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Nonparametric Bayesian models through probit
stick-breaking processes

Abel Rodŕıguez∗ and David B. Dunson†

Abstract. We describe a novel class of Bayesian nonparametric priors based on
stick-breaking constructions where the weights of the process are constructed as
probit transformations of normal random variables. We show that these priors are
extremely flexible, allowing us to generate a great variety of models while preserv-
ing computational simplicity. Particular emphasis is placed on the construction of
rich temporal and spatial processes, which are applied to two problems in finance
and ecology.
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1 Introduction

Bayesian nonparametric (BNP) mixture models have become extremely popular in the
last few years, with applications in fields as diverse as finance (Kacperczyk et al. 2003;
Rodriguez and ter Horst 2010), econometrics (Chib and Hamilton 2002; Hirano 2002),
image analysis (Han et al. 2008; Orbanz and Buhlmann 2008), genetics (Medvedovic
and Sivaganesan 2002; Dunson et al. 2008), medicine (Kottas et al. 2002) and auditing
(Laws and O’Hagan 2002). In the simple case where we are interested in estimating a
single distribution from an independent and identically distributed sample y1, . . . , yn,
nonparametric mixtures assume that observations arise from a convolution

yj ∼
∫
k(·|φ)G(dφ)

where k(·|φ) is a given parametric kernel indexed by φ, and G is a mixing distribution,
which is assigned a flexible prior. For example, assuming that G follows a Dirich-
let process (DP) prior (Ferguson 1973; Blackwell and MacQueen 1973; Ferguson 1974;
Sethuraman 1994) leads to the well known Dirichlet process mixture (DPM) models (Lo
1984; Escobar 1994; Escobar and West 1995).

Many recent developments in BNP mixture models have concentrated on models for
collections of distributions defined on an appropriate space S (e.g., S ⊂ R2 for spatial
processes and S ⊂ N for temporal processes observed in discrete time). Unlike tradi-
tional parametric models, where only a limited number of the features of the distribution
are allowed to change with the covariates, these models provide additional flexibility by
allowing the mixing distribution Gs to change with s ∈ S while inducing dependence
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among the members of the collection. A number of different approaches have been
developed with this goal in mind, including those based on mixtures of independent
processes (Müller et al. 2004; Dunson 2006; Griffin and Steel 2010; Dunson et al. 2007),
and approaches that induce dependence in the weights and/or atoms of different Gs

(MacEachern 1999, 2000; DeIorio et al. 2004; Gelfand et al. 2005; Teh et al. 2006; Grif-
fin and Steel 2006; Duan et al. 2007; Rodriguez and Ter Horst 2008; Rodriguez et al.
2008). In this paper we pursue this last direction to construct dependent nonparametric
priors.

The design of BNP models requires a delicate balance between the need for simple
and computationally efficient algorithms and the need for priors with large enough sup-
port. Introducing dependence only in the atoms of Gs, which has been an extremely
popular approach, typically leads to relatively simple computational algorithms but does
not afford sufficient flexibility. For example, MacEachern (2000) shows that constant-
weight models cannot accommodate collections of independent distributions. On the
other hand, inducing complex dependence structure in the weights (e.g., periodicities)
can be a hard task and typically leads to complex and inefficient computational algo-
rithms, limiting the applicability of the models.

This paper proposes a novel approach to construct rich and flexible families of non-
parametric priors that allow for simple computational algorithms. Our approach, which
we call a probit stick-breaking process (PSBP), uses a stick-breaking construction simi-
lar to the one underlying the Dirichlet process (Sethuraman 1994; Ongaro and Cattaneo
2004), but replaces the characteristic beta distribution in the definition of the sticks by
probit transformations of normal random variables. Therefore, the resulting construc-
tion for the weights of the process is reminiscent of the continuation ratio probit model
popular in survival analysis (Agresti 1990; Albert and Chib 2001). Although we empha-
size the construction of temporal and spatial models, this strategy is extremely flexible
and allows us to create all sorts of nonparametric models, such as nonparametric random
effects and ANOVA models, as well as nonparametric regression models. Indeed, a sim-
ilar approach has been used to create nonparametric factor models in Rodriguez et al.
(2009) and nonparametric variable selection procedures in Chung and Dunson (2009).
Our approach is also intimately related to that of Duan et al. (2007); however, both
constructions differ in terms of the scope of the models and the specific properties of the
random weights. More specifically, while Duan et al. (2007) focus exclusively on spatial
models for point-referenced data, our approach is described in much more generality and
can also be applied, for example, to one and two dimensional lattice data. In addition,
Duan et al. (2007) construct their model so that, marginally, it reduces to a Dirichlet
process, which leads to a cumbersome computational algorithm. Instead, by focusing
on probit models for the stick-breaking ratios, we can develop simple computational
algorithms for a wide variety of models.

The remainder of the paper is organized as follows: After a brief review of the lit-
erature on stick-breaking priors, Section 2 describes the probit stick-breaking processes
for a single probability measure and studies its theoretical properties. The PSBP is
extended in Section 3 to model collections of distributions. This section also presents
some specific examples, including temporal and spatial models for distributions. Section
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4 discusses efficient computational implementations for PSBP models using collapsed
samplers. In Section 5, we present two illustrations where the probit stick-breaking
process is used to construct flexible nonparametric spatial and temporal models in the
context of applications to finance and environmental sciences. Finally, Section 6 presents
our conclusions and future research directions.

2 Stick-breaking priors for discrete distributions

Let (X ,B) be a complete and separable metric space (typically X = Rn and B are the
Borel sets on Rn), and let G ∈ G be its associated probability measure. G follows a
stick-breaking prior with centering measure G0 and shape measure H1, H2, . . . if and
only if it admits a representation of the form:

G(·) =
L∑
l=1

wlδθl(·) (1)

where the atoms {θl}Ll=1 are independent and identically distributed from G0 and the
stick-breaking weights are defined wl = ul

∏
r<l(1− ur), where the stick-breaking ratios

are independently distributed ul ∼ Hl for l < L and uL = 1. The number of atoms L
can be finite (either known or unknown) or infinite. For example, taking L = ∞, and
having ul ∼ Beta(1 − a, b + la) for 0 ≤ a < 1 and b > −a yields the two-parameter
Poisson-Dirichlet Process, also known as the Pitman-Yor Process (Ishwaran and James
2001), with the choice a = 0 and b = η resulting in the Dirichlet Process (DP) (Ferguson
1973, 1974; Sethuraman 1994).

The use of beta random variables to define stick-breaking priors is customary because
it endows the process with some interesting and useful properties. For example, Pitman-
Yor processes can be characterized by a generalized Pólya urn (Pitman 1995, 1996;
Ishwaran and James 2001), which has some computational advantages. Although having
a simple predictive rule for the process is an appealing property, we argue in this paper
that other distributions on the stick-breaking weights can be used to create very flexible
nonparametric priors while preserving computational simplicity.

