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Abstract

We present NS1+NS5-brane solutions of heterotic supergravity on
curved geometries. They interpolate between a near horizon AdS3 ×
Xk × T

7−k region and R
1,1 × c(Xk)× T

7−k, where Xk (with k = 3, 5,
6, 7) is a k-dimensional geometric Killing spinor manifold, c(Xk) its Ricci-
flat cone and T

7−k a (7− k)-torus. The solutions require first-order α′-
corrections to the field equations, and special point-like instantons play
an important role, whose singular support is a calibrated submanifold
wrapped by the NS5-brane. It is also possible to add a gauge anti-five-
brane. We determine the super isometries of the near horizon geometry,
which are supposed to appear as symmetries of the holographically dual
two-dimensional conformal field theory.
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1 Introduction

Brane solutions of 10- and 11-dimensional supergravities have played an
important role in the development of string theory since the second super-
string revolution, when it was realized that besides one-dimensional
extended objects, string theory also requires the inclusion of higher-
dimensional branes. The near horizon geometry of a supergravity p-brane
usually consists of a (p+ 2)-dimensional anti-de Sitter (AdS) space times
a compact manifold, and the AdS/CFT correspondence relates the super-
gravity solution to a p-dimensional conformal field theory (CFT) on the
conformal boundary of the AdS space, which is supposed to govern the
dynamics of a decoupled brane in some gravitational background. The most
prominent branes are listed in table 1. The solutions interpolate between a
near horizon anti-de Sitter geometry AdSp ×Xk and R

p−2,1 × c(Xk), where
Xk is an Einstein manifold and c(Xk) its metric cone. They preserve some
supersymmetry if and only if Xk carries a so-called geometric (real) Killing
spinor, which is equivalent to the existence of a parallel spinor on the cone.
If Xk equals a round sphere Sk then the near horizon solutions preserve
the maximum possible amount of supersymmetry. Manifolds with geomet-
ric Killing spinors have been classified by Bär [4], besides the spheres there
are only four types, listed in table 2. There have been some indications that
heterotic supergravity admits similar solutions with near horizon geometry
AdS3 ×Xk × T

7−k, for 2 ≤ k ≤ 7, obtainable from the fundamental strings
of [2] by including α′ corrections [5–8]. Such backgrounds have been con-
structed for X = S2, based on a five-dimensional black hole solution [9], and
also for X = S3 [10,11], given by the NS1+NS5-brane system on Minkowski
space R

9,1, i.e., a fundamental string inside an NS5-brane.

Table 1: Some brane solutions of 10- and 11-dimensional supergravities [1].
Here Xk is a compact Einstein space of dimension k and c(Xk) denotes its
metric cone, which is Ricci-flat. The NS1-brane is also called a “fundamen-
tal string” (or “F1-string”) [2] and the NS1+NS5-brane system a “dyonic
string” [3].

SUGRA Near horizon geometry Distant vacuum

M5-brane 11D AdS7 ×X4
R

5,1 × c(X4)
M2-brane 11D AdS4 ×X7

R
2,1 × c(X7)

D3-brane IIB AdS5 ×X5
R

3,1 × c(X5)
D1+D5-brane IIB AdS3 ×X3 × T

4
R

1,1 × c(X3)× T
4

NS1+NS5-brane IIA, B & AdS3 ×X3 × T
4

R
1,1 × c(X3)× T

4

heterotic
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Table 2: The classification of manifolds with geometric real Killing spinors.
The two numbers of Killing spinors are for opposite signs of the Killing
constant.

X dimX Killing spinors

Nearly Kähler 6 (1,1)
Nearly parallel G2 7 (1,0)
Sasaki–Einstein 4n− 1 (2,0)
Sasaki–Einstein 4n+ 1 (1,1)
3-Sasakian 4n+ 3 (n+ 2, 0)
Sn n (2[n/2], 2[n/2])

Fundamental strings can be constructed on much more general geometries
than just flat space; one only needs a non-compact Ricci-flat Riemannian
manifold of dimension at most eight, equipped with a non-trivial harmonic
function. The fundamental string world-volume can then be identified with
an orthogonal two-dimensional Minkowski space. It requires more work to
generalize NS5-branes to curved geometries, but this is possible as well in
the heterotic setting. The basic observation is that NS5-branes in heterotic
supergravity are associated to ‘point-like instantons’, i.e., singular Yang-
Mills fields whose singular support is the brane world-volume [12, 13]. By
a theorem of Tian, this singular subspace is calibrated and of codimension
four (at least), as required for a five-brane [14,15]. One can smear the brane
by deforming the instanton slightly, and hence obtain a so-called gauge five-
brane [16], which is smooth. Based on higher-dimensional instantons [17–24],
several generalizations of the gauge five-brane have been constructed, both
on Minkowski space [25–28] and on Ricci-flat cones [29]. All of these gauge
branes possess an NS5-brane limit as well, where the instanton acquires a
singularity.

Using these results, we construct supersymmetric NS1+NS5-brane sys-
tems in heterotic supergravity that interpolate between a near horizon
AdS3 ×Xk × T

7−k-limit, and the vacuum solution R
1,1 × c(Xk)× T

7−k, for
k = 3, 5, 6, 7. As above, Xk is an arbitrary geometric Killing spinor manifold
of appropriate dimension. Our construction yields an arbitrary number of
fundamental strings, but only a single NS5-brane, unlike the old solution on
X = S3 [11] which allows also for multiple five-branes. Heterotic supergrav-
ity involves two gauge fields, one of them is responsible for the NS5-brane,
the other one can be used to form also a gauge anti-five-brane, without
spoiling the asymptotic behaviour.

Our supergravity solutions for a system of fundamental strings in an NS5-
brane naturally resolve an interpretational difficulty of higher-dimensional
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instantons in string theory. The problem is that the singular support of
point-like instantons on Euclidean space or a cone in explicit examples is
often not of codimension four, as would be appropriate for an NS5-brane,
so one might even think that they describe branes of lower dimension. This
would lead to divergent ADM masses, however, since the fall-off of the rel-
evant functions in the solutions is of order 1/r2, which gives finite ADM
masses only for five-branes [16, 25–27]. We argue in favour of a five-brane
interpretation here; the dimension of the singular support depends on a
choice of partial compactification of an open cylinder R>0 ×X, with the
branes localized at the boundary {r = 0}. When we add fundamental strings
the compactification comes out right automatically, with a boundary com-
ponent {0} ×X, and if dimX > 3 then the world-volume of the five-brane
intersects the boundary non-trivially. Another possibility in the case of
NS5-branes only is a one-point compactification, which leads to a manifold
diffeomorphic to the cone c(X). This is the conventional choice but gives
rise to a brane world-volume of the wrong dimension, since the intersection
of the brane with the boundary has been shrunk to a point.

The amount of supersymmetry preserved by our backgrounds depends
only on k and the four types of admissible geometries for Xk. Contrary to
the expectation expressed in [5–8], where (largely hypothetical) backgrounds
asymptotic to AdS3 × Sk × T

7−k are studied, we do not find any maximally
supersymmetric solutions. For instance, the AdS3 × S3 × T

4 near horizon
limit of the ordinary NS1+NS5-brane [11] preserves eight supersymmetries
out of 16, and this is the maximum amount possible for our construction.
However, this result should not be too surprising, given that the fundamental
strings and NS5-branes themselves do not preserve maximal supersymme-
try. The solutions show the expected supersymmetry enhancement; the near
horizon limits have constant dilaton and preserve twice as much supersym-
metry as the full solutions do. The results are summarized in table 3.

Our heterotic supergravity solutions deviate from the other supergravity
branes in another way. The metric on a Sasaki–Einstein or a 3-Sasakian
manifold admits a canonical one-parameter family of deformations away
from the Einstein metric, and it turns out that in the near horizon limit
AdS3 ×Xk × T

7−k the metric on Xk is not Einstein, but a particular
deformed metric. For nearly Kähler and nearly parallel G2 manifolds the
near horizon geometry requires the Einstein metric, however. Let us illus-
trate this for the seven-sphere. The round metric on S7 is 3-Sasakian, and
hence also Sasaki–Einstein and nearly parallel G2. We can represent S7 as
the total space of a U(1)-fibration over CP 3

S1 ↪→ S7 → CP 3, (1.1)



HETEROTIC STRING PLUS FIVE-BRANE SYSTEMS 775

Table 3: Amount of supersymmetry preserved by the full heterotic super-
gravity solutions and their near horizon geometries AdS3 ×Xk × T

7−k.
Only simply connected manifolds X are considered. The last column gives
the super isometry algebra of the near horizon geometry, modulo purely
bosonic algebras. The number of global supersymmetries coincides with the
number of supersymmetries of the fundamental string on the cone over X,
unless X is a round sphere (cf. table 7 below).

dimX X SUSYs Near horizon SUSYs isom

3 S3 4 8 psu(1, 1|2)
5 Sasaki–Einstein 2 4 osp(2|2)
6 Nearly Kähler 1 2 osp(1|2)
7 Nearly parallel G2 1 2 osp(1|2)
7 Sasaki–Einstein 2 4 osp(2|2)
7 3-Sasakian 3 6 osp(3|2)

or as the total space of an S3 = SU(2)-fibration over S4

S3 ↪→ S7 → S4. (1.2)

Viewed as a Sasaki–Einstein manifold, S7 gives rise to a near horizon solu-
tion AdS3 × S7 preserving four supersymmetries, where the metric on S7

is obtained by a deformation of the round metric along the Hopf fibration
(1.1). Viewing S7 as a 3-Sasakian manifold we obtain a solution preserving
six supersymmetries, and the metric is obtained by deforming the round
metric along the fibration (1.2). We can also equip the round S7 with a
nearly parallel G2-structure, and thus obtain a near horizon solution pre-
serving only two supersymmetries. Furthermore, every seven-dimensional
3-Sasakian manifold admits a second nearly parallel G2-metric among its
family of deformations [30], giving rise to the squashed seven-sphere in
our case and leading to another supergravity background with two super-
symmetries. Hence, we obtain four supergravity solutions with asymptotic
AdS3 × S7 geometries, where S7 comes equipped with four different metrics,
two of them Einstein, two of them not. The other limit is flat R

1,1 × R
8 for

all but the squashed seven-sphere cases. The same reasoning applies to any
other seven-dimensional 3-Sasakian manifold instead of S7.

The asymptotic AdS3 region of our supergravity solutions can be taken as
an indication that they are holographic, with a dual two-dimensional CFT.
Although we do not perform a detailed study of holography in this work, we
present an obvious candidate for the CFT which has the right symmetries.
It is simply the world-sheet sigma model with target space the supergrav-
ity near horizon geometry. In particular, the near horizon super isometry
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algebras are “heterotic” in the sense that they consist of a left-moving super-
symmetric algebra and a right-moving bosonic algebra. A holographic dual-
ity between the world-sheet CFT and the supergravity backgrounds would
confirm the interpretation of the geometries as “fundamental strings”, but
it is not clear how the five-branes enter in this story.

The paper is organized as follows. We briefly review heterotic super-
gravity in Section 2, before we discuss stabilizer groups of spinors in ten
dimensions in Section 3, which will be needed for the solutions of the grav-
itino equation. In Section 4, we review three heterotic BPS solutions which
will be used in Section 5, namely the gauge five-branes, NS5-branes and
fundamental strings. Section 5 contains the main result of the paper, i.e.,
the construction of new heterotic BPS backgrounds which are shown to
interpolate between an AdS3 region and a Ricci-flat cone. We consider
first the most general setting with a gauge anti-five-brane present in Sec-
tions 5.1 to 5.4, and the simpler case of an NS1+NS5-brane system only in
Section 5.5. Global properties and the relation to calibrated geometry are
discussed in Section 5.6. For completeness’ sake we also present the NS1 plus
gauge five-brane system, which has a different asymptotic behaviour, in Sec-
tion 5.7. The prototypical NS1 + NS5-brane asymptotic to AdS3 × S3 × T

4

is reviewed in Section 5.3.6; we consider S3 as a three-dimensional Sasaki–
Einstein manifold, and discuss a family of solutions for arbitrary three-, five-
or seven-dimensional Sasaki–Einstein manifolds. The final Section 6 deals
with isometries and holography.

