (2005) states that bias is such a pervasive
and hard-to-detect problem that “results are guilty of bias until proven innocent”. In
part, Ransohoff’s examples are the logical outcome of failing to account adequately for
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all the uncertainties in modeling, see Draper (1995), which are especially severe in the
‘-omics’ fields that Ransohoff surveys. Overall, Ransohoff’s criticisms of existing ap-
proaches lead him to emphasize extensive validation of results before they should be
considered established. It would be naive to think that it is only in the -omics fields
that validation often fails.

Overall, inference techniques derived under the conventional model are well suited to
models with a relatively small number of coefficients in a relatively simple model with a
relatively simple data set and decent sample size i.e., when a sparse model is “true” or
at least best and not too hard to find. In some of these cases, the population for which
a sparse model exists will be somewhat narrow or artificial so that actual use is open
to question. Moreover, in many contexts, it is not reasonable to assume sparsity. The
typical case encountered in complex and high dimensional data types, such as in the
-omics world, is that the observed phenomenon is the result of many small contributions.

Taken together, these two points – difficulty of finding reliable methods in complex
data settings and ensuring that they work well in reality – suggests there may be room
for a reformulation of the statistical paradigm, away from the conventional model and,
to an extent, away from both the orthodox Bayesian and Frequentist philosophies.

2.2 The Prequential Approach

An alternative to the conventional model is provided by the Prequential approach, see
Dawid (1984). The Prequential Principle comes in three forms, weak, strong and super-
strong. The weak prequential principle – that is assumed unless otherwise specified
– requires that any criterion of agreement between a forecaster and a data generator
(DG) should depend only on the actual observed sequences of forecasts and outcomes,
and not on any of the strategies which might have been used to produce the forecasts
or outcomes. The strong and super-strong prequential principles add conditions to
the weak prequential principle, see Dawid and Vovk (1999). One of the undernoticed
implications of the Prequential principle is that it can be interpreted to be “strictly
forward” in the sense that retrodiction is ruled out. Consider one-day-ahead predictions
of rain over n days. Then, using a construct such as the probability assigned to rain
for 14 July on 13 July given that it did rain on July 15 would be disallowed, cf. van
Erven et al. (2008). Note that there is no prohibition on using a function of data that
estimates this probability.

One of the benefits of the Prequential approach is that the centrality of comparing
forecasts and outcomes emphasizes the role of validation. Indeed, the Prequential prin-
ciple only requires forecasts and outcomes to be compared, reducing the importance of
models. This is partially because good prediction is a more general task than model
identification but also because the DG is ruled out as a factor in evaluating forecasts.

The Prequential approach is motivated in part by de Finetti (1937), see also Kyburg
and Smokler (1980). Essentially, de Finetti uses a subjective probability framework to
issue conditional probabilities of observable events given previous outcomes instead of
point predictions. In de Finetti (1937) he writes: ”l’observation peut seulement nous
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donner des renseignements qui sont susceptibles d’influencer notre opinion... elle signifie
qu’ à la probabilité d’un fait subordonné à ces renseignements – probabilité bien distincte
de celle du même fait non subordonné à d’autres – nous pouvons attribuer effectivement
une valeur différente,” (p. 63, Chap. VI). Loosely: ‘observation can neither confirm
nor refute an opinion which is neither true, nor false. Observation can only give us
information which is likely to influence our opinion.... this means that the probability
conditional on extra information – which is distinct from the unconditional probability
– can have a very different value from it.’ de Finetti (1937) focusses on the simplest
cases that do not have explanatory variables.

By contrast, Dawid (2004) puts great emphasis on real-world testing (Sec. 6). In-
deed, Dawid (2004) writes that his approach makes no metaphysical assumptions about
probability, causality, or determinism although it does ‘support a straightforward ap-
proach to building, testing, using and interpreting probabilistic theories of the world.’
Dawid does not require there be a probabilistic data generator or that the task of
inference be to learn what it is.

One of the criticisms of the Prequential approach is it provides little guidance for
analyzing a batch of data that have been collected. With batch data, often the order of
collection has been lost and if independence is assumed, many would argue any ordering
is artificial. The obvious answer to this is to ‘batchify’ the Prequential approach by
choosing a number of random permutations of the data, do the analysis sequentially
for each, and then average over the results to make predictions and quantify aggregate
behavior like the sequence of predictive errors. This sort of procedure is used in an
example in Section 4.

Separate from averaging over permutations, there are three reasons why looking at
batch data sequentially is useful. First, looking for good predictors is a more general
problem than finding a good model and so is a weaker criterion that has a better chance
of being achievable. Roughly, every model has associated predictors, but it is not clear
that every predictor corresponds to a model. Searching more broadly for predictors
may result in obtaining better predictive properties than a model would have. The
cost would be not having a model, but many of the interpretive properties one can
derive from a model can also be derived from a predictor. Often, it will be possible
to identify a model having a natural predictor that approximates a good predictor and
gives satisfactory predictions, albeit not as good as the predictor itself.

Second, there are insights into the data that emerge from looking at it sequentially
that are not likely to be found from a batch analysis approach. First, it is only a
sequential approach that reveals some predictors routinely outperform Bayes predictors
pre-asymptotically, see Wong and Clarke (2004). Likewise, Clarke (2003) has shown
that Bayes predictors are often outperformed, again in small samples, when the model
list does not contain the true model; i.e., in the presence of bias. These examples are
related to the fact that prediction and Bayesian analysis are subtly different cf. van
Erven et al. (2008). Roughly, by focussing attention on the support of the prior, the
Bayesian works with a “closed mind” and can never discover that a model list is wrong
without having a clear alternative, see Dawid (1982) who argues that falsification of
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hypotheses (in the sense of Popper) must be added to Bayesian analysis.

Third, one of the strengths of the predictive approach to validation for batch data
is that it helps avoid just fitting noise. That is, because Prequential techniques develop
models sequentially, they may be less prone to over- and under-fit because extraneous
terms are eventually ruled out and missing terms may be found as n increases, addressing
Ransohoff (2005). In addition, in Prequential modeling validation is inherent in the
procedure whereas in batch modeling only fitting is inherent in the procedure, addressing
Ransohoff (2004).

To see this third point in more detail, consider comparing sequential prediction
to cross-validation (CV) in a regression problem. Recall that residuals are a natural
assessment of fit more than validation. However, residuals can be converted into an
assessment of validation by internal prediction. So, consider a fixed sample of size n.
Suppose k1 data points are used to fit a model, k2 data points are used for validation,
and k3 = n−k1−k2 data points are left over. Then, to do internal validation, values of
k1 and k2 must be chosen. It makes sense to choose more than one pair (k1, k2) because
otherwise inferences may depend on the way the data are split. So, the question is which
pairs to choose. In K-fold CV, the data points are given a fixed order and partitioned
into K disjoint subsets. Each subset is held out in turn for validating a model formed
using the other K − 1 subsets. Thus, k1 = (K − 1)n/K, k2 = n/K, and k3 = 0 and
K different partitions of the data are used. By contrast, in Prequential validation, i.e.,
online prediction, k1 = 0, 1, 2..., k2 = k1+1 and k3 = n−k2 and n−1 different partitions
of the data are used. Thus as n increases, the raw number of tests of a predictor is n
i.e., increases. Leave-k-out CV has O(n) tests as well and when k = 1 there are exactly
n of them as well. However, whether leave-1-out CV or sequential prediction is better
is not clear. Nevertheless, Prequential validation in batch data is just another instance
of internal validation. The reason to choose Prequential validation over cross-validation
is that letting the size of the training set increase is a proxy for permitting models of
increasing complexity as data accumulate.

3 Six Desiderata for Predictive Analysis

Four typical inference problems in statistics are classification, model identification, deci-
sion making and prediction. It is easy to see that classification and model identification
can be expressed in terms of prediction: A good classifier or model based on a sample of
size n should perform well on future outcomes compared to other classifiers or models
based on the same data. Also, decision making can be evaluated predictively: Rather
than using a decision rule to compare two hypotheses, for instance, convert both hy-
potheses into predictors and evaluate their performance. The hypothesis with the lower
prediction error is selected as true. (For H1 : θ ∈ R1 vs. H2 : θ ∈ R2, given data
Dn = {(Yi,Xi) : i = 1, ..., n} where the Xi’s are covariates, one can convert hypotheses
to predictors F̂j,i for j = 1, 2 by writing F̂j,i = E(Yi+11Rj (Θ)|Di), i.e., mixing over
the sets in the hypotheses.) More generally, the decision with lower predictive error is
preferred. Thus, it may be reasonable to use a generic prediction problem as the central
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setting of statistics instead of measure-theoretic probability as for conventional models.