In the sequel, instead of using beta random variables, we will concentrate on stick-
breaking ratios constructed as

ul = Φ(αl) αl ∼ N(µ, σ2) (2)

where Φ(·) denotes the cumulative distribution function for the standard normal distri-
bution. Setting µ = 0 and σ = 1 trivially leads to ul ∼ Uni[0, 1] (and therefore to a DP
with precision parameter η = 1) while different mean parameters produce distributions
for ul that are right skewed (if µ < 0) or left skewed (if µ > 0). For a finite L, the
construction of the weights ensures that

∑L
l=1 wl = 1. When L =∞, it is easy to check

that
∞∑
l=1

E(log(1− ul)) = −∞
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and therefore
∑∞
l=1 wl = 1 almost surely (see Appendix 1). Similarly, for any measurable

set B ∈ B the first and second moments are given by

E{G(B)} = G0(B)

Var{G(B)} = G0(B){1−G0(B)}β2

{
1− (1− 2β1 + β2)L

2β1 − β2

}
where β1 = E(ul) = Φ(µ/

√
1 + σ2) and β2 = E(u2

l ) = Pr(T1 > 0, T2 > 0), with
(T1, T2) following a joint bivariate normal distribution such that E(Ti) = µ, Var(Ti) =
1 + σ2 and Cov(T1, T2) = σ2 (see Appendix 1 and 2). Therefore, we can interpret
G0 as the centering measure and µ and σ2 as controlling the variance of the sampled
distributions around the mean G0. Indeed, note that, since 1 − 2β1 + β2 < 1, then
limL→∞ Var{G(B)} = G0(B)(1 − G0(B)β2/(2β1 − β2). Also, note that Var{G(B)}
is increasing in µ, and as µ → ∞ the random distribution G becomes a point mass
at a random location θ almost surely. Figure 1 serves to illustrate the properties just
discussed. The structure of the stick-breaking weights is reminiscent of the continuation
ratio probit models used in discrete-time survival analysis (Agresti 1990; Albert and
Chib 2001). In this setting, the stick-breaking weight wl represents the hazard of an
individual “dying” at time l.

Unlike the Dirichlet process, the probit stick-breaking prior does not form a con-
jugate family on the space of probability measures, in the sense that the posterior
distribution for G given the data is not a probit stick-breaking distribution. Also, it
is possible in principle to integrate out the random G and obtain a predictive rule to
describe the joint distribution of a sequence θ1, . . . ,θn with θi|G ∼ G for the PSBP (for
example, see Pitman 1995 and Hjort 2000), but the weights for the Pólya urn involve
complicated expressions in terms of probabilities of high-dimensional normal variables
(see Appendix 1). However, these features do not represent an obstacle for computation
(see Section 4).

Since a distribution G sampled from a PSBP will be discrete almost surely, a se-
quence of values sampled from G has a positive probability of showing ties. In a PSBP
mixture, the pattern of these ties in the parameters induces a partition of the obser-
vations into groups. Therefore, when the PSBP is used for clustering purposes it is
important to understand the structure of the partitions generated by the model. In
particular, we are interested in how the expected number of clusters (corresponding to
the distinct number of values in a sample from G) grows as the sample size n grows, and
on how uniformly are the observations assigned to the clusters. For non-atomic center-
ing measures, these are controlled exclusively by the precision parameters µ and σ. The
top panel of Figure 2 shows the expected number of groups against the logarithm of the
number of observations for σ = 1 and different values of µ, and compares the clustering
properties of the PSBP against the Dirichlet process. These expected values were ap-
proximated using a Monte Carlo method that involves retrospective sampling (Roberts
and Papaspiliopoulos 2008). In order to simplify interpretation, we compare processes
with the same value of β1 = E(ul) (remember that for the DP, E(ul) = 1/(1 + η), while
for the PSBP E(ul) = Φ(µ/

√
1 + σ2)). In first place, we note that the rate of growth

of the number of clusters with the sample size in the probit stick-breaking process is
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Figure 1: Random realizations of a probit stick-breaking process with a standard Gaus-
sian centering measure (dashed line) with σ = 1. The two plots demonstrate the effect
of the precision parameter µ on the realizations.
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logarithmic, just as in the Dirichlet process. Also, since the processes are equivalent for
β1 = 0.5, the curves agree. However, the distribution of the number of clusters under
the probit stick-breaking process seems to be more right (left) skewed for β1 > 0.5
(β1 < 0.5). In any case, the differences are small, even for sample sizes of about 2000
observations. This pattern is similar for values of σ different from 1.

The second panel of Figure 2 shows curves relating the expected number of clusters
to the expected size of the largest cluster, for a sample of n = 200 observations. Each
curve corresponds to a different value of σ, while points on the curve are generated by
changing µ between −1 and 1. This plot hints at the different roles µ and σ play in
controlling the clustering structure of the model: for small σ, the size of the largest
cluster declines more rapidly with a decreasing value of µ, and hence an increasing
expected number of clusters, than for larger values of σ. Indeed, very large values of σ
tend to induce a single very large cluster accompanied by many smaller clusters.

A logarithmic rate of growth for the number of clusters can be too restrictive in
certain applications (see for example Sudderth and Jordan 2008). Faster (or slower)
rates of growth can be easily obtained by slightly generalizing the structure in (2). In
particular, and in the spirit of the Pitman-Yor process, for given µ, γ and σ we can
define αl ∼ N(µ + γl, σ2) and, as before, set ul = Φ(αl). Figure 3 shows an example
of how the rate of growth in the expected number of clusters behaves for this modified
model. Note that if γ = 0 we recover the model we discussed in Figure 2 (logarithmic
rate of growth), however, if γ < 0 we obtain a faster-than-logarithm rate of growth
whereas if γ > 0 we obtain a slower-than-logarithmic rate of growth. More generally,
by placing a prior on γ we can learn from the data what the appropriate rate of growth
is.

In the case of finite PSBP models where L < ∞, it is important to verify that the
behavior of model is in some sense consistent as the number of components grows. In
particular we would like to check whether, as L→∞, the finite model converges to the
infinite process. This is important both for computational reasons (as finite truncations
can provide a simple algorithm for model fitting) and for the robustness of the model
(if there is inconsistency, then the model will typically be sensitive to the choice of L).
As Ishwaran and James (2001) point out, this property cannot be taken for granted and
must be checked.

The following result shows that, for the probit stick-breaking process, truncations
are indeed good approximations. The proof, which can be seen in Appendix 3, is
a straightforward extension of Ishwaran and James (2001) and Ishwaran and James
(2003).

Theorem 4. Let GL be a random distribution drawn from a PSBP with L components,
baseline measure G0 and variance parameters µ and σ2, and let G∞ denote the case
L =∞. In addition, for a sample of size n, y = (y1, . . . , yn), let

pL(y) = EGL

{
n∏
i=1

∫
k(yi|φi)GL(dφi)

}
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Figure 2: Clustering structure generated by the probit stick-breaking process. Top
panel shows the expected number of clusters under the PSBP with σ = 1, compared
against the Dirichlet process. Note that both models show a logarithmic rate of growth
in the number of observations in the sample. However, the probit stick-breaking process
grows more slowly than the DP for β1 > 0.5 (µ < 0) and faster for β1 < 0.5 (µ > 0).
Bottom panel shows the expected size of the largest cluster versus the expected number
of clusters under different combinations of µ and σ. These plots correspond to samples
of n = 200 observations.
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Figure 3: Expected number of clusters under a probit stick-breaking process where
αl ∼ N(µ + γl, σ2). In this plot, we take σ = 1, µ = 2/3 and show curves for different
values of γ. The expected number of clusters can grow at a faster (or slower) rate than
logarithmic depending on the sign value of γ, with γ = 0 yielding the basic PSBP we
discussed in Figure 2.

where EGL denotes the expectation with respect to the law of the random distribution
GL, and p∞(y) defined similarly. Then

||pL(y)− p∞(y)|| ≤ 4

(
1−

{
1−

[
Φ
(
− µ√

1 + σ2

)]L−1
}n)

where ||pL(y)− p∞(y)|| denotes the total variation distance between pL(y) and p∞(y).