2 Heterotic supergravity

Heterotic supergravity consists of 10D N = 1 supergravity coupled to super-
Yang–Mills. The ingredients are a ten-dimensional manifold M , equipped
with a Lorentzian metric g, a three-form H, scalar field φ and gauge connec-
tion ∇A, with gauge group SO(32) or E8 × E8. Denote by F the curvature
two-form of ∇A, and by ∇± the metric compatible connections on the tan-
gent bundle of M with torsion ±H, i.e., in terms of connection coefficients

Γ±μ
νλ = Γμ

νλ ∓
1
2
Hμ

νλ, (2.1)

where Γμ
νλ are the coefficients of the Levi–Civita connection. The BPS

equations up to order α′ are

∇−ε = 0,(
dφ− 1

2
H

)
· ε = 0,

F · ε = 0,

(2.2)
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for a Majorana–Weyl spinor ε. The Clifford action of a p-form ω on a spinor
ε is given by

ω · ε = 1
p!
ωμ1...μpγ

μ1...μpε, (2.3)

and we use the convention {γμ, γν} = 2gμν . The equations of motion are

Ricμν + 2(∇dφ)μν − 1
4
HκλμHν

κλ +
α′

4

[
R̃μκλσR̃

κλσ
ν − tr

(
FμκFν

κ
)]
= 0,

Scal + 4Δφ− 4|dφ|2 − 1
2
|H|2 + α′

4
tr
[
|R̃|2 − |F |2

]
= 0,

e2φd ∗ (e−2φF ) +A ∧ ∗F − ∗F ∧A+ ∗H ∧ F = 0,

d ∗ e−2φH = 0.
(2.4)

Here |ω|2 = 1
p!ωμ1...μpω

μ1...μp for a p-form ω. The dilaton equation has been
used to bring the Einstein equation into a simpler form. Additionally, one
has to impose the Bianchi identity

dH =
α′

4
tr
(
R̃ ∧ R̃− F ∧ F

)
, (2.5)

where ‘tr’ is a positive-definite inner product on the gauge algebra, actually
minus the ordinary trace over the tangent space in our case. Here R̃ is the
curvature form of a connection ∇̃ on the tangent bundle, and there has been
some debate on the correct choice of ∇̃. String theory appears to prefer the
choice ∇̃ = ∇+ [31,32], whereas a purely supergravity point of view seems to
indicate that R̃ must satisfy the instanton equation R̃ · ε = 0 [33]. Usually,
both conditions cannot be satisfied at the same time, a notable exception
being the NS5-brane in flat space-time [34].

We will adopt the supergravity point of view, and impose the instanton
condition on R̃. Then the BPS equations together with the Bianchi iden-
tity and the time-like components of the field equations imply the remain-
ing components of the field equations [33, 35], which simplifies the calcu-
lations considerably and guarantees that we get a consistent supergravity
theory, independent of any string theory embedding. If one insists instead on
R̃ = R+, then the BPS equations and Bianchi identity only imply the field
equations up to higher order corrections in α′, and one needs the full tower of
stringy α′-corrections to obtain a consistent supergravity theory. It has also
been argued, however, that the two approaches are equivalent via field redef-
initions [36], and indeed the near horizon limit of NS5-branes on Ricci-flat
cones can be obtained in both settings, R̃ = R+ [37] and R̃ · ε = 0 [29].
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Note that it is very natural in heterotic supergravity to include the first-
order α′-corrections, since at zeroth order the gauge field decouples, and one
loses some of the massless modes of the corresponding string theory. On
the other hand, it is not entirely clear that a supergravity solution can be
lifted to a full string background, since solutions to the first-order equations
(2.4) often depend explicitly on α′, and higher-order corrections potentially
become large.

With our convention for ∇̃ we can treat the two connections ∇A and ∇̃
on equal footing; for a supersymmetric solution they both have to satisfy
the instanton equation F · ε = R̃ · ε = 0. In [29] a 1-parameter family of
instantons on the tangent bundle of the cone over a geometric Killing spinor
manifold X was constructed, which interpolates between the Levi–Civita
connection on the cone and the pull-back of a canonical instanton connection
∇P on X. In previous work on gauge solitonic branes the connection ∇̃ has
always been identified with the Levi–Civita connection of the cone c(X)
[16, 25, 27–29]. In order to obtain the desired asymptotic behaviour we will
instead identify the gauge connection ∇A with the connection ∇P on X,
and choose ∇̃ to be an interpolating instanton. The two conventions lead
to opposite magnetic charges, and should be understood as brane and anti-
brane solutions.

3 Spinor stabilizers

In Section 5, we will use the holonomy principle to solve the gravitino equa-
tion ∇−ε = 0, which tells us that the equation has m solutions ε if and only
if the holonomy group of ∇− is contained in the joint stabilizer subgroup
of m spinors. The relevant stabilizer subgroups of Spin(9,1) are given in
table 4.

Note that the stabilizer groups come in two flavours, compact ones and
non-compact ones. Furthermore, whenever G is a compact stabilizer group,
then the non-compact group G� R

8 also leaves some spinors invariant, since
it is contained in a larger non-compact stabilizer. For instance, G2 � R

8 ⊂
Spin(7)� R

8. For our heterotic supergravity backgrounds, non-compact
stabilizers will be relevant.

The non-compact subalgebra R
8 of so(9, 1) is obtained as follows. Con-

sider R
9,1 with coordinates xμ, where μ = 0, . . . , 9. For a matrixX ∈ so(9, 1)

define Xμν = ημλX
λ

ν , which is antisymmetric in its lower indices. The sub-
algebra R

8 is defined by the equations

Xa9 = Xa0, Xab = 0, (3.1)



HETEROTIC STRING PLUS FIVE-BRANE SYSTEMS 779

Table 4: Stabilizer subgroups G of Spin(9,1) for a given number of
Majorana–Weyl spinors with fixed chirality [38].

G invariant spinors

Spin(7)� R
8 1

SU(4)� R
8 2

Sp(2)� R
8 3(

SU(2)× SU(2)
)

� R
8 4

R
8 8

G2 2
SU(3) 4
SU(2) 8
{1} 16

for all a, b = 1, . . . , 8. A set of generators {Ia} can be defined by

(Ia)b9 = −(Ia)9b = δb
a,

(Ia)b0 = (Ia)0b = δb
a.

(3.2)

The non-compact stabilizer subgroups of Table 4 are of the form G� R
8,

where G is a subgroup of SO(8). Let us also introduce a generator Z of the
algebra so(1, 1) ⊂ so(9, 1) orthogonal to so(8), as

Z0
9 = Z9

0 = 2. (3.3)

The generator Z commutes with the subalgebra so(8) of so(9, 1), and leaves
R

8 invariant

[Z, Ia] = −2Ia. (3.4)

An R
8-invariant spinor ε is characterized by the projection property

γ0ε = −γ9ε. (3.5)

As an element of spin(9, 1) we have Z = −γ0γ9, and (3.5) shows that

Zε = −ε. (3.6)

4 Old solutions

We briefly review the gauge solitonic brane solutions of [16, 25, 27–29]
together with their NS5-brane limit [11], and the fundamental string of [2],
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which will be ingredients of our heterotic supergravity solutions to be devel-
oped in the following section.

4.1 Gauge solitonic branes and NS5-branes

The gauge solitonic five-branes can be defined on a manifold of the form

M = R
1,1 × T

7−k × R×Xk, (4.1)

where the fields depend trivially on the R
1,1 × T

7−k factor. The manifold
Xk carries a so-called geometric real Killing spinor, i.e., a spinor ε which
satisfies (

∇μ − i

2
γμ

)
ε = 0. (4.2)

Here ∇ denotes the Levi–Civita (or spin) connection. The geometric Killing
spinor equation implies that Xk is Einstein, with Einstein constant k − 1.
The metric on space-time is chosen in the form

g = −dt2 + dx2 + gT7−k + e2f(τ)
(
dτ2 + gk), (4.3)

where τ is the linear coordinate on R and gk is a possibly τ -dependent metric
on Xk. Every geometric Killing spinor manifold, except possibly the even-
dimensional spheres in dimension not equal to six, comes equipped with a
reduction of the structure group SO(k) to some subgroup K, a K-invariant
three-form P , as well as a connection ∇P with torsion proportional to P and
holonomy group contained in K. Furthermore, the cone c(Xk) with metric
dr2 + r2gk is Ricci-flat and carries an integrable reduction of the structure
group SO(k + 1) to a subgroup G. See table 5 for the groups K and G that
occur, and [4, 29, 39, 40] for more details on the geometry of manifolds with
geometric Killing spinors.

The solution of the gravitino equation ∇−ε = 0 is particularly important.
A simple choice for the connection ∇− would be the canonical connection
∇P on Xk, since it is known to have reduced holonomy. There is some more
freedom however. In [29] a bundle map

ρ : TX → End
(
T (R×X)) (4.4)

was constructed, whose image was shown to lie in the orthogonal comple-
ment of the subalgebra k ⊂ g. Denote by {Ia} a local basis of vector fields
on X, and by ea the dual one-forms. Then ea ⊗ ρ(Ia) is a globally defined
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Table 5: Bär’s classification of manifolds with geometric real Killing spinors
[4]. K is the structure group of X but does not coincide with the holonomy
group of its Levi–Civita connection, and G is the holonomy group of ∇c,
the Levi–Civita connection on the cone c(X).

dimX X K G

6 Nearly Kähler SU(3) G2

7 Nearly parallel G2 G2 Spin(7)
2n+ 1 Sasaki–Einstein SU(n) SU(n+ 1)
4n+ 3 3-Sasakian Sp(n) Sp(n+ 1)
n Sn SO(n) {1}

section of the bundle T ∗(R×X)⊗ End(T (R×X)), which we denote simply
by eaIa, and the connection ∇− is constructed via the ansatz

∇− = ∇P + s(τ)eaIa, (4.5)

for some function s(τ) constrained by the requirement that the torsion of∇−
be totally antisymmetric. By construction, its holonomy group is contained
in G, hence it has a parallel spinor. In Section 5, we will use a similar ansatz
for the connection ∇−, but allow for additional terms compatible with the
larger holonomy group G� R

8. The same ansatz

∇(ψ) = ∇P + ψ(τ)eaIa (4.6)

was chosen for the gauge connection ∇A in [29], and the instanton (or gaug-
ino) equation reduces to a first-order differential equation for ψ:

ψ̇ = 2ψ(ψ − 1) (4.7)

for nearly Kähler and nearly parallel G2 manifolds or S3, where ψ̇ = ∂τψ.
In the case of a Sasakian manifold there are actually two independent sec-
tions that can be added to ∇P , and this leads to slightly more complicated
instanton equations. For a 3-Sasakian manifold they were solved analytically
in [29], but only numerically for a Sasaki–Einstein manifold.