So, suppose the task is to predict the next outcome Yn+1 using Xn+1 and to deter-
mine the predictor F̂n given a stream of data Dn. Here, for each time step i, a value of
X = (X1, ..., Xp) is a set of explanatory variables for Yi. Thus, we write the prediction
for time n + 1 as Ŷn+1 = F̂n(Xn+1). Now, we can state the six desiderata.

Desideratum #1: Evaluate a predictive scheme by its online cumulative predictive error
subject to the Prequential principle.

The intuition behind this desideratum is that we must have some way to evaluate
how well a predictive scheme (our modeling) has performed relative to reality and that
the evaluation must be fair. The fairness is imposed by the Prequential principle: When
comparing two predictors it is fair if (i) we only look at how each predictor makes use
of the data and (ii) no predictor uses information about the model that is unavailable
to other predictors.

There are two ways this desideratum can be interpreted. The first is for stochastic
data, the second is for data types that cannot plausibly be regarded as the outcome of
random sampling. The key difference is whether we are willing to assume the data arise
from a probability model or whether we are merely invoking a probability model for use
in an analysis. For instance, the sequence of letters in a novel cannot be realistically
modeled as a series of outcomes of a letter-valued random variable however if we wanted
to transmit the novel letter by letter we might use a Shannon code which comes from
treating the letters as if they were outcomes of a random variable.

Since it is more familiar, we begin with the stochastic case. For stochastic data, the
cumulative prediction error, or empirical risk, can be written as

CPE(n) =
1
n

n∑

i=1

L(Ŷi, Yi), (1)

for a loss function L, where it is understood that the data points are ordered so that
only points up to stage i− 1 are used to predict Yi. One instantiation of this is to use
the mean squared predictive error (MSPE) in which L is taken to be squared error loss.
The CPE is calculated at each time step i and represents the sum of the sequence of
residuals from the use of a sequence of predictors F̂i for i = 1, ..., n from a specified
predictive process. Since ei = Yi − Ŷi is the residual from a predictor, ei is often called
a predictual. More generally, the error L(Ŷi, Yi) is also called a predictual. Note that
using the CPE is equivalent to online prediction: (1) can be found from the one step
errors from strictly online prediction and the one step errors from online prediction can
be recovered from CPE(1),..., CPE(n).

If CPE(n) converges to a limit E(CPE), then E(CPE) may be minimized in prin-
ciple. However, this is disallowed by the Prequential principle because it depends on
the model under which E is taken. Minimization of E(CPE(n)) for any fixed n has the
same problem. However, CPE(n) can be minimized. While this may be reasonable in
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some cases, if the class of predictors over which the optimization is done is large enough
to be realistic, arg min CPE(n) will degenerate to a function that matches the data
Dn perfectly but has poor generalization error. Thus, we only use the CPE as in 1 to
evaluate predictors. It is easy to imagine variations on Desideratum #1. For instance,
a median predictive error such as Mediani=1,...,nL(Ŷi, Yi) could be used in place of (1).
Other operations on the predictuals are possible.

Another feature of Desideratum #1 is its use with retrodiction. When the Prequen-
tial principle is invoked, retrodiction is sometimes taken to be ruled out on the grounds
that predictions must always be forward. However, CV and online prediction are inter-
nal prediction criteria for batch data. So, consider the setting that M predictors are
available and suppose each is derived from a specific model for the data. Then, if the
data is IID or stationary more generally, it may make sense to ignore the ordering up
to and including the i− 1 time step when making a prediction for time i. Thus, the se-
quentiality of the prediction is maintained for present-time use but all the accumulated
data can be used in a less restricted fashion. In this case, one could use K-fold CV with
all the data at time i− 1 to select one of the M models to make a prediction at time i.

Now suppose we have a nonstochastic data type that cannot plausibly be regarded as
the outcome of random sampling. An example would be a long vector (x1, ..., xp) with
regularities. Since neither a mean nor a variance is a reasonable summary, a variant on
(1) would be better.

Start by regarding online prediction as a sequential game between Nature, N, and a
Forecaster, F, permitting the Forecaster access to a collection E of experts indexed by
θ where θ ∈ E , see Shtarkov (1988), Haussler and Barron (1992), and Haussler et al.
(1998). Each round of the game is organized by a Referee. The order of play is that the
Referee obtains the opinions of the experts, tells F and then receives F’s density from
which predictions will be made. Then, the Referee receives N’s choice of outcome x,
and calculates how much F must pay N or the reverse.

Suppose each round of the game uses a log scoring rule. Then, to start the game,
each expert θ announces a density pθ(·) for x1. The Forecaster sees this and tries to
match the performance of the best expert in E by choosing the density q(·) from which to
make predictions for x1. Then, N chooses the actual value of x1 arbitrarily. The Referee
then makes F pay ln 1/q(x1) to N. So, the question is how F should choose q. Note that
an expert would pay ln 1/pθ(x1) and the best expert would pay minθ ln 1/pθ(x1). Thus,
F might try to minimize the amount lost beyond what the best expert would lose.

Thus, F should choose q to minimize the difference

ln 1/q(x1)− inf
θ

ln 1/pθ(x1) = sup
θ

ln
pθ(x1)
q(x1)

. (2)

Expression (2) is called the regret. Clearly, the worst N could do to F would be to
choose x1 to maximize (2). So, F might be led to choose q to achieve the minimax value

inf
q∈P

(
sup
x,θ

log
pθ(x)
q(x)

)
. (3)
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Shtarkov (1988) proved that the optimal q is

qopt(x) = argq

[
inf
q∈P

(
sup
x,θ

log
pθ(x)
q(x)

)]
=

p(x1|θ̂)∫
p(x|θ̂(x))dx

(4)

the normalized, maximized likelihood. When (4) exists, the value of (3) is the log of the
normalizing constant in qopt and when x is a vector of length n, say x is replaced by the
vector (x1, ..., xn) = xn, it has an asymptotic form (in n) given by Rissanen (1996), eq.
6. The Shtarkov solution qopt is an average of the models over the sample space, but
the n-th solution (for xn) is not the marginal from the n + 1 solution (for xn+1). Xie
and Barron (2000) give a complete minimax analysis of this case for discrete xs.

In the Bayesian version of this game, the experts are taken as subjectively weighted
by a prior w(θ) based on their reliability. So, (4) becomes

argq

[
inf
q∈P

(
sup
x,θ

log
w(θ)pθ(x)

q(x)

)]
=

w(θ̃)p(x|θ̃)∫
w(θ̃)p(x|θ̃(x))dx

, (5)

a variant on Shtarkov (1988) and Rissanen (1996), where θ̃ is the posterior mode rather
than the MLE. The asymptotics for (5) when x is replaced by xn are in Clarke (2007).

To put this in the setting of Desideratum #1, imagine F plays n rounds of the
Bayesian game (5); this will reduce to the worst case individual sequence or Frequentist
game if w ≡ 1. So, use x = xn but examine the sequence of n univariate games for each
xi, i = 1, ..., n. Omitting subscripts on the qs and sequentializing the Bayesian version
of the Shtarkov game means finding

arg

[
inf
q∈P

(
sup
xi,θ

ln
w(θ|xi−1)pθ(xi|xi−1)

q(xi|xi−1)

)]
. (6)

So, set
θ̃i = arg max

θ
w(θ|xi−1)pθ(xi|xi−1)

to see that the optimal density for the i-th round is now

qopt,i(xi|xi−1) =
w(θ̃i|xi−1)pθ̃i

(xi|xi−1)∫
w(θ̃i|xi−1)pθ̃i

(xi|xi−1)dxi

. (7)

The value of (6) is now

ln
∫

w(θ̃i|xi−1)pθ̃i
(xi|xi−1)dxi.

The cumulative regret is now the CPE for the non-stochastic case, parallel to (1) for
the stochastic case. For the Shtarkov predictor, write the CPE as

CRegret(n, xn) =
n∑

i=1

ln
w(θ̃i|xi−1)pθ̃(xi|xi−1)

qopt,i(xi|xi−1)
=

n∑

i=1

ln
∫

w(θ̃i|xi−1)pθ̃i
(xi|xi−1)dxi.
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Note that predictive performance requires specification of a class of predictors and
a criterion for good prediction both at time n, but there is no necessity that the class
or criterion must be constant as a function of n. In some cases, this means that the
Prequential principle can lead to unexpected results. Wong and Clarke (2004) developed
“mongrel” predictors based on re-selection of the error criterion used to form them and
showed they outperformed Bayes methods in small samples in a Prequential sense in the
stochastic case. This verifies that while Bayes methods can be asymptotically optimal
they needn’t be finite sample optimal; this holds for the Shtarkov setting as well. In
essence, standard Bayes methods can be outperformed predictively when the decision
problem that a predictor solves at time n+1 is allowed to be different from the decision
problem it solves at time n. That is, the criterion and action space e.g., the model
list, used to choose a predictor is updated from time n to time n + 1, not just the the
predictor itself; this happens implicitly in van Erven et al. (2008). The interpretation
of this kind of extensive updating is that over time, we refine our idea of what problem
to solve to find good predictors.