Note limL→∞ ||pL(y)−p∞(y)|| = 0, and therefore the finite process converges in total
variation norm (and therefore in distribution) to the infinite process. As a consequence
we have the following Corollary.

Corollary 5. The posterior distribution based on a L-finite PSBP converges in distri-
bution to the one based on the infinite PSBP as L→∞.

Similar results for the Dirichlet process have been discussed in Mulliere and Tardella
(1998), Ishwaran and James (2001) and Gelfand and Kottas (2002). Corollary 5 is espe-
cially important for computational purposes. Indeed, it ensures that samples obtained
from the posterior distribution of the truncated process can be used to generate arbi-
trarily accurate inferences on measurable functionals of the infinite process. In practice,
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the number of atoms does not need to be extremely large. Indeed, note that[
Φ
(
− µ√

1 + σ2

)]L−1

= exp
{

(L− 1) log
[
Φ
(
− µ√

1 + σ2

)]}
Since Φ

(
− µ√

1+σ2

)
< 1, the rate of decay of the ||pL(y) − p∞(y)|| is exponential in

L, just like with the Dirichlet process. In Figure 4 we demonstrate the behavior of
||pL(y) − p∞(y)|| as a function of µ and L for n = 1000 and σ = 1. Note that for
β1 = 0.26 (which roughly corresponds to η = 3 in the Dirichlet process), about 50
atoms are enough for a reasonable approximation, while for β1 = 0.17 (which is roughly
equivalent to η = 5), more than 70 atoms seem to yield no visible additional benefit.
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Figure 4: Bounds on the distance between the infinite stick-breaking process and its
corresponding truncation for σ = 1 and different values of µ. The curves are indexed
by β1 = Φ(µ/

√
(1 + σ2)).

3 Dependent probit stick-breaking processes for collec-
tions of distributions

In order to extend the single-distribution model in Section 2 to a prior on a collection
of distributions defined on an index space S ⊂ Rq, we could replace the set of atoms



154 Probit stick-breaking processes

{θl}Ll=1 and latent random variables {αl}L−1
l=1 with a sequence of independent stochastic

processes {θl(s) : s ∈ S}Ll=1 and {αl(s) : s ∈ S}L−1
l=1 so that,

yj(s) ∼ fs =
∫
k(·|φ)Gs(dφ)

Gs(·) =
L∑
l=1

wl(s)δθl(s)(·)

wl(s) = Φ(αl(s))
∏
r<l

(1− Φ(αr(s))).

(3)

{αl(s) : s ∈ S}L−1
l=1 has Gaussian margins and {θl(s) : s ∈ S}Ll=1 are independent

and identically distributed sample paths from a given stochastic process. Models that
incorporate dependent weights have a number of theoretical and practical advantages
over models that only use dependent atoms like the constant weight models described
in DeIorio et al. (2004), Gelfand et al. (2005) and Rodriguez and Ter Horst (2008).
For example, models with non-constant weights have richer support; indeed, it is well
known that constant-weights models cannot generate a set of independent measures
(MacEachern 2000).

The extension of PSBPs to dependent PSBPs parallels the extension of Dirichlet
processes to the dependent case by MacEachern (1999, 2000). However, for depen-
dent PSBPs it is much more straightforward to accommodate varying weights without
sacrificing computational tractability. In the sequel, we assume that the latent paths
{αl(s) : s ∈ S}L−1

l=1 are independent draws from a common stochastic process. Also, we
focus our attention on PSBP models with constant atoms where θl(s) = θl ∼ G0 for
all s ∈ S, but adding dependence in the atoms is straightforward. The resulting class
M = {Gs : s ∈ S} is such that Gs marginally follows a probit stick-breaking process
for each s ∈ S. Therefore, for any set B ∈ B,

E{Gs(B)} = G0(B)

and

Var{Gs(B)} = G0(B)(1−G0(B))β2(s)
{

1− (1− 2β1(s) + β2(s))L

2β1(s)− β2(s)

}
,

where the calculation for β1(s) = E{ul(s)} and β2 = E{u2
l (s)} is analogous to that in

Appendix 1.

One important property of dependent PSBP models with constant atoms is their
smoothness. A simple definition of process smoothness for the PSBP can be obtained
by considering the distance (in some appropriate metric) between realizations of the
process at nearby locations. In particular, for any fixed point s0 ∈ S, we can define a
stochastic process {Zs0(s) : s ∈ S} such that

Zs0(s) =
∫
|Gs0(dφ)−Gs(dφ)| (4)
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gives the total variation distance between Gs and Gs0 (note that this is indeed a stochas-
tic process since both distributions are random). The stochastic process Zs0(s) is said
to be almost surely continuous at s if lims′→s Zs0(s′) = Zs0(s). If the process is al-
most surely continuous for every s ∈ S, then it is said to have continuous realizations
(Banerjee and Gelfand 2003).

Theorem 5 (Smoothness of dependent PSBP models). Let {θl}Ll=1 be an independent
and identically distributed sequence from some centering distribution G0 and {αl(s) : s ∈
S}Ll=1 be an independent sequence of stochastic processes with continuous realizations
and Gaussian marginals, both defining a dependent PSBP with constant atoms. Also,
let Zs0(s) be as defined in (4). For any s0 ∈ S,

1. Zs0(s) also has continuous realizations almost surely.

2. lims→s0 Zs0(s) = 0 = Zs0(s0) almost surely.

The proof of Theorem (5) can be seen in Appendix 4. Conditions for the almost sure
continuity of the random processes {αl(s) : s ∈ S}Ll=1 are given in Kent (1989). It is
worth emphasizing that continuity in these results does not refer to the draws from the
random distribution Gs (which is almost surely discrete), but to the similarity between
realizations at nearby locations.

The covariance structure generated by the model is another important property to
understand. For any Borel set B we have that, a priori,

Cov(Gs(B), Gs′(B)) =
β2(s, s′)

{
1− [1− β1(s)− β1(s′) + β2(s, s′)]L

}
β1(s) + β1(s′)− β2(s, s′)

×G0(B){1−G0(B)}

where the expression for β2(s, s′) can be seen in Appendix 6. Note that if the processes
{αl(s) : s ∈ S}Ll=1 are second-order stationary, then the same can be said for Gs(B),
as in that case β1(s) is independent of s and β2(s, s′) depends only on the distance
between s and s′. Also, as s′ → s then Cov(Gs(B), Gs′(B))→ Var(Gs(B)) and therefore
Cor(Gs(B), Gs′(B))→ 1.

