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Rejoinder

Alessio Sancetta∗

I thank Professor Clarke for his sharp comments. He stresses the important fact
that in most regular cases,

EθDt (Pθ‖Pw) = O (d/t) ,

where d is the dimension of θ (I am using the notation in my text). The intuition is based
on his eq. (1), which is one of the results in Clarke and Barron (1994). The analytical
case for the exponential family with conjugate priors shows that this is indeed the case.
The crucial ingredient is eq. (12). Effectively, the argument should fail as soon as the
posterior does not satisfy the Bernstein–von Mises Theorem. That is, the argument
relies on asymptotic normality of the posterior distribution, or more precisely on the
posterior concentrating around the MLE when the MLE is asymptotically normal. This
is clearly stated by Professor Clarke in the last paragraph of his Section 2.

Of course, the behaviour of the tth stage risk is what really matters for the practical
problem of prediction. This is not directly addressed in the paper. The paper points
out that in most regular cases, the cumulative expected risk is O (lnT ), however, this
begs the question of one example when this is not the case. As remarked by Professor
Liang, one does not need to look at uncommon circumstances for the supremum of the
resolvability index to be infinite. Hence, it is of interest to find examples where this is
finite, but grows faster than lnT . One such case is when the prior gives too little weight
to some regions in the parameter space. The following is rather artificial: Θ = [0, 1],
w (dθ) = C exp {−θ−c} for C, c > 0. When

Eθ [ln pθ′ (Zt|Ft−1)− ln pθ (Zt|Ft−1)] = O (|θ − θ′|) ,

we need |θ − θ′| ≤ δ/T , but the prior gives weight

w (BT (θ)) = O

(
exp

{
−

(
T

δ

)c}(
δ

T

))

when θ = 0. Hence, taking logs, the resolvability index at 0 is

RT (0) = O

(
inf
δ>0

{
δ +

(
T

δ

)c

− ln δ + ln T

})

which grows faster than ln T , but is still o (T ), so that universality holds.

Universality may of course fail, but the resolvability index still be finite uniformly
in the parameter space. Consider an AR(1) with autoregressive coefficient θ ∈ [0, 1 + ε]
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for some ε > 0 and Lebesgue measure as prior. In this case, from calculations as in
Example 2 (taking expectations), when θ = 1 + ε,

w (BT (1 + ε)) = O

(
δ

(1 + ε)T

)

implying that the resolvability index at 1 + ε is

RT (1 + ε) = O

(
inf
δ>0

{δ − ln δ + T ln (1 + ε)}
)

= O (T ) ,

so that, as perhaps expected, the Bayesian predictive density is not a good estimator
when we have an explosive root.

I shall now attempt to answer Professor Liang who I thank for her stimulating com-
ments. The first of these comments points to some crucial shortcomings of universality.
Indeed, the lack of a compact parameter space bounded away from certain values can
lead to infinite loss in common examples like location and scale problems, in which case
a diffuse prior solves the problem (Liang and Barron, 2004). Liang and Barron (2004)
use some invariance properties for location scale models. One may wish to look at the
more general problem when — for example — the regression variable is endogenous,
e.g. an AR(1). This is one case where conditioning is needed. However, in this case the
parameter space needs to be restricted to Θ ∈ [−1, 1], ruling out altogether the need for
an unbounded parameter space.

The second question stresses the importance of looking at the loss per observation,
rather than the Cesaro sum, as pointed out by Professor Clarke. The estimator p̃w

derived from the average of the predictive density does not rely on special regularity
conditions, as long as (3) in Professor Liang’s discussion holds. Consequently, if (4) —
in the discussion — were to hold, then we would have the equivalent result uniformly
in Θ.

To answer the third question, I give a special example that satisfies universality by
directly using the results in the paper. For simplicity, start with one model and keep
adding one every new observation. Hence, the support of the posterior increases linearly
with the sample size. Using the same notation as in Section 3 in the paper, at t = 0,

m (k|F0) = m (k) = {k = 1} ,

as we start with one model only and for t > 0,

m (k|Ft) = (1− λ (t)) m′ (k|Ft) {k ≤ t}+ λ (t) {k = t + 1} ,

m′ (k|Ft) =
pwk

(Zt|Ft−1)m (k|Ft−1)∑t
k=1 pwk

(Zt|Ft−1)m (k|Ft−1)
,

where m′ (k|Ft) has support {1, 2, ...t}. With this choice, the predictive density is

pm (Zt|Ft−1) :=
t∑

k=1

pwk
(Zt|Ft−1)m (k|Ft−1) .
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The above updating scheme is similar in flavour to the one in Section 4.1 of the paper.
Hence, it can be given a Bayesian interpretation: at each time t, the number of models
stays the same with probability (1− λ (t)) and with probability λ (t) a new model
pwt

(Zt|Ft−1) is included in the posterior. Arguments similar to the ones in the proof
of Lemma 9 give, for k ∈ {1, 2...., T},

D1,T (Pwk
‖Pm) ≤ − ln λ (k)−

T∑

l=k+1

ln (1− λ (k)) .

Choosing λ (k) = λ/k, from Lemma 12 we deduce the above display is O (ln k + ln T ).
We can then bound D1,T (P‖Pm) using the triangle inequality and the above display.
Universality holds as long as it holds for each single model. As the resolvability index
for each single model is O (ln T ), in most regular cases, this model averaging procedure
does not deteriorate the bound in order of magnitude.
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