Desideratum #2: Use Prediction Errors to Update the Prediction Problem.

In the sequential prediction problem, a prediction must be made at each time step
based on the accumulated data. So, imagine fitting a linear regression model using a
data set and making a prediction from it. When the next data point is revealed, there
are two possibilities. First, the prediction is good in the sense of (1) say and the model
is validated. Then, it is enough to update the parameter estimates with the new data
point and make another prediction. Second, the prediction is deemed inadequate: The
new data point gives an excessive value for (1), is outside the 95% prediction interval,
leads to too many predictions that are systematically higher than their observed yi’s
(although L(yi, ŷi) is small), or leads to some other undesirable feature. In this case,
following Dawid (1992), we may be led to sequential reselection of the prediction problem
before estimating any parameters. Thus, Desideratum #2 is little more than residual
analysis done predictively.

To see this more formally, suppose reality chooses F to be true and we first choose
a space of functions, F , to help form F̂ . Then, we might set up a decision problem
for predicting the next outcome as follows. Fix an initial list M0 ⊂ F with M0 items,
where M0 = {f0,1, f0,2, ..., f0,M0} is the action space A0 and the loss L is squared error.
Put a prior W on the list M0, and assign priors for any parameters within each model
f0,k. Since the Bayes model average (BMA) minimizes the posterior risk, it is the Bayes
action from which to make predictions at stage n.

Now, suppose that as an experimenter accumulates data, the CPE grows so large
that for n > n0 the adequacy of the modeling strategy is doubtful. Perhaps the list
M0 was wrong (too large, too small, poorly located etc.) thereby giving a poor action
space A0 with high CPE. Perhaps the loss function or the priors, or even F is found to
be wrong. Then, the experimenter might reformulate the prediction problem with new
choices of the model list, optimality criterion, or action space. After problem reselection,
the CPE based on all the accumulated data would still be used.
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Repeating these reselections, in principle for each time step, one version of the
general problem may be stated as follows. For each n, find Mn ⊂ F with Mn =
{fn,1, ..., fn,Mn}, finitely many finitely parametrized models to be used at time n, and
find a criterion under which to choose F̂n as a model average from Mn, with weights
determined by the data up to time n.

An instance of reselecting the loss function would be the following. First, distinguish
between the loss function used to calculate the CPE and the loss function used to
construct the predictor. So, suppose predictions will be evaluated under squared error
loss. Then, in small samples with data exhibiting high variability, the median might
be a better predictor than the mean. That is, for small samples, the median – which
corresponds to using L1 loss – may give better predictive performance initially even
though it is L2 loss we want to minimize. Past a certain value of n, of course, we
would revert to L2 loss, and hence the mean. This happens for n small enough that the
higher efficiency of the least squares estimator does not overcome the greater stability
of the median. Also, this phenomenon has been observed in van Erven et al. (2008)
who switch from selecting a model using AIC to selecting a model using BIC. Another
instance would be using an initial loss function for which stacking was the optimal action
until a model list with low enough bias had been found so that BMA (under L2) would
be appropriate. In principle, there is no prohibition on changing the loss function used
in the CPE. An instance of this would be using Lp loss and letting p increase with n.
This would have the effect of penalizing errors more and more heavily as n increased.

Note that updates of the prediction problem can have new optimal actions that
might or might not be Bayes. Indeed, it is likely that this reselection of the prediction
problem to solve cannot be done in a Bayesian fashion. Because the prediction prob-
lem is reformulated from time to time, the prediction scheme effectively searches over
prediction problems to find the right one to solve to obtain good prediction. That is,
the early prediction problems and their solutions are estimates of the correct prediction
problem and its solution.

Desideratum #3: Generate a Unified Bias-Variance Analysis.

The intuition is that the nature of the uncertainty associated to each input to a
predictive scheme should be examined. Variance and bias are two established assess-
ments of uncertainty, but, as seen below, data compression formulations may also be
relevant in the non-stochastic data case. It is hard to state clearly in generality how
Desideratum #3 can be implemented so consider the following five examples.

Begin with a very simple predictive system using one model that is known up to
finitely many parameters denoted β = (β1, ...., βp). The only inference problem is to
estimate β. Provided there is a value βT that makes the model correct, the predictor
based on the plug in estimate β̂ should give better and better predictions as it converges
to βT . That is, parameter consistency gives predictive optimality asymptotically. In
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this case, there is only one bias-variance decomposition based on the mean squared error

MSE(βT , β̂) =
p∑

j=1

bias(β̂j , βj,T )2 +
p∑

j=1

Var(β̂j), (8)

in which bias(β̂j , βj,T ) = Eβ̂j −βj,T and the expectations and variance are taken in the
distribution indexed by βT .

As an extension of (8) to function estimation, Domingos (2000) established a decom-
position of the prediction risk into three terms, valid for a class of loss functions that
includes zero-one and squared error. Two of the terms are recognizable as variance and
bias while the third represents the irreducible noise of the data generator. This analysis
rests on the regression model Y = F (X)+ ε in which F is estimated by F̂ (·) = F̂ (·;Dn)
where D = Dn is a sample of size n. The Domingos (2000) analysis would apply to
a nonparametric predictor that had no inputs. This might correspond to, say, kernel
regression in which the tuning parameter were chosen as a fixed value independent of
the data so its value could be treated as a robustness issue under Desideratum #5.

The Domingos (2000) decomposition posits a predictor Ŷ (x) = F̂ (x;D) evaluated a
fixed x. Assign a ‘main prediction’ ym(x) to Ŷ (x) by defining

ym(x) = arg min
y′

EDL(Ŷ (x), y′), (9)

in which the expectation is taken with respect to the sampling distribution for D and
L is a loss function. If L is squared error loss, then ym(x) = EDŶ (x). Now, it makes
sense to define the variance of the predictor Ŷ (x) = F̂ (x) to be

Var(Ŷ (x)) = EDL(ym(x), Ŷ (x)). (10)

Note that (9) and (10) are Case I in James and Hastie (1997) who used absolute error
and zero-one loss. This is consistent with Heskes (1998) who used relative entropy loss.

Turning to the random variable Y (x) we want to predict, let y∗ = y∗(x) be its ‘ideal
predictor’ defined by

y∗(x) = arg min
ŷ

EnoiseL(Y (x), ŷ), (11)

in which the expectation is in the distribution of the noise term ε. That is, ym(x)
would be the best predictor under L if we knew F (x). If L were squared error, y∗(x) =
EnoiseY (x).

The problem is that, in general, ym(x) 6= y∗(x). So, Domingos (2000) defines

Bias(x) = L(y∗, ym). (12)

Now, given (10) and (12), the proof of Theorem 1 in Domingos (2000) establishes that
an analog to (8) for the function estimation case is

ED,noiseL(Y (x), Ŷ (x)) = EnoiseL(Y (x), y∗(x)) + L(y∗(x), ym(x))

+ EDL(ym(x), Ŷ (x))
= N(x) + Bias(x) + Var(Ŷ (x)), (13)
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for a variety of loss functions. The term N(x) in (13) is the inherent variability of the
data generator regardless of any Ŷ . It is effectively a variance for Y , so (13) has two
variance terms and one bias term.

Note that (8) and (13) each involve one variance around the true value of the param-
eter and around the main prediction, respectively. Likewise, (8) and (13) each involve
one bias away from the true value of the parameter and away from the ideal predictor,
respectively. That is, in these two examples, there was only a single unknown input
to the prediction scheme, the unknown parameter or the unknown function value, and
so only a single variance and bias to examine. The term unified bias-variance analysis
refers to using several versions of (8) or (13) to analyze all inputs to the predictor. First,
there are three kinds of input, apart from the data. Some inputs are knowable in the
sense that they can be estimated from the data. Some inputs are not estimable – a prior
density would be the paradigm case. Some inputs are taken as known, e.g., it might be
known that the best way to analyze a signal is in its Fourier basis. The third class of
input will be examined in Desideratum 5 since if an input is known it doesn’t have a
meaningful bias or variance apart from zero.

Each input that is estimable from the data, such as β or F in the last two cases,
requires a variance-bias analysis. By contrast, non-estimable inputs require a variance
analysis only since they must be chosen and this will have uncertainty but they do not
have a true value that can be used to form a notion of bias.