To gain some further understanding of the covariance structure induced by the PSBP,
we show in Figure 5 plots of the correlation function of the latent processes {αl(s) :
s ∈ S}L−1

l=1 along with the induced correlation between Gs(B) and Gs′(B). Figure 5(a)
corresponds to a latent Gaussian process with constant mean function µ and exponential
covariance function γ(s, s′) = σ2 exp{−||s− s′||/λ}, while Figure 5(b) corresponds to a
Gaussian covariance function γ(s, s′) = σ2 exp{−||s− s′||2/λ}. In every case the range
parameter λ for the latent process was fixed to 1, with different curves corresponding to
different combinations of µ and σ2. Note that the induced correlation function seems
to have a similar shape to the underlying covariance function. However, a notable
difference is that in these two examples there is a lower bound for Cor(Gs(B), Gs′(B)),
which depends on the value of µ and σ2. Indeed, in Appendix 6 we show that, if
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γ(s, s′)→ 0 as ||s = s′|| → ∞, then β2(s, s′)→ β1(s)β1(s′) and

lim
||s−s′||→∞

Cov(Gs(B), Gs′(B)) =

β1(s)β1(s′)
{

1− [{1− β1(s)}{1− β1(s′)}]L
}

1− {1− β1(s)}{1− β1(s′)}
G0(B){1−G0(B)}

where β1(s) = Φ
(

µ(s)√
1+σ2

)
.

This asymptotic dependence between the distributions is a consequence of our use
of a common set of atoms at every s; even if the set of weights are independent from
each other, the fact that the atoms are shared means that the distributions cannot
be independent. This is a feature that is not exclusive to the PSBP, but is shared
by every model that relies on introducing dependence among distributions exclusively
by replacing the independent weights with stochastic processes (and, by the way, by
every “single-p” DDP model, where the weights are the same at every s but the atoms
are replaced by stochastic processes). Our plots also suggest that the correlation is
increasing with µ and decreasing with σ2, which is in line with the limiting form for
Cov(Gs(B), Gs′(B))
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Figure 5: Comparison between the correlation function associated with the latent pro-
cesses {αl(s) : s ∈ S}L−1

l=1 and the induced correlation function on Gs(B), for any mea-
surable set B. Note the presence of a lower bound on the correlation, which depends
on the values of σ2 and µ.

In the following subsections, we discuss some examples of dependent PSBPs.
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3.1 Dependent PSBPs with latent Gaussian processes

A particularly interesting example of a dependent PSBP arises by letting αl(s) in equa-
tion (3) be a Gaussian process over S with mean µ and covariance function σ2γ(s, s′),
for s ∈ S ⊂ Rq. More concretely, given observations associated with locations (or pre-
dictors) s1, . . . , sn, the joint distribution for the realizations of the latent processes αl(s)
at these locations is given by


αl(s1)
αl(s2)

...
αl(sn)

 ∼ N



µ
µ
...
µ

 , σ2


1 γ(s1, s2) . . . γ(s1, sn)

γ(s2, s1) 1 . . . γ(s2, sn)
...

...
. . .

...
γ(sn, s1) γ(sn, s2) . . . 1




Models of this type can be used for time series observed in continuous time (S = R+),
or to construct models for spatial data (S ⊂ R2). In particular, this construction
allows us to easily generate spatial processes for discrete and non-Gaussian distributions.
Even more, we can introduce multivariate atoms, leading to a simple procedure to
construct non-stationary, non-separable multivariate spatial-temporal processes. By
interpreting S as a space of predictors, this construction also allows us to generate
flexible nonparametric regression models with heteroscedastic errors, as discussed in
Griffin and Steel (2006).

A priori, the covariance of the process under (3) is

Cov(y(s), y(s′)) =
β2(s, s′)

{
1− [1− β1(s)− β1(s′) + β2(s, s′)]L

}
β1(s) + β1(s′)− β2(s, s′)

EG0(Var(y|θ)).

A posteriori, the covariance of the process can be computed by conditioning on the
values of the stick-breaking weights and atoms:

Cov(y(s), y(s′)|{wl(s)}Ll=1, {θl}Ll=1) =
L∑
l=1

L∑
r=1

wl(s)wr(s′)E(y|θl)E(y|θk)

−

(
L∑
l=1

wl(s)E(y|θl)

)(
L∑
l=1

wl(s′)E(y|θl)

)

Other functionals of interest can be calculated in a similar fashion. To predict the
distributions at a new location sn+1, we can interpolate the latent field by sampling
αl(sn+1) from αl(sn+1)|αl(sn), . . . , αl(s1) (which follows again a normal distribution),
and then compute {wl(sn+1)}Ll=1.
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3.2 Dependent PSBPs with latent Markov random fields

Consider now a model for distributions that evolve in discrete time, as in Griffin and
Steel (2006); Caron et al. (2007, 2008) and Griffin (2008). For t = 1, . . . , T let

yt ∼
∫
k(·|φ)Gt(dφ), Gt(·) =

L∑
l=1

wltδθl(·),

wlt = Φ(αlt)
∏
r<l

(1− Φ(αrt)), αlt = A′tηlt.

We can induce dependence in the weights through a general autoregressive process
of the form

ηlt|ηl,t−1 ∼ N(Btηl,t−1,Wt).

By appropriately choosing the structural parameters At, Bt and Wt a number of
different evolution patterns can be accommodated. For example, letting At be a p× 1
vector and Bt be a p× p matrix such that

At =


1
0
...
0

 Bt =


0 1 0 . . . 0
0 0 1 . . . 0
...

...
...

. . .
...

1 0 0 . . . 0


we induce a form-free periodic model for densities (see West and Harrison (1997), Chap-
ter 7), where Gt+p is centered around Gt, in the sense that E(αl,t+p|αl,t+p−1, . . . , αlt) =
αlt. In particular, setting Wt = 0 leads to a common Gt for all time points. Other
patterns like trends, periodicities and autoregressive processes can be similarly modeled,
providing additional flexibility over other nonparametric models. Also, this approach
can be generalized to construct spatial (or spatial-temporal) models for aerial data by
considering a two (or three) dimensional Gaussian random Markov field, in the spirit of
Figueiredo (2005) and Figueiredo et al. (2007).

3.3 Random effect models for distributions

Finally, consider a situation where multiple observations are obtained for each one of
I populations, and our goal is to borrow information nonparametrically across them
while assuming exchangeability both between and within populations. Specifically, for
j = 1, . . . , ni and i = 1, . . . , I assume that data yij corresponds to the j-th observation
from the i-th population. In a parametric setting, a natural model for this situation is
a random effects model. For the nonparametric case, assume that for some parametric
kernel k(·|φ),

yij ∼
∫
k(·|φ)Gi(dφ), Gi(·) =

∞∑
l=1

wilδθl(·),
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where

wil = Φ(αil)
∏
r<l

(1− Φ(αir)), αil ∼ N(α0
l , 1), α0

l ∼ N(µ, 1).

The common prior for {αil}Ii=1 allows us to borrow information across populations
by shrinking the stick-breaking ratios corresponding to the l-th mixture component
towards a common value. This formulation is reminiscent of the hierarchical Dirichlet
process (HDP) (Teh et al. 2006); indeed this random effect model for distributions can
be used as an alternative to the HDP. One interesting property of the PSBP for random
effect models is that each Gi is marginally PSBP, since each αil is marginally Gaussian.
This is a property not shared by the hierarchical Dirichlet process. An advantage of
this formulation is that a generalization that includes covariates is straightforward by
letting

αil = x′ijηil ηil ∼ N(η0
l , I) η0

l ∼ N(µ, I)

where xij is the vector of covariates specific to observation yij .