The instanton equation (4.7) has two fixed points ψ = 0 and ψ = 1, cor-
responding to ∇P and ∇c, the Levi–Civita connection on the cone. For
Xk = Sk the cone is flat Euclidean space, so the connection ∇c has vanish-
ing instanton charge. The other limit is more subtle; let us concentrate on
the case X = S3. Then the instanton number is proportional to tr

∫
R4 F ∧ F .
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Formally one finds that∫
tr(F ∧ F ) = −12Vol(S3)

∫ ∞
−∞

ψ̇ψ(ψ − 1)dτ

= 2Vol(S3)
[
3ψ2 − 2ψ3

]∣∣∣τ=∞
τ=−∞

, (4.8)

and plugging in ψ = 0 or ψ = 1 gives rise to vanishing instanton number. A
more careful analysis involves the general solution of (4.7), which is given
in terms of a radial variable r = eτ by

ψ(r) =
ρ2

ρ2 + r2
, (4.9)

where the parameter ρ ∈ [0,∞]. For ρ 
= 0,∞ the solution interpolates
between zero and one, and the instanton number is proportional to∫

tr(F ∧ F ) = 2Vol(S3), (4.10)

independently of ρ. Now it turns out that the integrand tr(F ∧ F ) divided
by the Euclidean volume form for R

4 becomes more and more concentrated
around r = 0 as ρ→ 0. Hence, we should interpret the limiting case ψ = 0
in a distributional way as a point-like instanton [12, 41], and assign to it
charge 1, like for the generic solution (4.9). The other limiting case ψ = 1 is
perfectly regular on the other hand, and is rightly assigned instanton charge
zero. What is the supergravity interpretation of the different instantons?
First of all, there are two gauge fields, ∇A and ∇̃, which we choose both
to be of the form (4.6); ∇̃ = ∇(ψ1) and ∇A = ∇(ψ2). For ψ1 = 1 and ψ2

generic we obtain Strominger’s gauge solitonic five-brane [16], which is a
regular supergravity solution. In the limit ψ2 → 0 the solution develops a
singularity at r = 0 and it becomes an NS5-brane [11, 34]. Since ∇̃ leads
to opposite charge than ∇A, we will interpret the case ψ1 
= 1 as an anti-
brane. This is summarized in table 6. The discussion for the case X = S3

applies to higher dimensions as well; the limiting connection ∇(ψ = 0) is
a singular charge one instanton, like the smooth interpolating solutions for
generic ψ, whereas ∇c has vanishing instanton charge. The supergravity
solution corresponding to ψ = 0 is an NS5-brane, whereas the interpolating
instantons give rise to smooth gauge five-branes, which can be viewed as
smeared NS5-branes [12].

The ansatz for the gauge field we have presented here leads to instanton
number plus/minus one, and hence to a single brane, or a brane-anti-brane
system. Explicit multi-instanton and multi-brane solutions are known only
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Table 6: Brane configurations for different choices of the gauge fields ∇̃ and
∇A. We always assume that ρ1 > ρ2, which is required for a non-singular
metric in the region 0 < r <∞. In the limit ρ1 = ρ2 the α′-corrections van-
ish and we are left with the Ricci-flat cone solution. Below the headline
ρ1, ρ2 denote generic values, i.e., ρ1, ρ2 
= 0,∞. The special values ρ = 0,∞
correspond to ψ = 0, 1, respectively. The magnetic or brane charge contri-
bution of ρ2 <∞ is 1, whereas ρ1 <∞ contributes −1. There is no charge
contribution in the limiting case ρ =∞.

(ρ1, ρ2) brane system total brane charge

(∞, 0) NS5-brane 1
(∞, ρ2) gauge five-brane 1
(ρ1, ρ2) gauge anti-five-brane + gauge five-brane 0
(ρ1, 0) gauge anti-five -brane + NS5-brane 0

for X = S3, S7, S8 or c(X) = R
4,R7,R8 [16, 42]. The amount of supersym-

metry preserved by a gauge five-brane or an NS5-brane coincides with the
supersymmetries of the Ricci-flat cone, except when the cone is flat. In
the latter case we need to fix a Spin(7), SU(4), Sp(2), G2, Sp(2), SU(3) or
SU(2)-structure on R

9,1 to define the brane, and the amount of supersym-
metry is given by the number of invariant spinors, according to table 4. In
the near-horizon limit of the NS5-brane supersymmetry enhancement takes
place; we have ∇A = ∇− = ∇P , so the relevant holonomy group reduces to
K. On the other hand, ∇̃ = ∇c has holonomy group G, so unless X is a
round sphere the amount of supersymmetry preserved depends on whether
we require all supersymmetry generators to be annihilated by R̃ as well,
or not.

The α′ corrections in the heterotic supergravity equations are essential
for the gauge solitonic branes, in particular the three-form H is not closed
in general and the modified Bianchi identity

dH =
α′

4
tr
(
R̃ ∧ R̃− F ∧ F

)
(4.11)

plays an important role. Suppose then that a solution with maximal super-
symmetry exists, which implies that the spinor bundle is trivialized by a
set of globally defined ∇−-parallel spinors {εi}. The common stabilizer sub-
group of the spinors is the trivial group, and the gaugino equation F · εi = 0
and the requirement R̃ · εi = 0 imply that F = R̃ = 0. But then the (first)
α′-corrections to the equations vanish, and we end up with a solution to
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the zeroth-order equations. Hence, a maximally supersymmetric heterotic
string background cannot receive α′-corrections.

4.2 The fundamental string

Here space-time is of the form R
1,1 ×Mk+1 × T

7−k, with Mk+1 a non-
compact Ricci-flat manifold. The fields are1

g = h−1(−dt2 + dx2) + gk+1 + gT7−k ,

H = dh−1 ∧ dt ∧ dx,
e2(φ−φ0) = h−1,

(4.12)

with h a harmonic function on Mk+1. In addition, h satisfies a quantiza-
tion condition, which is essential for the interpretation of the solution as a
superposition of classical strings [2]. The gauge fields ∇̃ and ∇A are both
given by the Levi–Civita connection onM , so that all first-order corrections
in α′ vanish. The amount of supersymmetry preserved by the fundamental
string solution depends on the amount of supersymmetry of the Ricci-flat
solution R

1,1 ×Mk+1 × T
7−k with vanishing fluxes. Suppose that the spinor

ε is parallel on the Ricci-flat geometry. Then it gives rise to a solution of the
BPS equations for the fundamental string if and only if it has the projection
property

(dt ∧ dx) · ε = ε, (4.13)

which is equivalent to (3.5) and hence to ε being R
8-invariant. This implies in

particular that maximal supersymmetry does not occur for the fundamental
string. If M has holonomy group G then the amount of supersymmetry
preserved by the fundamental string equals the number of spinors invariant
under G� R

8 (see table 7). As an example consider the caseMk+1 = c(Xk)
with metric dr2 + r2gk, the cone over a geometric Killing spinor manifold
Xk. Then one can write down an explicit solution for h:

h(r) = a−2 +
Qe

rk−1
(k ≥ 3), (4.14)

where a and Qe are constants, and the electric charge Qe assumes a discrete
set of values. It is proportional to (α′)

k−1
2 N , with N integer, but since the

1We give the fields in the string frame instead of the Einstein frame and remark that
both conventions are used in the literature on supergravity solutions. The main difference
is the way in which the harmonic function appears in the metric, which is important to
keep in mind when comparing formulae in different papers.
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Table 7: Amount of supersymmetry preserved by the Ricci-flat solution
R

1,1 ×Mk+1 × T
7−k without fluxes, and a fundamental string on the same

geometry. Hol(M) denotes the holonomy group of M .

dimM Hol(M) SUSYs (Ricci-flat) SUSYs (string)

8 Spin(7) 1 1
8 SU(4) 2 2
8 Sp(2) 3 3
8 SU(2)× SU(2) 4 4
7 G2 2 1
6 SU(3) 4 2
4 SU(2) 8 4
k + 1 {1} 16 8

α′ dependence does not follow from the supergravity equations we will not
write it explicitly. N is the number of strings. For later convenience we
collect the asymptotic behaviour of the fields as r → 0 and r →∞.

g = h−1(−dt2 + dx2) + dr2 + r2gk + gT7−k ,

H = dh−1 ∧ dt ∧ dx, e2(φ−φ0) = h−1,
h−1 =

rk−1

Qe

}
as r → 0, and

(4.15)

g = a2(−dt2 + dx2) + dr2 + r2gk + gT7−k ,

H = 0, e2(φ−φ0) = a2

}
as r →∞. (4.16)

The solution interpolates between a warped product R
1,1

�rk−1 c(Xk)×
T

7−k for r → 0 and the vacuum solution R
1,1 × c(Xk)× T

7−k for r →∞.
At r = 0 the metric is singular.

5 Asymptotically AdS3 solutions

In this section, we will superpose the fundamental string solution and an
NS5-brane to obtain new solutions of the heterotic BPS equations (2.2) and
the Bianchi identity (2.5), as well as the time-like components of the field
equations (2.4). The four types of geometric Killing spinor manifolds are
treated separately, but in all cases we find a near horizon AdS3-region and
a Ricci-flat cone in another limit. To begin with we consider the more
general setting of fundamental strings, an NS5-brane and a gauge anti-five-
brane, which leads to the same asymptotics, and later also treat the case
of fundamental strings with a gauge five-brane. In the latter case, the near
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horizon AdS3 disappears; the asymptotic solutions coincide with those of
the fundamental string.

5.1 Nearly parallel G2

Let X7 be a seven-dimensional nearly parallel G2 manifold. We make an
ansatz for the space-time manifold in the form

M = R
1,1 × R×X7. (5.1)

The metric is chosen as

g = h−1(τ)(−dt2 + dx2) + e2f(τ)(dτ2 + g7), (5.2)

where t and x are coordinates on R
1,1, and τ parametrizes the remaining R-

factor. By ea, for 1 ≤ a ≤ 7, we denote a basis of one-forms on X7, and e8 :=
dτ . It is useful to introduce the shorthand notation ea1...an := ea1 ∧ · · · ∧ ean .
The G2-invariant three-form P on X7 is then normalized such that

P = e123 + e145 − e167 + e246 + e257 + e347 − e356. (5.3)

It satisfies dP = 4 ∗ P reflecting the fact that X7 is a seven-dimensional
nearly parallel G2 manifold.

5.1.1 Gravitino equation

We make an ansatz for the connection ∇− in the form

∇− = ∇P + s(τ)eaIa + ζ(τ)dt I8 + ξ(τ)dx I8 + α(τ)dτ Z, (5.4)

where ∇P is the canonical G2-connection on X7, the Ia are generators of
the orthogonal complement of g2 in spin(7) as explained in Section 4.1, I8
is one of the generators (3.2) corresponding to the τ -direction, and Z is the
so(1, 1)-generator (3.3). Let us introduce the orthonormal basis

σ0 = h−1/2dt, σ9 = h−1/2dx,

σ8 = efdτ, σa = efea.
(5.5)

Using the Cartan structure equation Tμ = dσμ + −Γμ
ν ∧ σν we can calculate

the torsion of ∇−; the T a-components from [29] are unchanged, whereas we
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find additionally

T 0 = (∂τh
−1/2 − ζef )dτ ∧ dt+ (2αh−1/2 − ξef )dτ ∧ dx,

T 9 = (∂τh
−1/2 + ξef )dτ ∧ dx+ (2αh−1/2 + ζef )dτ ∧ dt,

T 8 = (ζ − ξ)h−1/2dt ∧ dx.
(5.6)

Since the torsion of ∇− has to be totally antisymmetric, i.e., Tμ = σμ�H
for some three-form H, we have to impose the conditions

ζ = −ξ = e−f∂τh
−1/2, 4α = −∂τ log(h), s = ḟ ,

H = dh−1 ∧ dt ∧ dx− 2
3
(ḟ − 1)e2fP,

(5.7)

where ḟ = ∂τf . To show that ∇− has holonomy group Spin(7)� R
8 and

hence exactly one parallel spinor we perform a gauge transformation to
eliminate the Z-term, using (3.4):

e−
1
4

log(h)Z(∇−)e 1
4

log(h)Z = ∇P + ḟ eaIa − 1
2e
−f∂τ log(h)(dt− dx)I8. (5.8)

In this form, the spin(7)�R
8-holonomy becomes manifest.