To see how a unified bias-variance analysis can be done for more than one estimable
input, consider a simple case of Frequentist model averaging. Suppose Y = F (x) + ε
in which F ∈ F , a space of functions, and let the class of terms that can be used in
a linear model predictor for F be E . So, the full list of models is M = M(E) with
cardinality card(M) = m. A typical element of M is f(x|β) = xT

f βf where xf is the
vector of terms from E defining f and βf is the corresponding vector of coefficients.

Given data D, the stacking average, see Wolpert (1992), is

F̂stack(xn+1) =
mn∑

j=1

ŵn,j f̂j(xn+1), (14)

where f̂j(x) = fj(x|β̂f ) for some estimator and mn = cardMn is the cardinality of the
set Mn of models used to form the average for time n + 1. The weights wn,j are found
by a CV-type procedure. Let f

(−u)
j (x) be the prediction at any x using model j, as

estimated from training data with the u-th observation removed. Then the estimated
weight vector ŵn = (ŵn,1, ..., ŵn,mn) solves

ŵn = argminw

mn∑
u=1


yu −

mn∑

j=1

wj f̂
(−u)
j (xu)




2

. (15)

This puts low weight on models that have poor leave-one-out accuracy; five or ten-fold
cross-validation would be better in practice but is not needed for the present argument.
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The class over which wn is optimized can make a difference; natural choices include no
constraints, all wn,j ≥ 0, and

∑
j wn,j = 1. (Equation (15) does not satisfy the first

desideratum; however, it can be modified so that the only data used to estimate f̂
(−u)
j

precedes u.)

Now, suppose that under some optimality criterion, the best predictor of Yn+1 using
a linear combination of models in M based on D can be defined. For instance, parallel
to (11), this might be given by the list, weights, and parameter values

(MT , ( wT
1 , ..., wT

mT
), (βT

1 , ..., βT
mT

))

= arg min
A,w1,...wcard(A),β1,...,βcard(A)

E‖F (x)−
∑

j∈A

wjfj(x|βf )‖, (16)

where A ⊂ M, mT = #MT , ‖ · ‖ is the norm based on the Euclidean inner product,
and the βf s are to be estimated, for instance by MLEs from a sample of size n.

To obtain a unified bias-variance analysis for the present case, note there are three
estimable inputs, namely, the parameters θf , the weights ŵn, and the model list Mn.
Using (16) in place of (11), an analog to (8) can be constructed for each of the estimable
inputs. First, the “true” model list MT can be regarded as a vector e = (e1, ..., ecard(M))
of zeros and ones and the estimated model list can be regarded as a = (a1, ..., acard(M))
where aj = 1 if model j is in Mn and zero otherwise. In a, exactly mn of the entries
are ones and aj = aj(D) where j indexes the j-th f in M. Now, parallel to (8), the
bias-variance expression for the model list is

MSE(MT ,Mn) = ‖MT − Ea‖2 +
cardM∑

j=1

Var(aj). (17)

In (17), Ea is used as the location in place of the wjs. This can be justified for n large
enough provided the estimators aj are consistent for their means; similar remarks apply
to the cases below.

Second, generic model weights may be regarded as a vector (w1, ..., wcard(M)) with
one entry for each model in M. So, the model weights for MT , namely (wT

1 , ..., wT
mT

),
can be embedded into the weight vector wT = (wT

1 , ..., wT
card(M)) in terms of M. Each

element wT
j of wT is now either the corresponding element in the vector for MT or

zero. Also, the estimated model weights ŵn for Mn can be embedded into a vector
ŵ of length card(M). Again, ŵj in ŵ is either the corresponding estimated weight
ŵj = ŵj(D) or is zero. Now, the variance-bias expression for the model weights is,

MSE(wT , ŵ) = ‖wT − Eŵ‖2 +
cardM∑

j=1

Var(ŵj). (18)

Third, like the model list and the weights, the parameters can also be embedded in
a higher order space. Write B = (β1, ..., βcard(M)) to mean the collection of parameters
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from the models in M and let (β1, ..., βcard(M)) be the parameters from the models in
MT . Then we can define BT to represent the parameters from the models in MT ; i.e.,
an entry βT

f in BT is βT
f if f ∈MT and is βf = 0 for f ∈M\MT . Similarly, B̂ is the

vector of estimated parameters with entries β̂f for f ∈Mn and β̂f = 0 for f ∈M\Mn.
Now,

MSE(BT , B̂) =
∑

f∈M
bias(β̂f , βT

f ) +
∑

f∈M
Cov(β̂f ). (19)

Taken together, the three equations (17), (18) and (19) are unified bias-variance
analysis for the stacking predictor.

To see how a unified bias-variance analysis can include inputs that are not estimable,
consider a new predictor, the BMA. Given a prior W across the models in M and a set
of priors {Wf | f ∈M} for the parameters βf , the BMA can be written

Ŷn+1 =
∑

f∈M
W (f |D)XfEWf

(βf |D). (20)

It is well-known that BMA is optimal in an L2 sense, see Dempster (1973) . Now, the
estimable inputs are the model list Mn, the model weights W (f |D), and the parameter
estimates, here taken to be posterior means, E(βf |D). The non-estimable inputs are
the within model priors and the across model priors. Since it is obvious how to adapt
(17), (18) and (19) to the BMA setting, it is enough to give the extra expressions for
the variances of the two kinds of priors used to form the BMA. Note that priors do not
have a bias because they are not estimable.

To give a variance for a single Wf on βf recall Gustafson and Clarke (2004) and
regard Wf as an element of a class of priors indexed by λ = λf ∈ Sf . That is, there is
some λ0 ∈ Sf so that Wf = Wλ0 . Since λf is a hyperparameter, write its distribution
as Πf . Now, by the conditional covariance identity,

Cov(βf |D) = EΠf
CovWf

(βf |D, Λf ) + CovΠf
(EWf

(βf |D, Λf )), (21)

where Λf is the random variable with distribution Πf taking values λf ∈ Sf . The first
term in (21) is the usual parameter uncertainty averaged with respect to Πf across
the possible priors, in principle it is already included in the variance expression for the
parameters as in (19). The second term, however is new. It is the uncertainty about
the estimator E(βf |D, λ) of the parameter from the across-prior variation due to Πf .
This second term therefore represents the variance of the prior, relative to Λf .

An analogous technique can be used to give a variance for W . First, regard W as
an element of a class of priors P indexed by ψ ∈ S with associated random variable Ψ
having distribution Q. Let the vector of model weights be

w = (W (1|D), . . . , W (cardM|D)), (22)

where i = 1, ..., cardM indexes the f ’s in M. Extending (22) to include the hyperpa-
rameter ψ leads to

wψ = (Wψ(1|D), . . . , Wψ(cardM|D)). (23)
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Now, let us use wψ in place of w to evaluate variability. Let Dir(wψ) denote the Dirichlet
distribution on the cardM− 1 dimensional simplex of weights (w1, ..., wcardM) on the
models in the BMA. Again, the conditional covariance identity can be applied. It gives

Cov(W |D) = EQCovDir(w|D,Ψ) + CovQEDir(w|D,Ψ). (24)

The first term in (24), like the first term in (21), represents the uncertainty in the model
weights as parameters that is accounted for in (18) and the second term in (24), like the
second term in (21) is the uncertainty about the estimator EDir(w|D, ψ) of the model
weights from the across-model prior variation due to Q. Gustafson and Clarke (2004)
show how this reasoning can be extended to assign a variance to the choice of space of
functions used in models; this would give a third term in (25) below.

Now, the extra variation due to the inputs that cannot be estimated is from (21)
and (24), given by

∑

f∈M
trace (Cov(E(βf | D, Λf )) + Cov(E(w| D, Q)). (25)

So the unified variance bias decomposition for BMA is given by the analogs of (17),
(18), (19) and (25).

In some simple cases, an elaborate bias-variance analysis is not explicitly necessary.
Consider a binary classification problem with many explanatory variables under zero-
one loss. The model list would be very large including some simple models and some
very complex models. Let the data be partitioned as D = D1 ∪ D2 with D1 ∩ D2 = φ
to represent training and testing. Suppose a simple model built on D1 was found to
perform quite well on D2. It might be decided, for instance, that this sort of verification
were enough if squared-error CV were used since it seeks it a good tradeoff between bias
and variance. That is, under enough assumptions (light tails in the error, the validity
of a parsimonious model etc) squared error CV might be deemed de facto equivalent
to a bias-variance analysis concluding that all the terms were satisfactorily small. One
benefit of a bias-variance analysis is that it may reveal how weak predictors can be
improved. A specific example is given in Ransohoff et al. (2008) who tries to correct
excessive variance and bias in earlier studies developing molecular markers for colorectal
cancer. This paper develops a classifier with a sensitivity of 78 %, a specificity of 53 %,
and an accuracy of 63% – better than chance and enough to motivate further work but
not really good enough for clinical use.