4 Posterior sampling

In this section we demonstrate that a collapsed Markov chain Monte Carlo (MCMC)
sampler (Robert and Casella 1999; Ishwaran and James 2001) can be constructed to
fit the dependent PSBPs mixtures described in 3. Our algorithms borrow on ideas
previously used to fit Bayesian continuation-ratio probit models in survival analysis
(Albert and Chib 2001).

First, we concentrate on the case L <∞. For each observation yj(si), corresponding
to replicate j under condition/location i, j = 1, . . . ,mi and i = 1, . . . , n, introduce
indicator variables ξj(si) such that ξj(si) = l if and only if observation yj(si) is sampled
from mixture component l. The use of these latent variables is standard in mixture
models; conditional on the indicators the full conditional distribution of the component-
specific parameters for a model with constant atoms is given by

p(θl| · · · ) ∝ g0(θl)
∏

{(i,j)|ξj(si)=l}

k(yj(si)|θl).

where g0 is the density (or probability mass function) associated with the centering
measure G0. If g0 is conjugate to the kernel k(·|θ), sampling from this distribution is
straightforward. In non-conjugate settings, sampling can still be carried out using a
Metropolis-Hastings step. Similarly, if the atoms are not constant then the observations
on each component correspond to draws from a single stochastic process and sampling
of its parameters can be carried out using standard simulation algorithms.

Conditional on the component specific parameters and the realized values of the
weights {wl(s1)}Ll=1, . . . , {wl(sn)}Ll=1 at the observed locations, the full conditional dis-
tribution for the indicators is multinomial with probabilities given by

Pr(ξj(si) = l| · · · ) ∝ wl(si)k(yj(si)|θl).
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In order to sample the value of the latent processes {αl(s1)}Ll=1, . . . , {αl(sn)}Ll=1

and the corresponding weights {wl(s1)}Ll=1, . . . , {wl(sn)}Ll=1, for each i = 1, . . . , n and
l = 1, . . . , L− 1 we introduce a collection of conditionally independent latent variables
zjl(si) ∼ N(αl(si), 1). If we define ξj(si) = l if and only if zjl(si) > 0 and zjr(si) < 0
for r < l, we have

Pr(ξj(si) = l) = Pr(zjl(si) > 0, zjr(si) < 0 for r < l)

= Φ(αl(si))
∏
r<l

{1− Φ(αr(si))} = wl(si) (5)

independently for each i. This data augmentation scheme simplifies computation as it
allows us to implement another Gibbs sampling scheme. Indeed, conditionally on the
value of the latent process and the indicator variables, we can impute the augmented
variables by sampling from its full conditional distribution,

zjl(si)| · · · ∼

{
N(αl(si), 1)1R− l < ξj(si)
N(αl(si), 1)1R+ l = ξj(si)

,

where N(µ, τ2)1Ω denotes the normal distribution with mean µ and variance τ2 trun-
cated to the set Ω.

In turn, conditional on the augmented variables, the latent processes can be sampled
by taking advantage of the normal priors for αl(s). The details of this step are specific
to the problem being considered; for example, for the spatial model described in Section
3.1 observed without replicates, we have

(αl(s1), . . . , αl(sn))′ ∼ N

([
Σ−1 +

1
σ2

I
]−1 [

µΣ−11 +
1
σ2

zl

]
,

[
Σ−1 +

1
σ2

I
]−1

)

where zl = (zl(s1), . . . , zl(sn))′ and 1 is a column vector of ones. Similarly, for the
models in Section 3.2, the corresponding augmented models on the latent variables
zit ∼ N(αit, 1) results in a series of dynamic linear models (West and Harrison 1997)
and a Forward-Backward algorithm (Carter and Kohn 1994; Frühwirth-Schnatter 1994)
can be used to efficiently sample the latent process.

Once the latent processes have been updated, the weights can be computed using
(5). If unknown parameters remain in the specification of the latent process (spatial
correlations, evolution variances, the mean µ of the latent process), these can typically
be sampled conditionally of the value of the imputed latent processes.

In the case L =∞, we can easily extend this algorithm to generate a slice sampler,
as discussed in Walker (2007) and Papaspiliopoulos (2009). Alternatively, the results
at the end of Section 2 suggest that a finite PSBP with a large number of components
(≈ 50, depending on the value of µ) can be used instead (Ishwaran and James 2001;
Ishwaran and Zarepour 2002).
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5 Illustrations

This section presents two applications of the PSBP model. We first discuss an appli-
cation of the discrete time PSBP introduced in Section 3.2, and then we move to an
application of the spatial nonparametric models described in Section 3.1. All computa-
tions were carried out using the algorithm for a finite PSBP with L = 50 components.
In both cases, inferences are based on 100,000 samples of the MCMC obtained after a
burn-in period of 10,000 iterations. No evidence of lack of convergence was found from
the visual inspection of trace plots or the application of the Gelman-Rubin convergence
test (Gelman and Rubin 1992).

5.1 Multivariate stochastic volatility

In this section we use the PSBP model to construct a multivariate stochastic volatility
model that allows for the joint distribution of returns across multiple assets to evolve
in time. Therefore, the model accommodates not only time varying volatilities for the
assets, but also time varying means and correlations, providing added flexibility to
traditional stochastic volatility models. The data set under consideration consists of
the weekly returns of the S&P500 (US stock market) and FTSE100 (UK stock market)
indexes covering the ten-year period between February 02, 1999 and April 02, 2009,
for a total of 522 observations. Figure 6 shows the evolution of these returns in time
(on which the current financial crises can be clearly seen in the increased volatility of
returns), while Figure 7 shows a scatterplot of the returns generated by both indexes
(which reveals that there is a strong correlation among the assets).
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Figure 6: Time series plots for the weekly returns on the S&P500 and FTSE indexes
between February 02, 1999 and February 02, 2009. Different volatility levels are readily
visible in the plots.
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Figure 7: Scatter plot for weekly returns on the S&P500 and FTSE indexes between
February 02, 1999 and February 02, 2009. The plot clearly suggests that the returns of
both indexes are strongly correlated.