5.1.2 Dilatino equation

The action of the three-form H, as determined above, on the Spin(7)� R
8-

invariant spinor ε is given by

H · ε =
(
−∂τ log(h) +

14
3
(ḟ − 1)

)
dτ · ε. (5.9)

Hence, the dilatino equation (dφ− 1
2H) · ε = 0 is solved by

φ(τ) = φ0 − 1
2
log(h) +

7
3
(f − τ). (5.10)

5.1.3 Gaugino equation

The gaugino equation requires the gauge field to be a Spin(7)�R
8-instanton,

and we also impose this condition on the connection ∇̃. A connection of the
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form

∇P + ψ(τ)eaIa, (5.11)

solves the Spin(7)-instanton equation if and only if ψ satisfies [29]

ψ̇ = 2ψ(ψ − 1). (5.12)

Besides the two fixed points ψ = 0 and ψ = 1 which correspond to the canon-
ical connection∇P and the Levi–Civita connection of the cone c(X7), respec-
tively, there is an interpolating solution

ψ(τ) =
(
1 + e2(τ−τ0)

)−1
. (5.13)

Denote the curvature form of (5.11) by F(ψ). We put R̃ = F(ψ1) and
F = F(ψ2), and later we will make the choice ψ2 = 0.

5.1.4 Bianchi identity

Since the term dh−1 ∧ dt ∧ dx in H is closed, the Bianchi identity essentially
reduces to the same equation as in [29]:

(1− ḟ)e2f =
α′

4
(
ψ2

1 − ψ1ψ̇1 − ψ2
2 + ψ2ψ̇2

)
. (5.14)

5.1.5 Field equations

Besides the BPS equations and the Bianchi identity we also have to solve
the time-like components of the field equations. The other components of
the field equations are then satisfied as well. Due to our special ansatz
the t-component of the Yang–Mills equation and the mixed (tμ)-component
for μ 
= t of the Einstein equation are trivially satisfied. It remains to con-
sider the t-component of the B-field equation and the (tt)-component of the
Einstein equation. For the former we calculate

d ∗ e−2(φ−φ0)H = d

[
ḣ exp
(4
3
f +

14
3
τ
)
Vol7
]
, (5.15)

where Vol7 denotes the volume form of the nearly parallel G2-metric on X7.
The B-field equation becomes

∂τ

[
ḣ exp
(4
3
f +

14
3
τ
)]

= 0, (5.16)



HETEROTIC STRING PLUS FIVE-BRANE SYSTEMS 789

and this turns out to coincide with the (tt)-component of the Einstein
equation.

5.1.6 Solution

We already solved the gravitino, dilatino and gaugino equations, and found
the following result for the metric, three-form and dilaton:

g = h−1(τ)(−dt2 + dx2) + e2f(τ)(dτ2 + g7),

H = dh−1 ∧ dt ∧ dx− 2
3
(ḟ − 1)e2fP,

φ(τ) = φ0 − 1
2
log(h) +

7
3
(f − τ).

(5.17)

It remains to solve the B-field equation (5.16) and the Bianchi identity
(5.14). The former can be integrated to

ḣ = −6Qe exp
(
− 4
3
f − 14

3
τ
)
, (5.18)

hence a solution is given by

h(τ) = a−2 + 6Qe

∫ ∞
τ

exp
(
− 4
3
f(θ)− 14

3
θ
)
dθ. (5.19)

In the case of a cone metric, f(τ) = τ , this reduces to a harmonic function

h(r) = a−2 +
Qe

r6
, (5.20)

written in terms of a radial coordinate r = eτ , and we recover the funda-
mental string of Section 4.2.

The connections ∇̃ and ∇A are constructed by the ansatz (5.11), and
depend on functions ψ1(τ) and ψ2(τ), respectively. In order to obtain an
NS5-brane, we set ψ2 = 0. In most of the literature only the case ψ1 = 1 is
considered [16, 25, 27–29], but here we keep ψ1 generic, thus allowing for a
gauge anti-five-brane as well, and treat the limiting case ψ = 1 separately
in Subsection 5.5.

ψ1 =
ρ2

ρ2 + r2
, ψ2 = 0, (5.21)
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where ρ is a constant. Then ∇A = ∇P , with ∇P being the canonical G2-
connection on X7. The Bianchi identity has been solved in [29]

e2f = λ2r2 +
α′

4
(ψ2

1 − ψ2
2)

= λ2r2 +
α′

4
ρ4

(ρ2 + r2)2
, (5.22)

for some constant λ. We note in passing that in the special case ψ1 = ψ2,
one recovers the fundamental string without α′-corrections as presented in
Section 4.2.

Limit r →∞. In this limit we obtain the Ricci-flat cone R
1,1 × c(X7):

g = a2(−dt2 + dx2) + λ2(dr2 + r2g7),

H = 0, e2(φ−φ0) = a2λ
14
3 .

(5.23)

Limit r → 0. It is convenient to substitute s2 := h−1 = 7
9Qe

(α′
4 r

7)2/3 in
this limit. Then the fields read

g = s2
(−dt2 + dx2

)
+ α′
( 3
14

)2 ds2
s2

+
α′

4
g7,

H = d(s2) ∧ dt ∧ dx+ α′

6
P,

e2(φ−φ0) =
7
9Qe

(
α′

4

)3

.

(5.24)

In particular, the dilaton is constant and it becomes small for a large number
of strings. Hence, we can trust the supergravity approximation for large Qe,
a situation familiar from the other brane solutions [43]. The metric describes
a direct product AdS3 ×X7, where the length scales of both AdS3 and X7

are of order
√
α′. Heterotic string backgrounds of the form AdS3 times

a nearly parallel G2-manifold have been anticipated in [44], where it was
shown that they solve the gravitino and dilatino equations. The term ḟ eaIa
appearing in the connection ∇− (5.4) vanishes in the limit r → 0, hence the
holonomy reduces to G2 � R

8. However, a simple calculation shows that the
R

8-component of the curvature vanishes, and the holonomy in fact reduces
to G2. According to table 4 this means that another parallel spinor emerges.
One can check that it also satisfies the dilatino equation, using an explicit
representation which can be found, e.g., in [38]. Thus, there is enhanced
supersymmetry in the near horizon limit.
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The full solution interpolates between

AdS3 ×X7 → R
1,1 × c(X7), (5.25)

as expected for the α′-corrected fundamental string. In the special caseX7 =
S7 multi-instanton solutions and multi five-branes have been constructed
in [42], and it should be possible to generalize our solutions to include multi
five-branes in this case.

5.2 Nearly Kähler

The construction of a solution of heterotic string theory from a six-
dimensional nearly Kähler manifold X6 is almost identical to the nearly
parallel G2 case. We make the ansatz

M = R
1,1 × R×X6 × S1, (5.26)

with the metric

g = h−1(−dt2 + dx2) + e2f (dτ2 + g6) + dy2, (5.27)

where y is a coordinate on S1. By ea (a = 1, . . . , 6) we denote an orthonormal
frame on X6 and we set e7 = dy and e8 = dτ .

5.2.1 Gravitino equation

In the following, we will use the orthonormal frame

σ0 = h−1/2dt, σa = efea, σ7 = dy, σ8 = efdτ, σ9 = h−1/2dx. (5.28)

We consider the following ansatz for ∇−:

∇− = ∇P + s(τ)eaIa + ζ(τ)dt I8 + ξ(τ)dx I8 + α(τ)dτ Z, (5.29)

where ∇P is the canonical SU(3)-connection on X6 and Ia are generators
of the orthogonal complement of su(3) in g2. As in the previous section, I8
is one of the generators (3.2) corresponding to the τ -direction and Z is the
so(1, 1)-generator defined in (3.3).

The T 0, T 8 and T 9-components of the torsion are again given by (5.6),
whereas T 7 = 0. The T a-components were calculated in [29]. Thus, requir-
ing the torsion to be totally anti-symmetric results again in the first three
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equations in (5.7). We obtain Tμ = σμ�H with

H = dh−1 ∧ dt ∧ dx− (ḟ − 1)e2fP, (5.30)

where P is the SU(3)-invariant three-form on X6. In order to make the
G2 � R

8 holonomy manifest, we perform a gauge transformation:

e−
1
4

log(h)Z(∇−)e 1
4

log(h)Z = ∇P + ḟ eaIa − 1
2
e−f∂τ log(h)(dt− dx)I8.

(5.31)

There is again exactly one parallel spinor ε.

5.2.2 Dilatino equation

The action of the three-form H, as determined above, on the G2 � R
8-

invariant spinor is

H · ε =
(
−∂τ log(h) + 4(ḟ − 1)

)
dτ · ε. (5.32)

Thus, the dilatino equation is solved by

φ(τ) = φ0 − 1
2
log(h) + 2(f − τ). (5.33)

5.2.3 Gaugino equation

Analogously to the nearly parallel G2 case we know that the connection

∇P + ψ(τ)eaIa (5.34)

solves the G2-instanton equation if and only if

ψ̇ = 2ψ(ψ − 1). (5.35)

Thus, (5.34) can be either the canonical connection ∇P (for ψ = 0), the
Levi–Civita connection (for ψ = 1) or the interpolating solution

ψ(τ) =
(
1 + e2(τ−τ0)

)−1
. (5.36)

We denote the curvature of (5.34) by F(ψ) and set R̃ = F(ψ1) and F =
F(ψ2).
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5.2.4 Bianchi identity

As the dh−1 ∧ dt ∧ dx-term in H is obviously closed, the Bianchi identity is
found, in close analogy to [29], to be

(1− ḟ)e2f =
α′

4
(ψ2

1 − ψ1ψ̇1 − ψ2
2 + ψ2ψ̇2). (5.37)

5.2.5 Field equations

As in the nearly parallel G2-case, the only equations of motion, which are
not trivially satisfied are the B-field equation and the (tt)-component of
the Einstein equation, and these two coincide. For the B-field equation we
calculate

d ∗ e−2(φ−φ0)H = d
[
ḣef+4τVol7

]
, (5.38)

where Vol7 is the volume form on X6 × S1. Thus, the B-field equation reads

∂τ (ḣef+4τ ) = 0. (5.39)

5.2.6 Solution

We already know that the metric, the three-form H and the dilaton are
given by

g = h−1(−dt2 + dx2) + e2f (dτ2 + g6) + dy2,

H = dh−1 ∧ dt ∧ dx− (ḟ − 1)e2fP,

φ(τ) = φ0 − 1
2
log(h) + 2(f − τ).

(5.40)

In the following, we will substitute eτ = r. In order to obtain the desired
AdS3-limit, we choose

ψ1 =
ρ2

ρ2 + r2
, ψ2 = 0, (5.41)

with some constant ρ. The Bianchi identity is solved by [29]

e2f = λ2r2 +
α′

4
(ψ2

1 − ψ2
2)

= λ2r2 +
α′

4
ρ4

(ρ2 + r2)2
, (5.42)
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with some constant λ, and from the B-field equation we obtain

h(r) = a−2 + 5Qe

∫ ∞
log(r)

exp
(
−f(θ)− 4θ

)
dθ. (5.43)

In the limit r →∞ we obtain R
1,1 × c(X6)× S1, with c(X6) being the

Ricci-flat cone over X6:

g = a2(−dt2 + dx2) + λ2(dr2 + r2g6) + dy2,

H = 0, e2(φ−φ0) = a2λ4.
(5.44)

In order to write the limit r → 0 in a convenient way, we observe that

h−1 → 4
5Qe

(
α′
4

)1/2
r4 =: s2. Then the fields in this limit read

g = s2(−dt2 + dx2) +
α′

16
ds2

s2
+
α′

4
g6 + dy2,

H = d(s2) ∧ dt ∧ dx+ α′

4
P, (5.45)

e2(φ−φ0) =
4
5Qe

(
α′

4

)5
2
.

The holonomy group of ∇− reduces to that of ∇P , i.e., to SU(3). Table 4
shows that there are now four parallel spinors, and it turns out that two of
them solve the dilatino equation. Again, in the near horizon region we find
twice as much supersymmetry as in the bulk. The full solution interpolates
between

AdS3 ×X6 × S1 → R
1,1 × c(X6)× S1. (5.46)

In the special case X6 = S6 multi-instanton solutions and multi five-branes
are known [42], and we expect the solutions presented above to generalize
to this case.