As a fifth example, suppose we have a data that is a long nonstochastic vector and
recall the use of the log-scoring rule at the end of the discussion of Desideratum #1.
The nonstochasticity means that variances of “estimators” are not reasonable, however,
expressing the typical distance between a prediction and an outcome as a bias may not
be unreasonable. Indeed, for the Shtarkov solution (7) in the Bayes setting, it is enough
to give a bias-variance bias analysis for (4). Doing so necessitates a concept of the
“true” action a density denoted by, say, qT (xi). There are several choices for qT , as will
be discussed shortly. Whichever qT is chosen, difference in data compression properties
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between qopt(·) and qT (·) is

ln
1

qT (xn)
− ln

1
qopt(xn)

= ln
qT (xn)
qopt(xn)

. (26)

Taking the expectation in the true density gives the relative entropy D(qT ‖qopt) ≥ 0.
Let Γ be a convex set of densities so that qT ∈ Γ. Then, the information projection
qproj of qopt satisfies

D(qT ‖qopt) = D(qT ‖qproj) + D(qproj‖qopt) (27)

where

D(qproj ||qopt) = min
p∈Γ

D(p‖qopt),

see Csiszar (1975), (eq. 1.5,7). The first term in (27) measures how close the best
approximation of qopt within Γ is to the true qT . The second term in (27) represents
how close qopt is to the best approximation of qT within Γ. In this case, the variance-bias
analysis consists of two terms, both of which look like biases. In this case there is no
natural analog to a variance; this contrasts with the expansion obtained in Gustafson
and Clarke (2004) which has no bias terms.

There are several natural choices for qT giving different forms for (27). If one of the
members of the parametric family is correct, say qT = qθT

and Γ is the whole parametric
family then (27) becomes

D(qθT ‖qopt) = D(qθT ‖qθproj ) + D(qθproj‖qopt), (28)

where qθproj is information projection of qopt onto the parametric family. If θT and θproj

are close, the first term in (28) is (1/2)(θT − θproj)2 by a Taylor expansion, reinforcing
its interpretation as a bias. Note that technically, qopt outperforms qT predictively in
the log scoring rule. Nevertheless, if qT is true, it is reasonable to compare qopt to it.

Another natural choice for qT is to choose a convex class of priors W on {pθ|θ ∈ Θ}
containing a baseline prior w(θ). It is known that asymptotically, the distance between
m(xn) and qopt converges to zero. In essence, this assumes one of the values of θ is
correct, but we do not know it. Write mν(xn) =

∫
ν(θ)pθ(xn)dθ for the marginal for

the data with respect to any ν ∈ W. Then, if qT = mw, the set Γ = {mν |ν ∈ W} is
convex and we have

D(mw‖qopt) = D(mw‖qproj) + D(qproj‖qopt), (29)

where qproj = mν(xn) given by mixing with respect to ν ∈ W is the information
projection of qopt onto the class of all mixture distributions. Now, the first term is

D(mw||qproj) =
∫

w(θ′)q(xn|θ′) ln
mw(xn)
q(xn|θ′)dθ′dxn (30)

+
∫

w(θ′)q(xn|θ′) ln
q(xn|θ′)
mν(xn)

dθ′dxn (31)
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with obvious modifications for the cumulative conditional predictors in (7). It is seen
that (1/n) times (30) is asymptotically (Iν(Θ; Xn)−Iw(Θ; Xn))/n = O(1/n), see Clarke
and Barron (1994), where Iw(Θ, Xn) is the Shannon mutual information and Θ has
distribution w. As n increases, this is O((ln n)/n). The second term in (29) is, using
(7) with a flat prior,

D(qproj‖qopt) =
n∑

i=1

EmwD(mw(xi|xi−1)||qopt(xi|xi−1)). (32)

If this sum is well-behaved, it will be O(n) and the average will be O(1). Again, it is
reasonable to regard both terms in (29) as biases when mw is taken as true.

Note that (28) and (29) can be used with any convex Γ and any qT ∈ Γ. It would
be most natural to choose qT and Γ to be in a region of densities thought to be true.
Thus, a third choice for qT is to let Γ be a convex set of densities that may contain the
parametric family p(·|θ) but is much larger than {pθ|θ ∈ Θ}. Then, one can seek, for
instance, the minimal complexity density estimator, see Barron and Cover (1990) for a
given set of data at the cost of using an estimator rather than a genuinely‘ true’ density.
This would model the case that we are relatively confident the ‘true’ density cannot be
constructed from the parametric family {pθ|θ ∈ Θ} and so must be estimated. Let L(·)
be a fixed coding scheme for the elements of Γ and recall that the Shannon codelength
for xn with respect to q ∈ Γ is ln(1/q(xn)). Now, the two stage codelength for xn is

`Γ(xn, q) = L(q) + ln
1

q(xn)
. (33)

Using Γ enlarges the problem so the performance of qopt(·) can be assessed relative to

q̂T (xn) = arg min
q∈Γ

`Γ(xn, q).

Again, we have an expression analogous to (28) and (29). However, now, the first term
is D(q̂T ||qproj) which is data dependent. In the special case that some θ ∈ Θ is true, q̂T

will behave much like qθ̂ where θ̂ is the posterior mean. Since there will be qproj = qθT ,
the first term becomes much like E(θ̂ − θT )2 which has a conventional bias variance
decomposition. Thus, we would find that using an estimator such as q̂T leads to a three
term decomposition of a variance term and two bias terms (unless the bias of q̂T were
of concern as well).
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Desideratum #4: Every prediction procedure should have an associated complexity with a
meaning formally related to the complexity of the data generator.

Intuitively, the complexity of a prediction task i.e., the difficulty of mimicking the
output of a DG perhaps by approximating it, and the complexity of predictors are both
related to predictive errors. More complex predictors are often better at approximating
a wider range of DGs than less complex predictors and so give better predictive perfor-
mance when the DG is complex or little is known about it. Less complex predictors are
often better at giving serviceable approximations to a DG when a simple approximation
is good. In both cases, a good approximation means small prediction errors and this
is dependent on the complexity of the DG. Note that the converse often holds as well.
That is, if the complexity of a predictor is allowed to be too large relative to the ap-
proximation task, then ridiculous predictors with seemingly small prediction errors can
be found while if the complexity of a predictor is too small then the best approximation
may still be quite poor.

The complexities of predictors and prediction problems are important because, under
the Prequential principle alone, two predictors giving the same sequence of predictions
are indistinguishable even though one must be chosen. It can be seen that bias-variance
by itself is not enough because an approximation task does not intrinsically have a mean-
ingful bias or variance although it does have a complexity; this can be measured in a
variety of ways including the number of terms required to give an approximation of pre-
specified exactitude on a domain, the entropy of the DG or its Kolmogorov complexity.
The implication is that it is often good strategy to seek a predictor with a complexity
appropriate to the prediction problem . The belief undergirding Desideratum #4 is
that when a predictor of the appropriate complexity is used, its complexity will match
the complexity of the data generator or the intrinsic difficulty of approximating it, see
Clarke and Clarke (2009).

There are numerous ways to define the complexity of a prediction task and of a
predictor. The most obvious possibility is based on a unified bias-variance analysis.
The idea is to generalize from the bias-variance decomposition in (8) by merely defining
the complexity of the predictor to be the sum of its squared bias and variance terms.
Then, the minimum of the sum can be taken as the definition of the complexity of the
prediction task.

In the simplest case, the prediction problem devolves to estimating a real parameter
and the minimal MSE can be regarded as a complexity of approximating the true
model. Separately, a predictor has a complexity and the most common way to express
this is by its bias and variance. Then, the usual bias-variance decomposition (8) is the
relationship between the complexity of the prediction problem and the complexity of a
predictor. When the minimal MSE is achieved by a predictor, the predictor has optimal
complexity in the MSE sense. More generally, Desideratum #4 requires an evaluation
of how complex or difficult the prediction problem is, how complex the predictor is
(expressed perhaps as a sum of difficulty terms involving biases and variances), and a
relationship between them.
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To see this explicitly, observe that the unified bias-variance analyses for Desideratum
# 3 leads to two expressions for the complexity of the prediction problem, one for each
choice of predictor, namely, stacking and BMA. For the stacking predictor, the unified
variance-bias analysis leads to a complexity given by the sum of (17), (18), and (19).
So, the complexity of the prediction problem i.e, of the function approximation, may be
taken as

C(stacking) = MSE(MT ,wT ,BT ;Mn, ŵ, B̂)

= MSE(MT ,Mn) + MSE(wT , ŵ) + MSE(BT , B̂).

In the case of BMA, we must include the two extra terms from (25). So, the complexity
of the prediction task is

C(BMA) = MSE(MT ,wT ,BT ;Mn, ŵ, B̂) +
∑

f∈M
trace (Cov(E(βf | D, Λf ))

+ Cov(E(w| D, Q)),

in which w corresponds to the Bayes weights not the stacking weights.