We model rt = (r1
t , r

2
t )
′, the joint log-return of the S&P500 and the FTSE100 at time

t, as following a normal distribution with time varying mean vector µt and covariance
matrix Σt. In turn, we let θt = (µt,Σt) ∼ Gt, where Gt evolves in time according to a
discrete time PSBP (see Section 3.2) with a normal-inverse Wishart centering measure.
Based on historical information, the parameters of the centering measure were chosen so
that the mean of the returns is 0, the annualized volatility is centered around 12%, and
the expected correlation is 0.75. For the latent structure we assume At = 1, Bt = 1 and
Wt = U , leading to a specification reminiscent of a random walk mixing distribution,
where Gt+1 is a priori “centered” around Gt. We used a Gamma hyperprior for 1/U
with two degrees of freedom and mean 1, and a standard normal prior for η0. An
additional complication in this example is that, for some calendar days, one of the two
stock markets maybe be closed. To deal with this situation, we assume that the values
are missing at random and we impute them as part of the MCMC algorithm. Indeed,
the full conditional distribution for the returns of one of the indexes given the other is
given by

rit| · · · ∼ N(µit + Σijt (rjt − µ
j
t )/Σ

jj
t ,Σ

ii
t − {Σ

ij
t }2/Σ

jj
t ) i, j ∈ {1, 2} i 6= j

where µt = µ∗ξt , Σt = Σ∗ξt , and

µt =
(
µ1
t

µ2
t

)
, Σt =

(
Σ11
t Σ12

t

Σ21
t Σ22

t

)
.
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Figure 8: Estimated volatilities for the S&P500 and the FTSE100 indexes under the
PSBP model. We compare our estimates with those obtained from the stochastic volatil-
ity model of Jacquier et al. (1994) and Kim et al. (1998) (labeled STSV). The horizontal
line corresponds to a standard deviation of returns over the 10-year period. The spikes
in volatility at the end of the series correspond to the current financial crises and are
clearly apparent in both indexes.

Figure 8 shows the estimated volatilities for both assets under the PSBP model
(solid lines). These can be contrasted against estimates obtained from the Bayesian
stochastic volatility model described in Jacquier et al. (1994) and Kim et al. (1998)
(dashed lines). Both sets of estimates have very similar features, however, the series
estimated using the PSBP are smoother, presenting less short term fluctuations. This
is most likely due to the heavy tails in the conditional distributions induced by the use
of a mixture likelihood, which allows us to explain outliers without the need to increase
the volatility.

To help emphasize the additional flexibility afforded by the model, we present in
Figures 9 and 10 the estimated correlation across assets and the estimated expected
(annualized) returns. Many multivariate stochastic volatility models available in the
literature assume that the correlation across assets is constant, and most of them also
assume a constant mean for the returns. The results from the PSBP suggest that these
assumptions might not be supported by the data. First, note the negative association
between correlation and expected returns: the correlation among the two assets tends
to decrease when the returns are high, and to increase when returns decrease. This
leverage effect has been blamed for the failure of traditional pricing models in the
aftermath of the current financial crises. Additionally, note that the historical mean of
returns for both the S&P500 and FTSE100 indexes turns out to be negative over this
period. This result is highly influenced by the dismal returns realized during the last
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Figure 9: Estimated correlation between the S&P500 and the FTSE100 indexes under
the PSBP model. The horizontal line corresponds to a simple correlation of returns over
the 10-year period. In line with recent discussions in the literature, the model demon-
strates that correlation among assets tends to increase in times of financial distress.

18 months. However, it is hardly believable that the expected returns on assets is a
negative constant. Instead, a time varying pattern such as the one depicted in Figure
10 is more reasonable, as it nicely correlates with the business cycle.

One possible concern with our hierarchical specification is whether there is enough
information in the observations to identify the precision parameter η0 or the parameters
controlling the latent process. This does not seem to be an issue in our case, as the
posterior distributions for the parameters U and η0 show substantial learning from the
data. The posterior distribution for U has a posterior mean of 0.1189 (symmetric 95%
credible band, (0.0744, 0.1848)), while the mass parameter η0 has a posterior mean of
0.0322 (95% credible interval, (−0.0842, 0.1446)), both substantially different from their
prior distributions.

5.2 Spatial processes for count data

The Christmas Bird Count (CBC) is an annual census of early-winter bird populations
conducted by over 50,000 observers each year between December 14th and January
5th. The primary objective of the Christmas Bird Count is “to monitor the status
and distribution of bird populations across the Western Hemisphere.” Parties of vol-
unteers follow specified routes through a designated 15-mile diameter circle, counting



A. Rodŕıguez and D. B. Dunson 165

A
nn

ua
liz

ed
 e

xp
ec

te
d 

re
tu

rn
s 

S
&

P
50

0

2/
2/

99
6/

21
/9

9
11

/8
/9

9
3/

27
/0

0
8/

14
/0

0
1/

2/
01

5/
21

/0
1

10
/1

5/
01

3/
4/

02
7/

22
/0

2
12

/9
/0

2
4/

28
/0

3
9/

15
/0

3
2/

2/
04

6/
21

/0
4

11
/8

/0
4

3/
29

/0
5

8/
15

/0
5

1/
3/

06
5/

22
/0

6
10

/9
/0

6
2/

26
/0

7
7/

16
/0

7
12

/3
/0

7
4/

21
/0

8
9/

8/
08

1/
26

/0
9

−
0.

4
−

0.
3

−
0.

2
−

0.
1

0.
0

0.
1

PSBPSV
Raw

A
nn

ua
liz

ed
 e

xp
ec

te
d 

re
tu

rn
s 

F
T

S
E

10
0

2/
2/

99
6/

21
/9

9
11

/8
/9

9
3/

27
/0

0
8/

14
/0

0
1/

2/
01

5/
21

/0
1

10
/1

5/
01

3/
4/

02
7/

22
/0

2
12

/9
/0

2
4/

28
/0

3
9/

15
/0

3
2/

2/
04

6/
21

/0
4

11
/8

/0
4

3/
29

/0
5

8/
15

/0
5

1/
3/

06
5/

22
/0

6
10

/9
/0

6
2/

26
/0

7
7/

16
/0

7
12

/3
/0

7
4/

21
/0

8
9/

8/
08

1/
26

/0
9

−
0.

4
−

0.
3

−
0.

2
−

0.
1

0.
0

0.
1

PSBPSV
Raw

Figure 10: Annualized expected returns for the S&P500 and the FTSE100 indexes under
the PSBP model. The horizontal line corresponds to a simple average of returns over
the 10-year period.

every bird they see or hear. The parties are organized by compilers who are also
responsible for reporting total counts to the organization that sponsors the activity,
the Audubon Society. Data and additional details about this survey are available at
http://www.audubon.org/ bird/cbc/index.html. Here, we focus on modeling the
abundance of Zenaida macroura, commonly known as the Mourning Dove, in North
Carolina during the 2006-2007 winter season. We use information from 27 parties (see
Figure 11); since the diameter of the circles is very small compared to the size of the
region under study, we treat the data as point referenced to the center of the circle.

Specifically, we let y(s) stand for the number of birds observed at location s (ex-
pressed in latitude and longitude) and assume that y(s) ∼ Poi(h(s)λ(s)), where h(s)
represents the number of man-hours invested at location s. Next, we assume that
λ(s) ∼ Gs, where Gs follows a spatial PSBP driven by underlying Gaussian processes
with mean α, exponential covariance function and common variance and correlation
parameters σ2 and ρ (see Section 3.1). Based on historical data from previous CBC
censuses we assume an exponential centering measure G0 with mean 0.15 sighting/man-
hour. Priors for the parameters of the latent Gaussian processes σ2 and ρ are also taken
to be exponential with unit mean, while the prior for α is set to a standard normal
distribution.