5.3 Sasaki–Einstein

In analogy with the previous two cases, we choose the space-time manifold
to be of the form

M = R
1,1 × R×X2n+1 × T

6−2n, (5.47)
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where X2n+1 is a Sasaki–Einstein manifold and n = 1, 2, 3. The only rôle
of the torus T

6−2n is to yield a ten-dimensional space-time as required for
heterotic supergravity and, in particular, none of the fields depend on it.
The metric is taken to be

g = h−1(τ)(−dt2 + dx2) + e2f(τ)(dτ2 + g2n+1
	 ) + gT6−2n , (5.48)

where t and x are coordinates on R
1,1, and τ parametrizes the remaining R-

factor. The Sasakian metric g2n+1
	 on X2n+1 in terms of a basis of one-forms

(e1, ea), a = 2, . . . , (2n+ 1), is given by

g2n+1
	 = e1e1 + e2	δabe

aeb, (5.49)

which contains a deformation parameter � that can be made τ -dependent,
i.e., � = �(τ). There exist two special values for �, namely e2	 = 1 and e2	 =
2n/(n+ 1) [29]. For reasons to be explained below, we are interested in
solutions where the field �(τ) interpolates between these two values as τ →
±∞.

The SU(n)-invariant three-form P on X2n+1 is normalized such that

P = e123 + e145 + · · ·+ e1 2n 2n+1. (5.50)

5.3.1 Gravitino equation

We make an ansatz for the connection ∇− in the form

∇− = ∇P + t(τ)e1I1 + s(τ)eaIa + ζ(τ)dt I2n+2 + ξ(τ)dx I2n+2 + α(τ)dτ Z,
(5.51)

where ∇P is the canonical SU(n)-connection on X2n+1 and (I1, Ia) are
generators of the orthogonal complement of su(n) in su(n+ 1). In addition,
I2n+2 is one of the generators (3.2) corresponding to the τ -direction, and Z is
the so(1, 1)-generator (3.3). The holonomy group of ∇− is SU(n+ 1)� R

8,
and there are four parallel spinors if n = 1 and two parallel spinors when
n = 2, 3.

It is useful to introduce an orthonormal basis

σ0 = h−1/2dt, σ2n+3 = h−1/2dx, σi+(2n+3) = dyi,

σ2n+2 = efdτ, σ1 = efe1, σa = ef+	ea.
(5.52)

Here, yi (with i = 1, . . . , (6− 2n)) are coordinates on T
6−2n. Using the Car-

tan structure equation Tμ = dσμ + −Γμ
ν ∧ σν we can calculate the torsion
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of ∇−; the T 1-, T a-components from [29] are unchanged, whereas T 0, T 2n+3

and T 2n+2 agree with their respective counterparts, T 0, T 9 and T 8, in (5.6),
because of the common form of the R

1,1 × R-part of the metric. In addition,
one finds T i+(2n+3) = 0 for i = 1, . . . , (6− 2n). From Tμ = σμ�H, we obtain
the following conditions

ζ = −ξ = e−f∂τh
−1/2, 4α = −∂τ log(h), t = ḟ , s = e	(ḟ + �̇),

H = dh−1 ∧ dt ∧ dx−
(
n+ 1
n

(ḟ − 1) + �̇

)
e2(f+	)P,

(5.53)

where ˙( ) = ∂τ . Moreover, we learn that

n− 1
n

ḟ + �̇ = 2e−2	 − n+ 1
n

. (5.54)

5.3.2 Dilatino equation

The action of the three-form H, as determined above, on an SU(n+ 1)�

R
2n+2-invariant spinor ε is given by

H · ε =
(
−∂τ log(h) + (n+ 1)(ḟ − 1) + n�̇

)
dτ · ε. (5.55)

Hence, the dilatino equation (dφ− 1
2H) · ε = 0 is solved by

φ(τ) = φ0 − 1
2
log(h) +

n+ 1
2

(f − τ) + n

2
�. (5.56)

5.3.3 Gaugino equation

The gaugino equation requires the gauge field to be a SU(n+ 1)�R
2n+2-

instanton, and we also impose this condition on the connection ∇̃. A con-
nection of the form

∇P + χ(τ)e1I1 + ψ(τ)eaIa, (5.57)

solves the SU(n+ 1)-instanton equation if and only if χ and ψ satisfy [29]

χ̇ = 2n e−2	(ψ2 − χ), (5.58)

ψ̇ =
n+ 1
n

ψ(χ− 1). (5.59)

There are two fixed points (ψ, χ) = (0, 0) and (1, 1) which correspond to
the canonical connection ∇P and the Levi–Civita connection of the cone



HETEROTIC STRING PLUS FIVE-BRANE SYSTEMS 797

c(X2n+1), respectively. Due to the non-linearity and the coupling to �, it is
in general not possible to solve equation (5.58) to (5.59) analytically.

Denote the curvature form of (5.57) by F(ψ, χ). We put R̃ = F(ψ1, χ1),
F = F(ψ2, χ2) and later we shall choose ψ2 = χ2 = 0.

5.3.4 Bianchi identity

Since the term dh−1 ∧ dt ∧ dx in H is closed, the Bianchi identity essentially
reduces to the same equation as in [29]:

(ḟ + �̇− e−2	) e2(f+	)

=
α′(n+ 1)

8n
(
χ2

2 − 2χ2ψ
2
2 + 2ψ2

2 − χ2
1 + 2χ1ψ

2
1 − 2ψ2

1

)
. (5.60)

5.3.5 Field equations

Again, theB-field equation coincides with the (tt)-component of the Einstein
equation. We have

d ∗ e−2(φ−φ0)H = d
[
ḣ exp
(
(n− 1)f + n�+ (n+ 1)τ

)
Vol7
]
, (5.61)

where Vol7 denotes the volume form on X2n+1 × T
6−2n. The B-field equa-

tion becomes

∂τ

[
ḣ exp
(
(n− 1)f + n�+ (n+ 1)τ

)]
= 0. (5.62)

5.3.6 Solution

We have arrived at the following form of the ten-dimensional fields

g = h−1(τ)(−dt2 + dx2) + e2f(τ)(dτ2 + e1e1 + e2	(τ)δabe
aeb) + gT6−2n ,

H = dh−1 ∧ dt ∧ dx−
(
n+ 1
n

(ḟ − 1) + �̇

)
e2(f+	)P,

φ(τ) = φ0 − 1
2
log(h) +

n+ 1
2

(f − τ) + n

2
�,

(5.63)
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which are determined in terms of

n− 1
n

ḟ + �̇ = 2 e−2	 − n+ 1
n

,

χ̇1 = 2n e−2	(ψ2
1 − χ1), ψ̇1 =

n+ 1
n

ψ1(χ1 − 1),

χ̇2 = 2n e−2	(ψ2
2 − χ2), ψ̇2 =

n+ 1
n

ψ2(χ2 − 1),

(ḟ + �̇− e−2	)e2(f+	)

=
α′(n+ 1)

8n
(
χ2

2 − 2χ2ψ
2
2 + 2ψ2

2 − χ2
1 + 2χ1ψ

2
1 − 2ψ2

1

)
,

ḣ = −2nQe exp
(
−(n− 1)f − n�− (n+ 1)τ

)
.

(5.64)

This is a set of seven coupled non-linear ODEs for the seven unknown func-
tions f , �, h, ψ1, χ1, ψ2 and χ2. In general, the system of equations is
sufficiently complicated such that analytic solutions are not attainable. A
notable exception is the case n = 1, i.e., 3D Sasaki–Einstein, which can be
solved analytically and will be discussed below.

3D Sasaki–Einstein (n = 1). The only simply connected three-
dimensional Sasaki–Einstein manifold is the 3-sphere S3 = SU(2), and this
case was considered in [11]. The Bianchi identity assumes a slightly more
general form than in the higher-dimensional examples. Upon setting � = 0
the gravitino equation yields the following result for the three-form:

H = dh−1 ∧ dt ∧ dx− 2(ḟ − 1) e2fP, (5.65)

with P = VolS3 . The right hand side of the Bianchi identity is determined as

tr
(
R̃ ∧ R̃− F ∧ F

)
= 12d
(
6ψ2 − 4ψ3

)
P, (5.66)

where we set F = F(0, 0) and R̃ = F(ψ,ψ). Since P is closed, the Bianchi
identity implies

(ḟ − 1)e2f =
α′

4
(2ψ3 − 3ψ2)−Qm, (5.67)

where Qm is an integration constant, to be identified with an NS5-brane
charge. Since the canonical three-form P is not closed for the other



HETEROTIC STRING PLUS FIVE-BRANE SYSTEMS 799

geometries we consider, it is not possible to add the Qm-term to the Bianchi
identity in these cases. The system of equations (5.64) reduces to

ψ̇ = 2ψ(ψ − 1), (ḟ − 1) e2f =
α′

4
ψ2(2ψ − 3)−Qm, ḣ = −2Qe e

−2τ ,

(5.68)
which is solved, in terms of a radial coordinate r = eτ , by

h = a−2 +
Qe

r2
, ψ =

ρ2

ρ2 + r2
,

e2f = λ2r2 +
α′

4
ψ2 +Qm = λ2r2 +

α′

4
ρ4

(ρ2 + r2)2
+Qm,

(5.69)

with constants a, λ, ρ,Qe, Qm ∈ R. The full ten-dimensional solution is then
of the form

g =
r2

r2/a2 +Qe
(−dt2 + dx2)

+
(
λ2 +

α′

4
ψ2

r2
+
Qm

r2

)(
dr2 + r2gS3

)
+ gT4 ,

H =
2Qer

(r2/a2 +Qe)2
dr ∧ dt ∧ dx+

(
2Qm − α′

2
ψ2(2ψ − 3)

)
VolS3 ,

e2(φ−φ0) =
1

r2/a2 +Qe

(
λ2r2 +

α′

4
ψ2 +Qm

)
.

(5.70)

This is the “gauge dyonic string” of [10]. In the limit r → 0 the above fields
become

g =
r2

Qe
(−dt2 + dx2) +

(α′
4
+Qm

)dr2
r2

+
(α′
4
+Qm

)
gS3 + gT4 ,

H =
2r
Qe
dr ∧ dt ∧ dx+ 2

(α′
4
+Qm

)
VolS3 ,

e2(φ−φ0) =
1
Qe

(α′
4
+Qm

)
,

(5.71)

describing an AdS3 × S3 × T
4 geometry. The holonomy group of ∇− is

trivial, and half of all parallel spinors satisfy the dilatino equation, giving
rise to eight preserved supersymmetries. The other limit r →∞ is, at least
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for λ 
= 0:

g = a2(−dt2 + dx2) + λ2(dr2 + r2gS3) + gT4 ,

H = 0, e2(φ−φ0) = a2λ2,
(5.72)

which is the Ricci-flat solution R
1,1× c(S3), where c(S3) = R

4 \ {0} denotes
the cone over S3. Thus, the solution interpolates between

AdS3 × S3 × T
4 → R

1,1 × R
4 × T

4. (5.73)

In the limit ρ→∞, or ψ = 1 we obtain a solution without α′-corrections
(except for the singularity at r = 0), hence vanishing field strength of the
gauge fields, and a new Q′m,

Q′m = Qm +
α′

4
. (5.74)

This justifies our interpretation of Qm as an NS5-brane charge. Based on
multi-instanton gauge fields it is also possible to find gauge multi-brane
solutions [11]. An interesting special case of the above solution occurs for
a−1 = λ = 0 [45]. Then the solution interpolates between AdS3 × S3 in both
limits r → 0 and r →∞, but with different radii. This is interpreted as a
renormalization group flow of the dual CFT in [45].

5D and 7D Sasaki–Einstein (n = 2, 3). For n > 1, the equations do not
decouple and hence we need to resort to numerical solutions. We set α′ =
1, for convenience, and choose ψ2 = χ2 = 0. With an appropriate choice
of boundary values we indeed find solutions with the desired asymptotic
behaviour, both for n = 2 and n = 3. Exemplary numerical solutions for
n = 2 and n = 3 are presented in Figures 1 and 2, respectively.