Both of these complexity expressions represent the difficulty of the prediction prob-
lem in terms of a sum of biases and variances associated to a predictor. However, a
single prediction task now has two different complexities. Stacking and BMA can both
be used to make predictions for the same problem, but treating the sum of their bias
and variance terms as a complexity leads to C(stacking) and C(BMA) which are not
equal. Thus, the natural choice for the MSE complexity is the minimum over a large
class of all predictors that contains BMA and stacking.

Note that treating the sum of a predictor’s variances and squared biases as a com-
plexity is a bit of a cop out because because less trivial alternatives are undeveloped.
Indeed, in Section 4 an example is given in which the complexity of the predictor is
defined by the extent of the search over models that it uses and the complexity of the
problem is assessed by how large a class of functions is needed to approximate the DG
well in terms of CPE. There it will be seen that Desideratum #4 is consistent with a
sort of “Principle of Matching” between the complexity of the approximation and the
complexity of the predictor, cf. Clarke and Clarke (2009). The best predictor seems to
have a complexity matched to the complexity of the DG. The intuition is that when a
predictor is more complex than the DG, the predictor searches through so many func-
tions that its performance can be worse than that of a simpler predictor which does a
smaller search. Likewise, when a predictor is simpler than the DG, the predictor cannot
accommodate the complexity of the DG so its performance can be worse than a more
complex predictor that tracks the DG more readily.

Desideratum #5: Generate a Comprehensive Robustness Analysis.

Robustness asks that a prediction strategy perform well even when the setting is
changed. For instance, that a predictor’s performance not be affected too much when
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the data is bad (outliers, missing data) or when the data generator is different from
anything the predictive scheme in intended to model. Thus, varying the true model for
which a predictor is found would be a matter of robustness, while comparing different
predictors for the same data generator would typically be within a bias-variance analysis.

In contrast to biases and variances which we want as small as possible, robustness
should be at the “right” level: Too much robustness leads to posterior insensitivity and
too little leads to posterior instability. It is not generally obvious how much robustness
is optimal. Nevertheless, predictors that have good robustness properties have a greater
claim to plausibility than those that don’t.

A comprehensive robustness analysis parallels the unified bias-variance analysis in
Desiderata # 3 and used in # 4. The idea is that each aspect of the setting in which
a predictor scheme is to be used must be varied the right amount to ensure that each
output of a predictor scheme is satisfactorily stable. The outputs include the CPE and
features of the predictor itself among others. We distinguish two sorts of robustness,
local and global, depending on which aspect of the setting is being varied. First, local
robustness concerns aspects of the setting that are objective; they are fixed and deter-
ministic, usually arising from modeling assumptions believed to be true. The data are in
this category, too. The natural way to evaluate robustness in these cases is through local
perturbations: Choose a neighborhood around each of the nominal inputs and ensure
that the consequent predictions do not vary overmuch. The local perturbations should
capture the small deviations from the model that one would expect the experimental
set up to have.

By contrast, global robustness concerns aspects of the setting which are subjective,
not justified by any physical understanding of the DG. Thus, it makes sense to model
these perturbations as stochastic, invoking the Principle of Insufficient Reason; see
Kass and Wasserman (1996). These perturbations are, therefore, not generally local.
Compared to the ranges used in local perturbations for deterministic inputs, these are
large scale perturbations. In this case, one would be led to choose a hyperprior that
was objective in some sense, possibly close to a uniform.

Since this is rather abstract, consider two examples. First, an objective prior W
might arise from an optimality principle that represented modeling information believed
to be true. As a consequence, W would be the only reasonable prior to use, unless the
modeling information were called into question. This implies that varying W locally
makes sense as a way to test the stability of the CPE against small perturbations in
the efficacy of the assumed information. By contrast, if no objective information went
into the choice of W it would make sense to exhibit W as say Wλ0 , a prior in a class
defined by the hyperparameter λ to which a distribution π(λ) was assigned. This would
be one way to test W by mimicking its subjective selection as a random process. That
is, it might make sense to regard W = Wλ0 as an outcome of Λ and so consider the
marginal distribution from integrating over λ. The distribution assigned to Λ would be
as dispersed as reasonably possible and again the effect on CPE would be evaluated.

As a second example, consider the model space in a regression problem. If it were
believed that the function really was a waveform then a Fourier analysis would be
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appropriate for physical reasons. In this case, it would make sense to evaluate the effect
on CPE of varying the Fourier basis locally. For instance, one could vary the Fourier
basis by replacing sin(nx) with sin(nx + δ(x)) for some small function δ or sin1+α(nx).
These would be quite difficult, so it would probably be enough for evaluating local
robustness to vary the Fourier coefficients over a small neighborhood as a proxy for
varying the Fourier basis. By contrast, if there were no extra modeling assumptions that
were reasonable, a large scale perturbation or global robustness would be appropriate.
For instance, re-estimating the regression function using Legendre polynomials would
assess the robustness of the predictions to the choice of basis.

Just as there is a desire that all the biases and variances be combined in a single
notion of problem difficulty, so it is important to consider the relative contributions of
the different components of robustness to an overall robustness. To see this, suppose
there are two aspects of the setting in which a predictor is to be used, say a1, a2 and
one output o, CPE for instance, with baseline inputs ãi, ã2 and corresponding baseline
output õ. Then an overall sensitivity can be evaluated as follows. Choose distances dj

on ij , j = 1, 2 and then set

di((a1, a2), (ã1, ã2)) = d1(a1, ã1) + d2(a2, ã2). (34)

Also, choose a distance on the output to be do(o, õ). Solving the optimization problem

max do(o, õ) subject to di((a1, a2), (ã1, ã2)) < ε, (35)

for ε → 0+ can be done through second order matrix approximations in many cases. If
there are three or more aspects, then there are three or more terms in (34), respectively.
Clarke and Gustafson (1998) use the relative entropy to evaluate the overall sensitivity
of the posterior to three aspects, namely the prior, likelihood, and data. The result is
a vector corresponding to the maximal eigenvalue indicating the direction among the
collection of inputs along which the deviation of o from the baseline õ is fastest. The
consequence of this is that the relative influence of each input to the output can be
evaluated.

Desideratum #6: Determine the limiting properties of the predictors, any estimates they
use, and any functions of them that are of interest and verify they do not contradict the
context of the problem.

The content of Desideratum 6 is a logical consistency requirement: You don’t want
to be able to derive something under reasonable conditions that is different from what
would be observed. It is this aspect of Coordinating Theory where conventional statisti-
cal modeling has the most to offer. It is commonplace to evaluate the limiting properties
for classifiers, estimators, and other ingredients that form part of a prediction scheme,
under the concept of a true model which does not figure in the earlier Desiderata. Eval-
uating predictors is helpful for revealing their properties. However, for many real data
sets where the concept of a true model is problematic the behavior of a predictor under
a candidate true model is only in a contingent sense. So, the best we can expect is to
learn when predictors have theoretical properties that overtly contradict the empirical
performance we want.
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4 The Desiderata and Other Theories

In this section, we examine the interplay between Coordinating Theory, Bayes theory
and Frequentist theory. The three approaches have some common features, but Coor-
dinating Theory is closer to Bayes.

Before going into these details, note that the desiderata are mostly a formalized
way to evaluate a predictor class. That is, one uses the desiderata to determine sys-
tematically how good a predictor class is for a given DG. To apply the desiderata, the
predictor must be exhibited as an output of its inputs and then each desideratum con-
sidered in turn. For instance, if the predictor for stochastic data is the predictive density
m(xn+1|xn), the inputs are the prior, the likelihood, and the data in which the prior
is subjective and the likelihood is given by modeling assumptions. Then, looking at
predictive performance and updating (here trivially since the inputs are fixed) satisfies
#1 and #2. None of the inputs are estimable, however, a variance can be assigned
to the prior as in #3 and a bias can be assigned to the likelihood, possibly as in the
non-stochastic case. (If the likelihood were not based on modeling assumptions, then
it would be assigned a variance possibly using the conditional covariance approach of
situating it in a larger family of likelihoods.) The sum of these terms measures the
complexity of the prediction problem as in #4. A local perturbation of the likelihood
and data would be combined with a stochastic perturbation of the prior with respect
to a near uniform hyperprior and the three would be combined to give a comprehensive
robustness analysis of CPE or of the predictor itself for #5. Examining the asymptotics
would satisfy #6. Notice that the parameter does not appear explicitly on this list.
However, if the predictor were formed using an estimate of θ, say pθ̂, then the variance
and bias of θ̂ would be included under desideratum #2.