Figure 11 shows the mean of the predictive distribution for the number of sightings
per man-hour over a 90×30 grid overlaid on the North Carolina map. The map shows a
higher expected number of sighting in the northern area of the coastal plain region, with
a lower expected number of sighting in the Piedmont plateau. This is a very reasonable



166 Probit stick-breaking processes

●

● ●

●

●

●
●

●

●

●

●

●

●

●
●●

●●

●

●

●

●

●

●

NCGR

NCGV

NCWC
Waynesville

0.3 1.11 2.21 3.32 4.12
Average rate of sighting

Figure 11: Estimated expected rate of sightings (per man-hour) for the Mourning Dove.
Filled dots correspond to the 27 locations where observations were collected. Squared
dots represent locations where density estimation is carried out, filled squares represent
locations for in-sample-predictions, while the empty square corresponds to a point of
out-of-sample prediction.

result as it is well known that the Mourning Dove favors open and semi-open habitats,
such as farms, prairie, grassland, and lightly wooded areas, while avoiding swamps and
thick forest (Kaufman 1996, page 293).

In Figure 12 we present density estimates for 4 locations in North Carolina; three
of them correspond to places where parties were active (Greenville, Wayne County and
Greensboro), while the fourth corresponds to a location in the Blue Ridge mountain near
Waynesville where no data was observed (for an out-of-sample prediction exercise). The
resulting distributions tend to have heavy tails and might present multimodality, as in
the case of Greenville. This is in contrast to the predictive distributions that would be
obtained from a Poisson generalized linear model with a logarithmic link and spatial
random effects that follow a Gaussian process, which would be unimodal.

As before, there is substantial learning in the structural parameters of the model.
The posterior mean of the correlation parameter ρ is 0.179 (95% credible band (0.033, 0.717)),
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Figure 12: Density estimates for four NC locations. The top two panels and the lower
left panel correspond to three locations where observations were collected (in-sample
predictions), while the bottom right panel corresponds to an out-of-sample prediction
for a location in the Blue Ridge mountains next to Waynesville, NC.

for σ2 it is 1.203 (95% credible band (0.574, 2.032)) and for µ it is -0.274 (95% credible
band (−0.451, 0.133)).

6 Discussion

One of the main advantages of the PSBP is its generality and flexibility; the probit
formulation allow us to extend all the traditional Bayesian models based on hierarchical
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linear models to generate equivalent models for distributions with little additional cost.
In addition to any possible combination of the models discussed in this paper, we can
easily create ANOVA, mixed effects and clustering procedures, among others.

The two examples we discuss in the paper suggest that a PSBP with constant atoms
is capable of capturing the time- and space-varying features of distributions even if
no replicates are available for each location in the index space. However, our detailed
study of the behavior of dependent PSBPs with constant atoms also highlights that
any nonparametric model that does not allow both weights and atoms to vary over
the the index space implicitly assumes a lower bound to the covariance between the
distributions. This might not be necessarily restrictive in practice (why build models
for dependent distributions if we expect them to be independent?), but it is a feature
that needs to be carefully considered when developing the models in the context of
specific applications.

Efficient computational implementations for the PSBP require that we be able to
design efficient samplers for models based on Gaussian process priors. In this paper,
we have focused on relatively simple and well-established procedures that might not
be the most efficient. Recent work in this area includes work by Murray et al. (2010)
and Murray and Adams (2010); the strategies discussed in these papers could be easily
adapted to improve our MCMC sampler for the PSBP.

Appendix

1 Properties of the weights of the PSBP

Let ul = Φ(zl) where zl ∼ N(µ, σ2). The expectation of β1 = E(ul) can be easily
computed using a change of variables,

β1 = E(ul) =
∫ ∞
−∞

Φ(zl)
1√
2πσ

exp
{
−1

2
(zl − µ)2

σ2

}
dzl

=
∫
S

1
2πσ

exp
{
−1

2

[
x2 +

(zl − µ)2

σ2

]}
dxdzl

where S = {(x, zl) : −∞ < zl < ∞, ∞ < x < zl}. Applying the change of variables
t1 = zl − x and t2 = zl we get

E(ul) =
∫ ∞

0

∫ ∞
−∞

1
2πσ

exp
{
−1

2

[
(t2 − t1)2 +

(t2 − µ)2

σ2

]}
dt2dt1

=
∫ ∞

0

1√
2π
√

1 + σ2
exp

{
−1

2
(t1 − µ)2

1 + σ2

}
dt1 = 1− Φ

(
− µ√

1 + σ2

)
= Φ

(
µ√

1 + σ2

)
= Pr(T1 > 0)
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where T1 ∼ N(µ, 1 + σ2). Now, using Jensen’s inequality,

E [log(1− ul)] ≤ log [1− E(ul)]

= log(1− Φ(µ/
√

1 + σ2)) < 0

Therefore,
∑∞
l=1 E [log(1− ul)] = −∞ and, by theorem 2 in Ishwaran and James

(2001),
∑∞
l=1 wl = 1 almost surely. A similar calculation can be used to compute the

second central moment of ul,

β2 = E(u2
l ) =

∫ ∞
−∞

[Φ(zl)]
2 1√

2πσ
exp

{
−1

2
(zl − µ)2

σ2

}
dzl

=
∫
S

(
1

2π

)3/2 1
σ

exp
{
−1

2

[
x2 + y2 +

(zl − µ)2

σ2

]}
dxdydzl

where now S = {(x, y, zl) : −∞ < zl < ∞, ∞ < x < zl, ∞ < y < zl}. Using the
change of variables t1 = zl − x and t2 = zl − y and t3 = zl we get

E(u2
l ) =

∫ ∞
0

∫ ∞
0

∫ ∞
−∞

(
1

2π

)3/2 1
σ
×

exp
{
−1

2

[
(t3 − t1)2 + (t3 − t2)2 +

(t3 − µ)2

σ2

]}
dt3dt1dt2

= Pr(T1 > 0, T2 > 0)

where
(
T1

T2

)
∼ N

((
µ
µ

)
;
(

1 + σ2 σ2

σ2 1 + σ2

))
.

The argument can be directly extended to higher order moments. In general, the
p-th moment can be obtained from the cumulative distribution function of a p-variate
normal distribution,

βp = E(upl ) = Pr(T1 > 0, . . . , Tp > 0)

where T = (T1, . . . , Tp)′ follows a multivariate normal distribution with E(Ti) = µ,
Var(Ti) = 1 + σ2 and Cov(Ti, Tj) = σ2.

2 Variance structure for the PSBP

First, note that

E{G(B)} = E

{
L∑
l=1

wlδθl(B)

}
=

L∑
l=1

E {wl}E {δθl(B)} = G0(B)
L∑
l=1

E {wl} = G0(B).
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Also,

E{G2(B)} = E

{[
L∑
l=1

wlδθl(B)

][
L∑
k=1

wkδθk(B)

]}

=
L∑
l=1

L∑
k=1

E {wlwk}E {δθl(B)δθk(B)}

=
L∑
l=1

E
{
w2
l

}
G0(B) +

L∑
l=1

L∑
k=1,k 6=l

E {wlwk}G2
0(B)

=
{
G0(B)−G2

0(B)
} L∑
l=1

E
{
w2
l

}
+G2

0(B)
L∑
l=1

L∑
k=1

E {wlwk}

= G0(B) {1−G0(B)}
L∑
l=1

E
{
w2
l

}
+G2

0(B)

Hence

Var{G(B)} = G0(B) {1−G0(B)}
L∑
l=1

E(w2
l )

Now, by definition, wl = ul
∏
k<l{1 − uk} and E(w2

l ) = E(u2
l )
∏
k<l E({1 − ul}2)

. But since the uls are independent and identically distributed, we have E(w2
l ) =

β2{1− 2β1 + β2}l−1, where β1 = E(ul) and β2 = E(u2
l ) (see Appendix 1). Hence,

L∑
l=1

E(w2
l ) =

L∑
l=1

β2(1− 2β1 + β2)l−1 = β2

L−1∑
u=0

(1− 2β1 + β2)u

= β2
1− {1− 2β1 + β2}L

2β1 − β2

3 Truncations of PSBP models

Note that Theorem 2 in Ishwaran and James (2001) applies directly. Therefore,

||pL(y)− p∞(y)|| ≤ 4

[
1− E

{(
L−1∑
s=1

ws

)n}]
.