As τ → −∞, which corresponds to r → 0 for the radial coordinate r = eτ ,
the one-dimensional fields display the following limiting behaviour:

e2f → α′(n+ 1)
8n

, h−1 → Q−1
e

√
n+ 1
2n

(
α′

4

)(n−1)/2

rn+1,

e2	 → 2n
n+ 1

, ψ1 → 1, χ1 → 1. (5.75)



HETEROTIC STRING PLUS FIVE-BRANE SYSTEMS 801

Figure 1: Numerical solution with ψ2 = χ2 = 0 for the 5D Sasaki–Einstein
case. The solution interpolates between AdS3 ×X5 × T

2 → R
1,1 × c(X5)×

T
2 as τ changes from −∞ to +∞.

Figure 2: Numerical solution with ψ2 = χ2 = 0 for the 7D Sasaki–Einstein
case. The solution interpolates between AdS3 ×X7 → R

1,1 × c(X7) as τ
changes from −∞ to +∞.
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With s2 := Q−1
e

√
n+1
2n

(
α′
4

)(n−1)/2
rn+1, the ten-dimensional fields thus

become

g = s2(−dt2 + dx2) +
α′

2n(n+ 1)
ds2

s2
+
α′(n+ 1)

8n
g2n+1
	 + gT6−2n ,

H = d(s2) ∧ dt ∧ dx+ α′(n+ 1)
4n

P,

e2(φ−φ0) =
n+ 1
2nQe

(
α′

4

)n

,

(5.76)

which describes the direct product AdS3 ×X2n+1 × T
6−2n. The holonomy

group of ∇− reduces to SU(n), which stabilizes eight spinors for n = 2 and
four for n = 3. In each case, only half of all parallel spinors satisfy the
dilatino equation, so that there remain four Killing spinors for n = 2 and
two for n = 3.

In the limit r →∞, the one-dimensional fields approach the following
values:

e2f → λ2r2, h−1 → a2,

e2	 → 1, ψ1 → 0, χ1 → 0,
(5.77)

with constants λ, a ∈ R. The corresponding ten-dimensional fields take the
form

g = a2(−dt2 + dx2) + λ2(dr2 + r2g2n+1
	 ) + gT6−2n ,

H = 0, e2(φ−φ0) = a2 λn+1.
(5.78)

Up to a coordinate rescaling, this describes the Ricci-flat cone solution R
1,1 ×

c(X2n+1)× T
6−2n.

In conclusion, the numerical solutions presented in figures 1 and 2 inter-
polate between

AdS3 ×X2n+1 × T
6−2n → R

1,1 × c(X2n+1)× T
6−2n. (5.79)

5.4 3-Sasakian

Let X7 be a seven-dimensional 3-Sasakian manifold. We make the same
ansatz for the space-time manifold and its metric as in the previous section
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(for n = 3), namely

M = R
1,1 × R×X7, g = h−1(τ)(−dt2 + dx2) + e2f(τ)(dτ2 + g7

	 ), (5.80)

where t and x are coordinates on R
1,1 and τ parametrizes the R-factor.

Furthermore, by (eα, ea), α = 1, 2, 3, a = 4, . . . , 7, we denote an orthonormal
basis of one-forms onX7 and define e8 := dτ . As in the Sasaki–Einstein case,
the metric g7

	 depends on a deformation parameter �, which will be promoted
to a τ -dependent function.

Associated to the Sasaki–Einstein structures on X7 there are three one-
and three two-forms ηα and ωα. We choose the frame (eα, ea) such that
they are given by

η1 = e1, ω1 = e45 + e67,

η2 = e2, ω2 = e46 − e57,
η3 = e3, ω3 = e47 + e56.

(5.81)

In this frame, the metric on X7 is

g7
	 = δαβe

αeβ + e2	(τ)δabe
aeb, (5.82)

and the Sp(1)-invariant three-form P is normalized such that

P =
1
3
η123 +

1
3
ηα ∧ ωα. (5.83)

5.4.1 Gravitino equation

In the following, we will use the orthonormal frame

σ0 = h−1/2dt, σα = efeα, σa = ef+	ea,

σ8 = efdτ, σ9 = h−1/2dx.
(5.84)

We make an ansatz for the ∇− connection of the form

∇− = ∇P + t(τ)eαIα + s(τ)eaIa + ζ(τ)dt I8 + ξ(τ)dx I8 + α(τ)dτ Z,

(5.85)

where ∇P is the canonical Sp(1)-connection on X7 and (Iα, Ia) are genera-
tors of the orthogonal complement of sp(1) in sp(2). The holonomy group
is Sp(2)� R

8, giving rise to three parallel spinors. The Tα-, T a-components
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of the torsion were already calculated in [29] and the T 0-, T 8- and T 9-
components are given again by (5.6). Thus, requiring the torsion to be
totally antisymmetric, i.e., Tμ = σμ�H for some three-form H, results in
the conditions

t = ḟ , s = e	(ḟ + �̇), ζ = −ξ = e−f∂τh
−1/2, (5.86)

4α = −∂τ log(h), ḟ + �̇ = 2 e−2	 − 1, (5.87)

and the three-form H is given by

H = dh−1 ∧ dt ∧ dx+H(8), (5.88)

H(8) = −2e2f (ḟ − 1)η123 − e2(f+	)(ḟ + �̇− 1)ηα ∧ ωα. (5.89)

To show that the connection ∇− has Sp(2)� R
8-holonomy, and hence two

parallel spinors, we perform a gauge transformation

e−
1
4

log(h)Z(∇−)e 1
4

log(h)Z = ∇P + ḟ eαIα + e	(ḟ + �̇)eaIa

+ e−f∂τ log(h)(dt− dx)I8. (5.90)

5.4.2 Dilatino equation

For the action of the three-form H, as determined above, on an Sp(2)� R
8-

invariant spinor ε we obtain

H · ε =
(
−∂τ log(h) + 4(ḟ − 1) + 2�̇

)
dτ · ε. (5.91)

Thus, the dilatino equation, (dφ− 1
2H) · ε = 0, is solved by

φ(τ) = φ0 − 1
2
log(h) + 2(f − τ) + �. (5.92)

5.4.3 Gaugino equation

For solving the gaugino equation we revert to the Sp(2)-instanton solution
constructed in [29]. We know that the connection

∇P + χ(τ)eαIα + ψ(τ)eaIa, (5.93)
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gives an instanton if χ and ψ satisfy

0 = χ− ψ2, (5.94)

χ̇ = 2χ(χ− 1), (5.95)

ψ̇ = ψ(χ− 1). (5.96)

These equations admit the constant solutions χ = ψ = 0, χ = ψ = 1 and a
solution interpolating between the two, namely

χ = ψ2 =
(
1 + e2(τ−τ0)

)−1
. (5.97)

We denote the curvature of (5.93) by F(χ, ψ) and set R̃ = F(χ1, ψ1) and
F = F(χ2, ψ2).

5.4.4 Bianchi identity

The Bianchi identity is equivalent to the two equations [29]

e2f (ḟ − 1) =
α′

8
(
2χ3

1 − 3χ2
1 − 2χ3

2 + 3χ2
2

)
, (5.98)

e2(f+	)(ḟ + �̇− 1) =
α′

4
(
χ2

1 − 2χ1 − χ2
2 + 2χ2

)
. (5.99)

Furthermore, these equations are solved by

e2f = λ2e2τ +
α′

8
(
χ2

1 − χ2
2

)
, (5.100)

e2	 = 2
4λ2e2τ + α′(χ1 − χ2)
8λ2e2τ + α′(χ2

1 − χ2
2)
. (5.101)

5.4.5 Equations of motion

As in the previous cases, the only equations of motion which are not trivially
satisfied are the B-field equation and the (tt)-component of the Einstein
equation. For solving the B-field equation we calculate

d ∗ e−2(φ−φ0)H = d
[
ḣe2f+4τ+2	Vol7

]
, (5.102)

where Vol7 denotes the volume form on X7. The B-field equation becomes

∂τ

[
ḣe2f+4τ+2	

]
= 0. (5.103)
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It turns out that the (tt)-component of the Einstein equation coincides with
(5.103).

5.4.6 Solution

We already know that the metric, the three-form H and the dilaton are
given by

g = h−1(−dt2 + dx2) + e2f (dτ2 + g7
	 ),

H = dh−1 ∧ dt ∧ dx− 2e2f (ḟ − 1)η123 − e2(f+	)(ḟ + �̇− 1)ηα ∧ ωα,

φ = φ0 − 1
2
log(h) + 2(f − τ) + �.

(5.104)

The B-field equation can be rewritten as

ḣ = −6Qee
−2f−4τ−2	. (5.105)

Thus, a solution for h can be calculated from f and � by

h(r) = a−2 + 6Qe

∫ ∞
log(r)

exp
(
−2f(θ)− 4θ − 2�(θ)

)
dθ, (5.106)

with a constant a.

In order to obtain a solution with an AdS3-limit, we choose

χ1 = ψ2
1 =

ρ2

ρ2 + r2
, χ2 = ψ2

2 = 0, (5.107)

with r := eτ , as before, and some constant ρ. Therewith, the Bianchi iden-
tity yields

e2f = λ2r2 +
α′

8
ρ4

(ρ2 + r2)2
, (5.108)

e2	 = 2(ρ2 + r2)
4λ2r2(ρ2 + r2) + α′ρ2

8λ2r2(ρ2 + r2)2 + α′ρ4
, (5.109)
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and the integral expression (5.106) for h(r) can be explicitly computed

h = a−2 + 6Qe

⎡
⎢⎢⎢⎢⎣

1
α′r4

+
2(α′ − 4ρ2λ2)

α′2ρ2r2
− 8λ2(α′ − 2ρ2λ2)

α′3ρ2

× log
(
1 +

ρ2

r2
+

α′ρ2

4λ2r4

)
+
4λ2(8ρ2λ2α′ − α′2 − 8ρ4λ4)

α′3ρ2

×

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

1

ρλ
√

α′−ρ2λ2

(
π
2 − arctan

(
λ(2r2+ρ2)

ρ
√

α′−ρ2λ2

))
for ρ2λ2 < α′

1
2λ2r2+α′ for ρ2λ2 = α′

1

2ρλ
√

ρ2λ2−α′
log
(

2λr2+ρ2λ+ρ
√

ρ2λ2−α′

2λr2+ρ2λ−ρ
√

ρ2λ2−α′

)
for ρ2λ2 > α′

⎤
⎥⎥⎥⎥⎦ .
(5.110)

Limit r →∞. In this limit we obtain

g = a2(−dt2 + dx2) + λ2(dr2 + r2g7
	 ),

e2	 = 1,

H = 0, e2(φ−φ0) = a2λ4,

(5.111)

which is R
1,1 × c(X7), where c(X7) is the Ricci-flat cone over X7.

Limit r → 0. In this limit, we obtain an AdS3 ×X7 geometry with

g = s2(−dt2 + dx2) +
α′

32
ds2

s2
+
α′

8
g7
	 ,

s2 :=
α′

6Qe
r4, e2	 = 2,

H = d(s2) ∧ dt ∧ dx+ 3α′

4
P,

e2(φ−φ0) =
1
3Qe

(
α′

4

)3

.

(5.112)

The holonomy group of ∇− reduces to Sp(1), allowing for eight parallel
spinors according to table 4. Of those, six also satisfy the dilatino equation.
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We again obtain a solution interpolating between

AdS3 ×X7 −→ R
1,1 × c(X7), (5.113)

with enhanced supersymmetry in the near horizon region.

5.5 Fundamental strings with NS5-branes

The limit ρ→∞ or ψ1 → 1 eliminates the gauge anti-five-brane, and we
are left with an NS1+NS5-brane system, or a fundamental string with an
NS5-brane. The NS5-brane is wrapped on a calibrated cycle of dimension
k − 3, or a collection of those, in the cone c(Xk). The case X = S3 of an
unwrapped NS5-brane has been studied for instance in [11]. The gauge con-
nections ∇̃ and ∇A globally coincide with the Levi–Civita connection on
the cone c(X) and the canonical connection on X, respectively, whereas the
limiting behaviour of the other fields as r → 0,∞ remains unchanged. Note
one minor difference between the cases X = S3 and dimX > 3. In the for-
mer case, we have vanishing curvature of both the Levi–Civita connection
on the cone and the canonical connection on X, hence the α′-corrections
to the equations vanish and H is closed, except for a δ-function singularity
at the origin. In higher dimensions there are non-vanishing α′-corrections
everywhere, and H ∝ P is not closed. Furthermore, our construction only
yields solutions with one unit of brane charge in the higher-dimensional
setting, whereas for X = S3 multi-brane solutions can be easily written
down.