4.1 Coordinating Theory and Bayes

The Bayesian approach can be regarded as one rational way to construct a predictor.
The construction rests on a collection of axioms such as those in Bernardo and Smith
(1994) or on Savages postulates, see Savage (1954). The independence of the prior
from the data is optimal, see Freedman and Purves (1969). An important sense in
which Bayes methods are best is provided by the Complete Class Theorem which states
(roughly) that the procedures which are Bayes for a given problem form a complete
class, i.e., a class that contains all admissible procedures, see Brown (1981). Taken
together, this provides a unified framework for data analysis, hypothesis testing, and
prediction.

However, the Bayesian framework makes a simplifying assumption that is not rea-
sonable in general. Once the inputs – loss function, prior, likelihood, etc. – have been
specified, they are not updated. It is straightforward, in principle, to use the Bayes ap-
proach to get solutions but it is not straightforward to reformulate the Bayes problem
e.g., to rechoose the inputs such as a model list or loss function in response to lack of
fit or poor prediction.



B. Clarke 307

Despite this, Bayes prediction is asymptotically as good as optimal prediction in
many cases. Indeed, Dawid and Skouras (1998) and Dawid and Skouras (1999) establish
Bayesian prediction systems are efficient asymptotically and Wong and Clarke (2004)
found that optimizing a conditional risk, chosen by using the accumulated data, to
predict a future outcome outperformed standard Bayes techniques in small sample sizes,
asymptoting to the performance of Bayesian predictors. In the presence of bias, Clarke
(2003) has shown that prediction based on stacking can predictively outperform BMA.

Essentially, Coordinating Theory enlarges the Bayes predictive problem with pre-
quential thinking by replacing the notion of credible set with predictive accuracy and
invoking Desiderata #2 and #3 to structure it. That is, periodic re-selection of the
model list or other elements and going outside the Bayes framework to include bias
(and variances) permits the Bayesian to be a better Bayesian by finding the right deci-
sion problem to solve and evaluating how well the solution performs.

To see how the desiderata can be applied to BMA, for instance, list the inputs to
the predictive procedure. Suppose sequential outcomes Yi from Y = F (X) + ε with F
unknown but an IID error structure are available where X is a collection of p explanatory
variables. Then, for time step n, we have a collection Sn of models. The models in Sn

may have parameters and be written Fj(X|θj). To form the average we use a prior wn(j)
on the models in Sn, which is updated to form w(j|Dn), where D = {(Xi, Yi) : i ≤ n}
and equip parameter θi with prior w(θi). So, there are six inputs: (1) the θj ’s within the
models Fj , (2) the priors on the θj ’s within each Fj , (3) the model lists for each n, (4)
the error term, (5) the prior on the models, and (6) the space Sn is drawn from. Note
that including the individual models Fj on this list would be redundant from a bias-
variance standpoint because varying the prior (5) on the models on the list effectively
varies the models conditional on the list while varying the model list (6) necessitates
varying the Fj ’s. From the sensitivity standpoint, local variation of the models would
be reasonable only if the models on the list were regarded as true in some sense, as
in the Fourier basis earlier and then there would be no point in varying the model list
stochastically for bias-variance.

Now, we go through the desiderata in turn. Desideratum # 1 is satisfied if the MSPE
satisfies the prequential principle. Desideratum #2 is satisfied if the model lists Sn are
reselected as a function of the predictuals; see the discussion preceding Desideratum
#3. For instance, one may start with linear functions of the variables in X , find that
there are patterns in the residuals, and be led to expand the collection of regression
functions to include square and rectangular terms in the Xi’s. Doing this may require
changing the prior on Sk and assigning priors to the parameters in the extra models
included in Sk+1.

Desideratum #3 requires variances and biases. The bias-variance decomposition has
already been given in Section 2 and is the sum of (17), (18), (19), and (25), the first
three suitably modified. Note that of the six overall inputs, the only two left out are
the error term and the model space.

Desideratum #4 requires looking at the sum of the terms in the bias-variance de-
composition to verify that BMA had effectively minimized them. This would necessitate
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calculating all the terms; this can be done, but is the subject of a future paper. However,
some heuristics can be easily given. First, if the true model is linear and is on the list
Sn and dim(x) is not large, then the complexity of the prediction task is probably small
because the true model is easily approximated, even identified. This is the M-closed
case of Bernardo and Smith (1994). Accordingly, in this case, the biases and variances
should all be small. Second, in the M-complete case the complexity is probably in some
mid-range under any reasonable calibration because the true model is not in any Sn on
account of it being so difficult to approximate. So, the biases should be small at the
cost of higher variances or the variances should be small at the cost of higher biases. In
the M-open case, the situation is more difficult because the true model is not in Sn and
is not really approximable by the available models. This last would be a higher bias
and higher variance situation. It is in these contexts that a Principle of Matching may
be reasonable: For the M-closed case low complexity predictors would likely be best;
for the M-complete case medium complexity predictors would likely be best, and, for
the M-open case, high complexity predictors would likely be best.

Desideratum #5 would apply to the data, the error term and the model space
itself, the latter being summarized by a prior over different representations of a model
space in terms of basis elements, for instance. In some cases, the formulation in (34)
and (35) is amenable to standard quadratic maximization problems, as used in Clarke
and Gustafson (1998). Essentially, a quadratic approximation can be given for each
term locally so that maximizing a quadratic objective function subject to quadratic
constraints becomes feasible. Note that the quantities subject to the sensitivity analysis
are not subject to a bias-variance analysis and conversely, but each input to the predictor
is examined under Desideratum #3 or #5. There is no prohibition on looking at the
sensitivity of CPE, say, to the prior W over models. However, in practice, it may be
enough to ensure that var(CPE) is not too small or too large as a function of W .

Finally, Desideratum #6 means that once we have formalized our procedure, we
want to be sure that its limiting properties are reasonable. For BMA, we want to be
sure that if there is a true model in S that in the limit Sn converges to a list that
includes the true model and that the weight in the BMA on the true model converges
to one. If the true model is not in S, then we want to know that the BMA converges
to the model in S closest to the true model. Moreover, we expect that the estimates of
the parameters in the true model will converge with the usual asymptotic normality, in
regular cases.

4.2 Coordinating Theory and Frequentism

The Frequentist approach is another way to construct a predictor. Unlike Bayes, Fre-
quentism does not have a comprehensive foundational construction. The analog to
Savage’s postulates is roughly provided by the von Neuman-Morgenstern expected util-
ity theorem. However, there is little justification for the use of a sampling distribution
for estimation apart from the repeated sampling interpretation from probability theory.

Coordinating Theory replaces the concept of confidence with predictive accuracy
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and only uses Frequentist concepts based on the sampling distribution for aggregate
characterizations as in Desideratum # 3, with variances taken over the sample space
or in Desideratum #6 where asymptotics are used as a sort of sanity check. One could
sidestep Frequentism further by using posterior variances in Desiderata #3 and # 4.
However, the Frequentist variance is a broader summary of variability since it involves
integration over the sample space. Moreover, Coordinating Theory allows Frequentist
thinking between time steps in the respecification of the decision problem leading to a
predictor, in Desideratum #2. The reselection of a decision problem is non-Bayesian
because it rests on correcting bias, a problem that is more readily examined within the
Frequentist paradigm than in the Bayesian.

For contrast with BMA, consider the stacking model average as in (14) and (15).
Instead of the six inputs, there are now only five since the two sorts of priors are not
used but model weights are. The five inputs are (1) the θj ’s within the models Fj , (2)
the model weights, (3) the model lists for each n, (4) the error term, and (5) the space
Sn is drawn from.

As in the BMA case, we go through the desiderata for the stacking model average
predictor. Desideratum # 1 is satisfied if the MSPE satisfies the prequential principle.
Desideratum #2 is satisfied if the model lists Sn are reselected as a function of the
predictuals. The bias-variance decomposition required for Desideratum #3 has already
been given in Section 2 and is the sum of (17), (18), and (19). This gives a version of
the complexity for Desideratum #4. Desideratum # 5 asks for a robustness analysis.
This would proceed as in the BMA case since there are three inputs that have not been
assigned biases or variances, the model space and the error term, and the data that
must be assessed. Finally, Desideratum #6 would be examined much as in the BMA
case but from a Frequentist standpoint.

5 Aspects of Desiderata 1, 2, and 4

In this section, an instance of the kind of analysis suggested by the desiderata is pre-
sented. CPE error is calculated, and #1 and # 2 are satisfied. Although neither a
bias-variance analysis nor a sensitivity analysis is done, some heuristics on complexity
can be given because nine different predictors based on three different function classes
and three different model averaging strategies are used.