Now, by Jensen’s inequality and the results in Appendix 1[
1− E

{(
L−1∑
s=1

ws

)n}]
≤

[
1−

(
L−1∑
s=1

E(ws)

)n]

=

(
1−

{
1−

[
Φ
(
− µ√

1 + σ2

)]L−1
}n)
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4 Proof of Theorem 5

Consider first the case when L is finite. Note that, if the collection {αl(s)}Ll=1 has
continuous realizations almost surely, so does {wl(s)}Ll=1 because it is a continuous
transformation of the latent processes. Now,

|Zs0(s)− Zs0(s′)| =
∣∣∣∣∫ |Gs0(dφ)−Gs(dφ)| −

∫
|Gs0(dφ)−Gs′(dφ)|

∣∣∣∣
≤
∫
|Gs(dφ)−Gs′(dφ)|

= 2 sup
B∈B
|Gs(B)−Gs′(B)|

≤ 2 sup
B∈B

L∑
l=1

|wl(s)− wl(s′)| δθl(B),

where the first inequality is just a consequence of the reverse triangle inequality (see
Appendix 5). Due to the almost sure continuity of {wl(s)}Ll=1, for any ε > 0 there exists
a ∆ such that |s− s′| < ∆ implies |wl(s)− wl(s′)| < ε/(2L), which in turn implies that

|Zs0(s)− Zs0(s′)| ≤ 2 sup
B∈B

L∑
l=1

|wl(s)− wl(s′)| δθl(B)

≤ 2
L∑
l=1

|wl(s)− wl(s′)| < ε

For the case L =∞, write

∞∑
l=1

|wl(s)− wl(s′)| =
L∑
l=1

|wl(s)− wl(s′)|+
∞∑

l=L+1

|wl(s)− wl(s′)|

and note that
∞∑

l=L+1

|wl(s)− wl(s′)| ≤
∞∑

l=L+1

wl(s) +
∞∑

l=L+1

wl(s′)

Now for any ε > 0, pick a finite L large enough so that both
∑∞
l=L+1 wl(s) < ε/4

and
∑∞
l=L+1 wl(s

′) < ε/4. The existence of such L is ensured by the almost sure
convergence of the weights (see Appendix 1). As we already argued, there exists a ∆
such that |s− s′| < ∆ implies |wl(s)− wl(s′)| < ε/(4L), hence

|Zs0(s)− Zs0(s′)| < ε

as desired.
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5 Bounding |Zs0
(s)− Zs0

(s′)|
To show that∣∣∣∣∫ |Gs0(dφ)−Gs(dφ)| −

∫
|Gs0(dφ)−Gs′(dφ)|

∣∣∣∣ ≤ ∫ |Gs(dφ)−Gs′(dφ)| (6)

start with the triangle inequality, |a + c| ≤ |a| + |c|. Now let c = b − a, so that
|b| ≤ |a| + |b − a|, or equivalently |b − a| ≥ |b| − |a|. Hence, if we start with the right
hand side of (6) we have

|Gs(φ)−Gs′(φ)| = |{Gs0(φ)−Gs(φ)} − {Gs0(φ)−Gs′(φ)}|
≥ |Gs0(φ)−Gs(φ)| − |Gs0(φ)−Gs′(φ)|

and therefore∫
|Gs(dφ)−Gs′(dφ)| ≥

∫
|Gs0(dφ)−Gs(dφ)| −

∫
|Gs0(dφ)−Gs′(dφ)| .

Since |Gs(φ)−Gs′(φ)| = |Gs′(φ)−Gs(φ)|, a similar argument can be used to show
that also∫

|Gs(dφ)−Gs′(dφ)| ≥
∫
|Gs0(dφ)−Gs′(dφ)| −

∫
|Gs0(dφ)−Gs(dφ)| .

Hence it is also true that∫
|Gs(dφ)−Gs′(dφ)| ≥

∣∣∣∣∫ |Gs0(dφ)−Gs(dφ)| −
∫
|Gs0(dφ)−Gs′(dφ)|

∣∣∣∣
as we argued.

6 Covariance structure in the Dependent PSBPs

Most of the calculation follows along the same lines of the one presented in Appendix 2,
with the final expression depending on β1(s) = E{ul(s1)} and β2(s1, s2) = E{ul(s1)ul(s2)}.
Assume that αl(s) follows a stochastic process with mean function µ(s) and covariance
function σ2γ(s, s′). Letting ul(s) = Φ(αl(s)) for all s ∈ S, we can use a similar change
of variables to that used in Appendix 1 to derive the covariance in the stick-breaking
weight between locations s1 and s2,

β2(s1, s2) = E(ul(s1)ul(s2)) =
∫ ∞
−∞

∫ ∞
−∞

Φ(z1)Φ(z2)
1

2π
|Σl|−1/2

× exp
{
−1

2
(µ− z)′Σ−1(µ− z)

}
dz

=
∫ ∞

0

∫ ∞
0

∫ ∞
−∞

∫ ∞
−∞

1
2π
| exp

{
−1

2
[(x1 − t1)2 + (x2 − t2)2]

}
× 1

2π
|Σl|−1/2 exp

{
−1

2
(µ− x)′Σ−1(µ− x)

}
dx1dx2dt1dt2

= Pr(T1 > 0, T2 > 0)
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where z = (z1, z2)′, µ = (µ(s1), µ(s2))′, x = (x1, x2)′, [Σ]ij = σ2γ(s1, s2) and T =
(T1, T2)′ ∼ N(µ,Σ + I).

If γ(s1, s2)→ 0 as ||s1−s2|| → ∞, then Σ goes to a diagonal matrix and β2(s1, s2)→
β1(s1)β1(s2). Hence,

lim
||s1−s2||→∞

Cov(Gs1(B), Gs2(B)) =

β1(s1)β1(s2)
{

1− [{1− β1(s1)}{1− β1(s2)}]L
}

1− {1− β1(s1)}{1− β1(s2)}
G0(B){1−G0(B)},

where β1(si) = Φ
(

µ(si)√
1+σ2

)
. On the other hand, if γ(s1, s2)→ 1 as ||s1 − s2|| → 0, then

lim
||s1−s2||→0

Σ =
(
σ2 + 1 σ2

σ2 σ2 + 1

)
,

and
lim

s2→s1
Cov(Gs1(B), Gs2(B)) = Var(Gs1(B)).
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