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Rejoinder

Peter D. Hoff∗

Abstract. I thank the editor for the opportunity to expand upon the paper, and I
thank the discussants for their insightful comments. In this rejoinder I elaborate on
some of the topics from the discussion: the appropriateness of separable covariance
models for array-valued data, the role of priors and penalties on estimation and
the limiting nature of array valued data.

The article and discussion provide several examples of array-valued and matrix-
valued data, including relational (network) data, space-time and imaging data. Addi-
tionally, in many statistical models the parameters themselves are arrays, even though
the data are not. For example, consider a three-factor experiment or study in which the
levels of the factors are indexed by the sets I,J ,K. Letting yi,j,k,l be the measurement
on the lth subject with levels i, j and k of the three factors, the data itself may not be
an array as the number of subjects per factor combination may vary, but the unknown
cell means {µi,j,k : i ∈ I, j ∈ J , k ∈ K} constitute an array of dimension |I|× |J |× |K|.

It is often desirable to estimate or account for patterns of dependence or similarity
among objects in the index sets of such arrays. The article provides some computational
tools for doing so, by relating the multilinear Tucker product to a class of multivariate
normal distributions with separable covariance structure. A separable covariance struc-
ture is a “reduced model”, in the sense that not all covariance matrices are separable.
In what situations is such a model restriction justifiable? What are the alternatives?

Lopes expresses some concern that separability might not be an appropriate assump-
tion for space-time data. Indeed, Stein (2005) makes a convincing argument against us-
ing separable covariance matrices for such applications. For space-time data, however,
we can often rely on some degree of smoothness or continuity. Smoothness in time and
space allows us to build rich but relatively parsimonious dependence models based on
a small number of parameters that describe spatial or temporal correlation functions.
Thus in the space-time domain, there are a large number of non-separable alterna-
tives to modeling dependence patterns. Even so, in some situations separability may
still be useful: Genton (2007) argues that separable approximations to non-separable
covariance matrices can be useful for some inferential tasks. Additionally, judicious com-
binations of separable and non-separable structure lead to flexible models as in Lopes
et al. (2008). Another way to use separable covariance structure for non-separable co-
variance estimation is in prior specification: Consider a non-separable covariance matrix
Σ = Cov[vec(Y)], where Y is a multiway array. A hierarchical prior for Σ could be of
the form Σ−1 ∼ Wishart(ν0, c×ΣK⊗· · ·⊗Σ1), with the Σk’s also having inverse-Wishart
priors. This centers the prior for Σ around a separable value, but Σ is non-separable
with probability one.
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Outside the domain of space-time data, alternatives to separable covariance structure
are few. In many situations the elements of the index sets of a data array are categorical,
such as commodity type or country, as in the example in the article. In these cases
there may be no natural ordering to the indices, and no natural embedding of them in
a Euclidean space. How then should we model the covariance among the elements of
the array? An unrestricted covariance model requires a separate covariance parameter
for every pair of elements of the array. Even for moderately sized arrays, this may lead
to an unreasonably large number of parameters to estimate. For example, if Y is an
m1 ×m2 ×m3 random array, then vec(Y) is a random vector of length m1m2m3, and
so a sample size of n ≥ m1m2m3 replications is required in order to obtain a full-rank
MLE of Cov[vec(Y)]. This is a problem for the trade data considered in the article,
and for the matrix-variate data considered in Allen and Tibshirani (2010). Both articles
consider datasets for which the sample size is essentially 1, in the sense that there are
no independent replications of the matrices or arrays.

In such cases, a simpler, restricted covariance model may be desirable. A separable
covariance model can be viewed as somewhat analogous to mean modeling in factorial
designs: The classical additive-effects model obtained from an ANOVA decomposition
represents the mean in a particular cell as E[Yi,j,k] = µ + ai + bj + ck. Similarly, the
separable covariance model is log-additive,

log Cov[Yi1,j1,k1 , Yi2,j2,k2 ] = log σ
(1)
i1,i2

+ log σ
(2)
j1,j2

+ log σ
(3)
k1,k2

,

making the separable model seem like a natural candidate as a “simple” covariance
model when data are spare. Unfortunately, even for this greatly restricted covariance
model, the sample size is frequently insufficient to estimate an MLE. In the matrix case
with one replication, even without estimating a mean, the likelihood for the matrix nor-
mal model is generally unbounded, and no unique estimator exists (although strangely,
if the row dimension is equal to the column dimension then the likelihood is bounded,
but the MLE is not unique).

One way around the issue of unbounded likelihoods is to take a Bayesian approach to
estimation, thereby penalizing certain values of the covariance matrices. In the matrix
case, Carvalho and West (2007) penalize complexity by using a prior which allows for
zeros in the precision matrices, and Allen and Tibshirani (2010) penalize complexity
via the L1 or L2 norms on the precision matrices. In the current article regarding the
array normal model, I have discussed the use of standard inverse-Wishart priors for
the covariance matrices, although priors analogous to those used by Carvalho and West
(2007) and Allen and Tibshirani (2010) in the matrix case would be straightforward
to implement. In particular, the L2 penalty and the inverse-Wishart prior (with ex-
pected value proportional to the identity) both give equivariant estimates. The former
is equivalent to using independent half-normal prior distributions for the eigenvalues of
the precision matrix, and the latter corresponds to independent gamma priors. It would
certainly be interesting to explore the L2 penalty further, and see if the relationship
between the SVD and the penalized estimate in the matrix case extends to the array
case, as conjectured by Allen.
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Prior distributions (or penalties) can provide a unique estimator in situations where
data alone do not. However, in such cases, any differentiation between parameter values
that are likelihood-equivalent is a reflection purely of the prior. Ideally, the prior reflects
some knowledge about the actual covariance parameters or data generating mechanism.
In the absence of such knowledge the choice of prior or penalty becomes (ironically) more
subjective: Often a certain type of prior is chosen because it makes the posterior mode
have an aesthetically pleasing (e.g. sparse) form. It might be better to express such
preferences for certain types of parameter estimates via loss functions, in the context of
a decision problem regarding the summarization or reporting of results.
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