To begin, consider three model spaces: linear models (LMs), generalized additive
models (GAMs), and recursive partitioning models (trees). Also, consider three model
average prediction schemes: BMA, here called likelihood weighted averaging (LWA) be-
cause of the model list re-selection, stacking, and a data dependent convex combination
of these here called adaptive convex average of predictors (ACAP). Because of the rela-
tive richness of the function classes they represent, it is reasonable to regard LM, GAM
and trees as low, medium, and high complexity respectively. Because of the scope of the
search over function spaces and model weights that they involve, it is also reasonable to
regard LWA, stacking and ACAP as low, medium, and high complexity, respectively.
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To specify the predictors, form the LWA for LMs as

ŶLWA,i+1

∑

j∈Mi+1

W (j|Data)Xj β̂j (36)

and the stacking average for LMs as

ŶCV,i+1 =
∑

j∈Mi+1

ŵi,jXj β̃j , (37)

where Data includes the first i data points, Xj means the values at time i + 1 of the
jth model, and the ŵi,j ’s are the stacking weights (at time i) parallel to the Bayes
weights in LWA (based on a uniform prior). In (37), 5-fold CV was used. The difference
between (36) and (37) is seen in the weights as well as the parameter estimates because
(36) used ordinary least squares estimators β̂j and (37) used posterior means β̃j . Now,
in principle, it will be possible to compute the MSPE along a string of data so that
Desideratum #1 is satisfied.

Note that ŶLWA,i+1 and ŶCV,i+1 may be formed from different model lists denoted
MLWA,i+1 and MCV,i+1. We expect these two model lists to be different because
stacking and LWA have different properties. Stacking generally has a higher variability
than LWA and has slightly better performance under bias. So, when the true model is
far from the models on the list stacking often does better than LWA but when the true
model is on the model list LWA usually does better than stacking. Thus, the degree of
model mis-specification largely determines which method will do better predictively.

For comparison, consider an adaptive combination of an average of the LWA and
stacking predictors, ACAPs. That is, for ŶLWA,i+1, ŶCV,i+1, and model lists for each,
take another mixture. Let αi ∈ [0, 1] and define a convex combination of ŶLWA,i+1 and
ŶCV,i+1 from (36) and (37) to be

Ŷi+1,ACAP = αiŶCV,i+1 + (1− αi)ŶLWA,i+1, (38)

where, for each i, α̂i achieves

min
α

i∑

u=i−20

(
Yu − [αŶCV,u + (1− α)ŶLWA,u]

)2

. (39)

Note that (39) only uses most recent 20 data points so αt won’t converge too fast relative
to Mk. When αi < 0, we set it to be 0 and when αi > 1, we set it to be 1.

An analogous procedure was used for GAMs and trees. For these two cases, however,
a selection of variables is treated as a model. Given a selection of variables, a GAM can
be formed using them and given several GAMs of this form a stacking average found.
For the LWA case, several GAMs are formed using different selections of variables and
the Bayes weights for them are found using the deviance criterion in the contributed R
package gamlss. Likewise for trees, a stacking average is found using several selections
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of variables and the LWA is found using the deviance criterion in the contributed R
package tree. In both cases, the ACAP average is found using (38).

It remains to specify how the model lists update in response to CPE so that Desider-
atum #2 will be satisfied. The method is described fully in Clarke and Clarke (2009).
For LMs, the basic idea is as follows. Use an ensemble of terms which consists of all
terms of second order or less, i.e., all xj ’s and all xjxk’s. A random selection of these
terms is used for the initial model lists MLWA,0 and MCV,0 of fixed cardinality K = 4.
The next step is to define a central model within MLWA,0 and MCV,0. The central
model for MLWA,0 contains the terms that are in a majority of the models in MLWA,0

and the central model for MCV,0 contains the terms that are in a majority of the models
in MCV,0. For both averaging procedures, new models formed by adding or deleting
one term from the central model in all possible ways are considered, and the best of
these is compared to the models already on the list. The new model replaces one of the
old models if it gives better CV performance. For GAM’s this procedure is modified by
building models using cubic splines based on the terms in the ensemble. For trees this
is modified by looking only at the terms in the selection of variables fed into the tree
software, not at the terms in the actual model output by the software.

To compare the 9 methods (3 predictors, 3 model spaces) we used the benchmark
data set Comp-Activ containing records of computer performance measures used to
predict the fraction of time that CPUs run in user mode. This data set is considered
reasonably complex. Here, we chose only 15 of the original 24 predictors. The CPE’s
of the three methods for each model space are in Figs. 1, 2, and 3.
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Figure 1: CPEs for LMs n = 300 for the Comp-Active Data. The results from fifteen
random permutations of the data were averaged.
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Figure 2: CPEs for GAMs, n = 300, for the Comp-Active Data. The results from fifteen
random permutations of the data were averaged.

Note that the scales on the vertical axis are different for the 3 graphs. The first is
the largest (e05 means 100,000), the third is the smallest. All 3 of the smallest final
CPEs occur for tree models and among these the ACAP error was less than the LWA
error which was less than the stacking error. For LM’s and GAM’s, the stacking error
was less than the ACAP error which was less than the LWA error. The worst were
ACAP’s and LWA for LM’s.

We interpret this to be broadly consistent with a sort of Principle of Matching: The
complexity of the data i.e., the approximation task represented by the DG, should match
the complexity of the predictor for best performance. In this case, the data set is quite
complex and the complexity of the model space is the most important feature of the
predictor. So, the best cases occurred for the most complex class, namely trees. The
second most complex class was GAMs and it did second best while LMs, the simplest
class, gave the worst performance.

Within the most complex model space, trees, the most complex method, ACAPs
does best, LWA did less well and stacking did worst. The Principle of Matching would
have predicted that stacking would do better than LWA because stacking is more flexible
than LWA since its weights are not based on a likelihood. However this was not observed.
It may be that the richness of the model space permits the higher efficiency of Bayesian
methods to outperform the less efficient stacking average. Or, it may just be noise.

The worst cases were with LM’s, the simplest models. Among these, stacking did
best. One would have expected from the Principle of Matching that the most complex
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Figure 3: CPEs for Trees, n = 300, for the Comp-Active Data. The results from fifteen
random permutations of the data were averaged.

predictor ACAP should have done best. However, it is possible that LWA, which con-
verges quickly, has a high bias, making its predictive error so bad it forces the ACAP
to do poorly.

6 Implications of the Theory

The point of this paper is to argue the merit and feasibility of expanding the statistical
problem so it is phrased in terms of prediction. The 6 proposed desiderata are merely
a way to structure thinking about such a general problem. It is worth stating several
immediate conclusions that are implied by adopting a predictive standpoint.

First, physical interpretation of models is downweighted in favor of actual predictive
performance. Recall that, in practice, many statisticians use physical interpretations to
choose among models or predictors. This is often done by preferring a model with a good
physical interpretation over one with a poor physical interpretation – even when the
latter performs better predictively. That is, physical interpretability is taken as a proxy
for validation. Strict application of the Prequential principle will often rule out this
use of physical interpretations of models on the grounds that they rest on suppositions
about the true model. The proper place for physical interpretations is post-processing
an optimal predictor.

Second, for the Bayesian, there is no prohibition on data dependent priors. Wasser-
man (2000) uses data dependent priors, and shows they are optimal, in a mixture setting
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where model uncertainty is a problem. Clarke and Yuan (2004) give general information
theoretic interpretations and the sequential procedure of Wong and Clarke (2004) can
be interpreted as using a prior that depends on the data.

Third, the posterior variances commonly reported are conditional on the model,
and much else, being correct. As soon as model uncertainty is included via updating
predictors for instance, the predictive analog of confidence or credibility bands becomes
much larger, see Draper (1995). It may well be that once proper modeling uncertainty
is taken into account the confidence or credibility bounds become so large as to reveal
that the inferences based on the data are merely suggestive. This is another way to say
that too many of our inferences have been based on overfitting.

Fourth, the stability or robustness of models is as important as any claim to veracity.
Getting a prediction scheme whose predictive error doesn’t change overmuch under
reasonable perturbations of its inputs is hard enough; insisting that the real world
conform to models we can write down conveniently may be unrealistic. Indeed, the
best predictors do not usually correspond to any obvious model for the DG. It may be
important to back off from model identification in order to derive modeling schemes
that give predictions with assessable reliability.

Fifth, and most important, validation of models in the sense of doing extensive checks
that the predictions they give are accurate is the most central property of any scheme.
Sequential prediction is merely one natural way to do this. Pragmatically, trying to
find a model that can be taken as true by surmising validity from weak validation
criteria such as interpretability will often lead to overstatement of the strength of the
information in complex data sets. Otherwise put, all too often the result will be models
that fit adequately but fail to generalize. If a “true model” must be announced, the best
way may not be to seek a model directly but instead to develop a good predictor. Then,
the predictor can be used to identify a model by converting candidate true models into
predictors and finding one that is not too far from the established good predictor.
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