Nearly parallel G2. Taking ρ→∞ in the solution found in Section 5.1.6,
we obtain

ψ1 = 1, e2f = λ2r2 +
α′

4
. (5.114)

In this limit, we may also solve equation (5.19) for h explicitly

h(r) = a−2 +
18Qe

7α′3
[
(2α′ + 8r2λ2)1/3

(α′2 − 6r2α′λ2 + 72r4λ4)r−14/3 − 144λ14/3
]
. (5.115)

The full ten-dimensional solution can be obtained straightforwardly by plug-
ging the two expressions above into (5.17). The limiting solutions for r →
0,∞ coincide with the ones in Section 5.1.6 given by (5.23) to (5.24).
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Nearly Kähler. The values for ψ1 and e2f are the same as in equa-
tion (5.114). To determine h, we solve equation (5.43) and find

h(r) = a−2 +
5Qe

2α′5/2

[√
α′
(
α′

r4
− 6λ2

r2

)√
α′ + 4r2λ2

− 12λ4 log
(

2r2λ2

α′ + 2r2λ2 +
√
α′
√
α′ + 4r2λ2

)]
. (5.116)

The full ten-dimensional solution is obtained by plugging the above expres-
sion together with (5.114) into (5.40). As before, the limiting solutions for
r → 0,∞ coincide with the ones in Section 5.2.6 given by (5.44) to (5.45).

Sasaki–Einstein. For n = 1, the limit ρ→∞ is a special case of solu-
tion (5.70). Hence, the r → 0,∞ limits and the interpolating behaviour
AdS3 × S3 × T

4 → R
1,1 × R

4 × T
4 remain unchanged.

For n = 2, 3, the limit ρ→∞ corresponds to setting ψ1 = χ1 = 1 and
ψ2 = χ2 = 0. Eqs. (5.64) then reduce to

n− 1
n

ḟ + �̇ = 2e−2	 − n+ 1
n

,

(ḟ + �̇− e−2	)e2(f+	) = −α
′(n+ 1)
8n

,

ḣ = −2nQe exp
(
− (n− 1)f − n�− (n+ 1)τ

)
.

(5.117)

Although considerably simpler than (5.64), this system of equations still
appears to not be solvable analytically. However, it is possible to find numer-
ical solutions that have the same limiting behaviour as the solutions found in
Section 5.3.6, i.e., AdS3 ×X2n+1 × T

6−2n → R
1,1 × c(X2n+1)× T

6−2n with
the ten-dimensional fields approaching (5.76) and (5.78). The graphs for
f(τ), h−1(τ) and e2	(τ) closely resemble those of figures 1 and 2 and are
thus omitted.

3-Sasakian. If we take the limit ρ→∞ of the general solution obtained
in Section 5.4.6, we find

e2f = λ2r2 +
α′

8
, e2	 =

8λ2r2 + 2α′

8λ2r2 + α′
χ1 = ψ2

1 = 1, χ2 = ψ2
2 = 0.

(5.118)
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In addition, the h-equation (5.106) is explicitly solved by (or equivalently,
one may take the limit ρ→∞ of equation (5.110))

h(r) = a−2 +
6Qe

α′2

[
α′

r4
− 8λ2

r2
+
32λ4

α′
log
(
1 +

α′

4λ2r2

)]
. (5.119)

The full ten-dimensional solution can be obtained straightforwardly by plug-
ging the two expressions above into (5.104). The limiting solutions for
r → 0,∞ coincide with the ones in Section 5.4.6 given by (5.111) to (5.112).

5.6 Topology and wrapped cycles

In the preceding, four subsections we found solutions asymptotic to AdS3 ×
Xk × T

7−k, with metric in Poincaré coordinates

g =
s2

Qe

(−dt2 + dx2
)
+Qm

(ds2
s2

+ gk
)
+ gT7−k , (5.120)

up to an irrelevant coefficient in front of ds2

s2 . The coordinates (t, x, s) cover
only a patch of AdS3, in particular the coordinate s is allowed to take neg-
ative values, but (t, x) are not good coordinates around s = 0 [46]. The
solution we have presented is valid only in the region s > 0, since we have
found the values of the supergravity fields in this region only. Contrary to
the situation for a single NS5-brane it is now possible to continue the metric
continuously beyond s = 0, and one may wonder whether the other super-
gravity fields extend as well. Clearly, this is the case for the constant dilaton,
and also for the three-form H, since its AdS3-component is proportional to
the volume form. The gauge fields for ψ 
= 0 have the form

∇(ψ) = ∇P +
ρ2

ρ2 + r2
eaIa, (5.121)

where ∇P , ea and Ia are globally well-defined, and the coordinate r is related
to s as s = rϑ for some positive rational number ϑ, in the region r, s > 0.
For negative values of r and s we can set s = −(−r)ϑ. It follows that ∇(ψ)
extends continuously to negative values of r, and if the coordinate r is
smooth around r = 0 (like s is on AdS3) then ∇(ψ) is smooth as well. As
we have argued in Section 4.1 the limiting connection limψ→0∇(ψ) develops
a singularity at r = 0. But here the interpretation of the singularity is more
obvious than it was for a single NS5-brane, since the metric is continuous,
and the locus {r = 0} is a nine-dimensional subspace of AdS3 ×Xk × T

7−k.
It forms a horizon, where the vector field ∂

∂r becomes light-like. The brane
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Figure 3: Schematic view of an (NS1+)NS5-brane geometry. The circles
represent copies of Xk, and the brane world-volume is localized at r = 0.
Far away from the brane the geometry looks like a cone over Xk, close
to the brane it is a cylinder. If only five-branes are present, then the full
space-time is a direct product of the plotted geometry with R

1,1 × T
7−k and

the brane is at infinite geodesic distance from the finite r regions. If there
are also fundamental strings inside the five-brane then close to the brane
r becomes a coordinate of AdS3, the cylindrical region is asymptotic to
AdS3 ×Xk × T

7−k and the nine-dimensional surface {r = 0} becomes light-
like, i.e., its metric is degenerate with signature (8, 0). Time-like geodesics
can now cross the brane in finite proper time.

world-volumes are located within the horizon, due to the fact that the fun-
damental string and NS5-branes are extremal branes [47], i.e., their masses
and charges satisfy a BPS bound.

We have argued that, except for the gauge field, all fields extend at least
continuously to the region r ≤ 0, with identical solutions for r < 0 and r > 0,
since the fields depend only on r2. This is illustrated in figure 3. Note that
a similar extension is possible when there is only an NS5-brane without
strings. In this case metric and dilaton are singular at the brane location
r = 0, and the two regions r > 0 and r < 0 are causally disconnected. The
singularities are cancelled by the addition of fundamental strings, and then
time-like geodesics connect the two regions.

Tian’s theorem tells us that the singular support of the limiting connection
limψ→0∇(ψ) is a calibrated codimension four subspace (or rather a current)
of our hypersurface {s = 0} [14, 15], which we will interpret as the world-
volume of the five-brane. The calibration form for s > 0 is given by [29]

∗Q = e4f ∗
[

ds
s ∧ P +

1
4
dP
]
. (5.122)

Upon restriction to a submanifold {s = const} this becomes ∗Q∣∣{s=const} ∝
∗kP . Hence, we expect that the world-volume of the brane is a formal sum
of products of R

2 × T
7−k with calibrated cycles of dimension k − 3 in Xk,
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for the calibration form ∗P , localized at s = 0. The induced metric on the
six-dimensional world-volume is degenerate with signature (5, 0). In our
construction, we have not singled out any submanifolds of X, and the only
reasonable expectation is that all calibrated cycles get wrapped at once, so
that we obtain some sort of smeared brane. In the simplest case X = S3 the
calibration form is the constant function one, every point of S3 is calibrated,
and the brane is smeared evenly over S3.

For nearly Kähler manifolds the calibrated submanifolds are special
Lagrangian, for nearly parallel G2 ones they are co-associative. In the case
of Sasaki–Einstein manifolds X the calibrated submanifolds of X we are
interested in are complex submanifolds of the cone, when we embed X into
the cone as {1} ×X. It would be desirable to construct explicitly a smooth
extension of our family of instantons∇(ψ) beyond r = 0, which would enable
us to determine the singular support of the limiting connection with ψ = 0
and see whether it can indeed be identified with a union of all elementary
calibrated submanifolds of X localized at r = 0.

When we take the limit ψ → 0 the gauge bundle degenerates, and has to
be treated as a sheaf rather than a bundle [14, 48, 49]. The sheaf is locally
free (a vector bundle) away from the brane, but not along the codimension
four world-volume. Similarly to D-branes in type II string theory [50] the
NS5-branes are not simply submanifolds, but come equipped with a sheaf
as some extra structure.

Consider again a single NS5-brane. The metric is asymptotically cylin-
drical, i.e., of the form

g = −dt2 + dx2 +
α′

4

(dr2
r2

+ gk
)
+ gT7−k (5.123)

in the near-horizon limit. Usually the singular locus {r = 0} is considered
as the codimension (k + 1)-submanifold R

1,1 × T
7−k in the full space-time,

which could accommodate p-branes with p ≤ 8− k [16, 25, 27, 28]. Topo-
logically, this corresponds to the partial one point compactification of the
cylinder R>0 ×X that gives rise to the cone. It is also possible to par-
tially compactify the cylinder through the addition of another copy of X.
Then we find a boundary component R

1,1 ×Xk × T
7−k at r = 0, which

admits higher-dimensional brane world-volumes. This is indeed what we
get when fundamental strings enter; since the metric and dilaton become
non-singular then, there is no longer any ambiguity in the interpretation of
the subspace {r = 0}, which is a nine-dimensional submanifold of AdS3 ×
Xk × T

7−k. Thus, the topology of a single NS5-brane background must be
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viewed as

R
1,1 × T

7−k × R≥0 ×Xk, (5.124)

with a nine-dimensional boundary, rather than

R
1,1 × T

7−k × c(Xk). (5.125)

As mentioned before, negative values for r are possible as well, but the two
regions r < 0 and r > 0 remain causally disconnected.

5.7 Fundamental strings with gauge five-branes

For completeness and in order to connect to the literature [16, 25, 27–29],
we will now discuss another choice for the connections ∇̃ and ∇A, namely
ψ1 = 1 and ψ2 > 0, instead of ψ2 = 0 (ψ1 = χ1 = 1 instead of ψ2 = χ2 = 0
in the Sasaki–Einstein and 3-Sasakian cases). This corresponds to fixing
∇̃ to be the Levi–Civita connection of the cone c(Xk), and gives rise to
a single gauge five-brane plus again an arbitrary number of strings. The
limiting behaviour of the solutions as r → 0 and r →∞ is the same as for
fundamental strings only (up to a rescaling of coordinates and φ0), and in
particular there is no AdS3 region.

Nearly parallel G2. We take the general solution from Section 5.1.6
and choose ψ1 = 1, ψ2 = ρ2/(ρ2 + r2) with integration constant ρ ∈ R. The
remaining fields then read

e2f = λ2r2 +
α′

4

(
1− ρ4

(ρ2 + r2)2

)
,

h(r) = a−2 + 6Qe

∫ ∞
log(r)

exp
(
− 4
3
f(θ)− 14

3
θ
)
dθ.

(5.126)

As mentioned above, if Qe 
= 0 the limiting behaviour as r → 0,∞ is that
of the fundamental string, given by (4.15) and (4.16), except that the gauge
field ∇A in the limit r →∞ does not coincide with ∇c. Since α′/r2 → 0 in
this limit, α′-corrections can be ignored and the field equations are satisfied.
The gauge solitonic brane solution without strings (Qe = 0) for X = S7 was
found in [25].
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Nearly Kähler. To accommodate the choice ψ1 = 1, the solution of Sec-
tion 5.2.6 is altered such that

e2f = λ2r2 +
α′

4

(
1− ρ4

(ρ2 + r2)2

)
,

h(r) = a−2 + 5Qe

∫ ∞
log(r)

exp
(
−f(θ)− 4θ

)
dθ.

(5.127)

The gauge solitonic brane without fundamental strings (Qe = 0) for X = S6

was found in [27].

Sasaki–Einstein. For X2n+1 Sasaki–Einstein, we need to distinguish the
cases n = 1 and n = 2, 3. For n = 1 we set � = 0, ψ1 = χ1 = 1, ψ ≡ ψ2 = χ2

and Qm = 0 (the NS5-brane is turned off in this section), to obtain

e2f = λ2r2 +
α′

4
(
1− ψ2
)
, ψ =

ρ2

ρ2 + r2
, h = a−2 +

Qe

r2
, (5.128)

and the full ten-dimensional solution (5.63) becomes

g =
r2

r2/a2 +Qe
(−dt2 + dx2)

+
(
λ2 +

α′

4
1− ψ2

r2

)(
dr2 + r2gS3

)
+ gT4 ,

H =
2Qer

(r2/a2 +Qe)2
dr ∧ dt ∧ dx+ α′

2
(
1 + 2ψ3 − 3ψ2

)
VolS3 ,

e2(φ−φ0) =
1

r2/a2 +Qe

(
λ2r2 +

α′

4
(
1− ψ2
) )
.

(5.129)

The limiting cases are again the same as for the fundamental string alone,
except when Qe = 0, which leads to Strominger’s gauge five-brane [16].

For n = 2, 3, the full solution can only be found numerically. We will
refrain from numerically solving the full equations (5.64) and merely mention
that the limiting solutions of the fundamental strings remain valid.

3-Sasakian. We take the general results from Section 5.4.6 and specify

χ1 = ψ2
1 = 1, χ2 = ψ2

2 =
ρ2

ρ2 + r2
. (5.130)
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The full solution is then of the form as stated in (5.104) with

e2f = λ2r2 +
α′

8
(1− χ2

2), (5.131)

e2	 = 2
4λ2r2 + α′(1− χ2)
8λ2r2 + α′(1− χ2

2)
, (5.132)

h(r) = a−2 + 6Qe

∫ ∞
log(r)

exp
(
−2f(θ)− 4θ − 2�(θ)

)
dθ. (5.133)

If fundamental strings are present, then they determine the limiting
behaviour, otherwise we obtain a gauge solitonic brane based on an Sp(2)-
instanton on the hyperkähler cone c(X7). For the case, X7 = S7 this was
first obtained in [28].

6 Isometries and holography

To a supergravity vacuum on a Lorentzian manifold (M, g) one can associate
its isometry super Lie algebra isom = b⊕ f, whose bosonic part b consists
of the Killing vector fields, whereas the fermionic part f is spanned by the
Killing spinors. It plays an important role in the AdS/CFT correspondence,
since the near horizon isometries are expected to coincide with the supersym-
metry algebra of the dual CFT. The pairing that maps two Killing spinors
ψ, ε to a Killing vector is the usual spinor bilinear

〈ε, γ0γμψ〉∂μ, (6.1)

whereas the action of a Killing vector V on a spinor ε is given by the Lie
derivative [51]

LV ε := ∇V ε+
1
4
(∇V �) · ε. (6.2)

Here � denotes the musical isomorphism, identifying vectors with one-form
via the metric, with inverse mapping denoted by �. The covariant derivative
∇V � for V a Killing vector is a two-form, which acts naturally on spinors.
In the present situation, the Killing spinor ε is parallel with respect to a
metric connection with torsion proportional to the three-form H, and we
can rewrite the action (6.2) in terms of the one-form θ = V � as

Lθ�ε =
1
4
(∇θ + θ�H

) · ε = 1
4
(∇+θ) · ε, (6.3)
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where ∇+ is the metric compatible connection with torsion equal to minus
the torsion of ∇−. Since two-forms on a pseudo-Riemannian manifold of
signature (p, q) can be identified with the Lie algebra so(p, q), we find that
the isometries acting non-trivially on Killing spinors form a subgroup of
Spin(9,1). As an example consider a connected simply connected simple
Lie group G equipped with its bi-invariant metric. The group G carries a
bi-invariant three-form H, defined by

H(X,Y, Z) = −〈X, [Y, Z]〉 (6.4)

forX,Y, Z elements of the Lie algebra. The holonomy groups of both∇± are
trivial, left-invariant vector fields and left-invariant spinors on G are parallel
with respect to ∇−, and right-invariant vector fields and spinors are parallel
with respect to ∇+ [52]. Hence, the gravitino equation is solved by all left-
invariant spinors on G. It follows from (6.3) that right-invariant vector fields
act trivially on the Killing spinors, so if we neglect any purely bosonic part
of the isometry group then the remaining isometries are generated by all
left-invariant vector fields and left-invariant spinors.

Note that a Lie group with its bi-invariant metric and three-form does not
by itself solve the supergravity equations, since the dilatino equation does
not hold, but it can appear as a factor in the solution. The near horizon
AdS3 solutions are exactly of this type, with G = SL(2,R) = AdS3. Thus,
the non-trivial part of the isometry algebra of our near horizon backgrounds
contains one sl(2,R) = so(2, 1) component, similarly to the proposed max-
imally supersymmetric AdS3 × Sk × T

7−k solutions of [6, 7]. In the follow-
ing, we will determine the super isometries of the near horizon solutions,
neglecting bosonic isometries that act trivially on the Killing spinors, like
the right-invariant Killing vectors on AdS3. The results are collected in
table 8.

Nearly Kähler and nearly parallel G2. In this case, the isometry alge-
bra is simply so(2, 1), and the spinors are in the two-dimensional represen-
tation. The resulting super Lie algebra is osp(1|2) [53].

Three-dimensional Sasaki–Einstein. The only simply connected
three-dimensional Sasaki–Einstein manifold is the 3-sphere S3 = SU(2).
Similarly to the AdS3 component, its bosonic isometries are SU(2)× SU(2)
but only one SU(2) acts non-trivially on spinors. There are 16 ∇−-parallel
spinors, but only eight of them solve the dilatino equation. The eight Killing
spinors transform in the (2,2)⊕ (2,2) representation of SL(2,R)× SU(2),
and the resulting super Lie algebra is psu(1, 1|2). This result also fol-
lows from the analogous solution of type IIB supergravity, describing the
horizon of a D1+D5-brane system, with isometries psu(1, 1|2)⊕ psu(1, 1|2)



HETEROTIC STRING PLUS FIVE-BRANE SYSTEMS 817

Table 8: Super isometry algebras isom = b⊕ f of the near horizon solutions.

dimX X b f isom

7 nearly parallel G2 so(2, 1) (2) osp(1|2)
5, 7 Sasaki–Einstein so(2, 1)⊕ u(1) (2)⊕ (2) osp(2|2)
7 3-Sasakian so(2, 1)⊕ sp(1) (2,3) osp(3|2)
6 nearly Kähler so(2, 1) (2) osp(1|2)
3 Sasaki–Einstein so(2, 1)⊕ su(2) (2,2)⊕ (2,2) psu(1, 1|2)

[43, 54], and whose world-sheet CFT is the product of an SL(2,R)- with an
SU(2)-WZW model [55]. Note also that [6] proposed the isometry algebra
D(2, 1;α)⊕D(2, 1;α) for the expected heterotic AdS3 × S3 × T

4 solution
with maximal supersymmetry, similar to the M -theory case [56].

Five-dimensional and seven-dimensional Sasaki–Einstein. The
bosonic isometry algebra is so(2, 1)⊕ u(1). Sasaki–Einstein manifolds come
equipped with a one-form η and a two-form ω such that ∇η = 2ω, and
the three-form H is given by 2η ∧ ω. The u(1) isometries are generated by
the vector field dual to η, and we have

Lη�ε = ω · ε. (6.5)

The resulting super Lie algebra is osp(2|2).
3-Sasakian. The Killing vectors form an so(3)-algebra. A 3-Sasakian
manifold has three 1-forms ηα and three two-forms ωα, α = 1, 2, 3, such
that

∇ηα = 2ωα + εαβγη
β ∧ ηγ . (6.6)

The three-form is given by H = 2ηα ∧ ωα + 2η123, and the so(3)-Killing vec-
tors are generated by the (ηα)�. We conclude that

L(ηα)�ε =
(
ωα +

1
2
εαβγη

β ∧ ηγ
) · ε. (6.7)

It follows from the results of [29] that the Killing spinors transform in the
3-representation of so(3), and the full isometry algebra is osp(3|2).
According to Brown and Henneaux, the isometry algebra of an asymp-

totic AdS3 geometry admits an affine extension containing two Virasoro
algebras [57], in the supergravity case a possibly non-linear superconformal
algebra [58]. The affine extension comes from bulk diffeomorphisms that do
not vanish rapidly at the conformal boundary. The classification of these
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Table 9: Proposed super isometry algebras for hypothetical maximally
supersymmetric solutions of heterotic supergravity.

Geometry isom

AdS3 × S7 osp(8|2)
AdS3 × S6 f(4)
AdS3 × S5 su(1, 1|4)
AdS3 × S4 osp(4∗|4)
AdS3 × S3 D(2, 1;α)⊕D(2, 1;α)
AdS3 × S2 osp(4∗|4)

superconformal algebras can be found in [59,60] (or see [7]); the ones relevant
to our cases are

ôsp(N |2) and p̂su(1, 1|2), (6.8)

for N = 1, 2, 3. These are classical linear superconformal algebras, except
for ôsp(3|2) which contains a non-linear term in the commutation relations.
They should be compared to the following superconformal algebras, which
have been proposed as isometries of maximally supersymmetric AdS3-
backgrounds in [5–7] (see table 9).

All of the superalgebras in table 9 possess superconformal extensions as
well, with D̂(2, 1;α) being the only linear super Lie algebra, but ôsp(4∗|4)
and ŝu(1, 1|4) cannot have unitary highest weight representations [7,60,61],
a problem that does not seem to occur for the algebras relevant to our
backgrounds. The superconformal algebras with a simple compact bosonic
subalgebra possess a discrete level k, which was shown to be related to the
number of stringsN in [7]. In the case of ôsp(1|2) with its bosonic subalgebra
ŝl(2,R) the level may assume continuous values, however.

Since the supergravity backgrounds asymptote to AdS3 we expect them to
possess holographically dual two-dimensional conformal field theories, whose
symmetries should coincide with the super isometries of the near horizon
geometry. There is an obvious candidate for the CFT side with the right
symmetries, namely a world-sheet sigma model with target space the near
horizon background. Isometries of the target space give rise to symmetries of
the sigma model (e.g., [62] for the classical sigma model), hence the bosonic
symmetries match. Furthermore, the occurrence of a “heterotic” isometry
algebra, i.e., one with left-moving but no right-moving supersymmetry, is a
strong indication of a heterotic world-sheet theory.
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The simplest example is the sigma model with target AdS3 × S3, which
is a Wess–Zumino–Witten (WZW) model on SL(2,R)× SU(2), with van-
ishing α′-corrections. The IIB WZW model was shown explicitly to admit
a p̂su(1, 1|2)⊕ p̂su(1, 1|2) symmetry algebra [63, 64], so that we can indeed
expect to find an ŝl(2,R)⊕ ŝu(2)⊕ p̂su(1, 1|2) algebra in the heterotic set-
ting. Proposals for the heterotic world-sheet CFT on maximally supersym-
metric AdS3 backgrounds have been made in [5, 6, 65].

7 Conclusion

In this paper, we have presented order α′ solutions of heterotic supergravity
based on space-time patches of the form R

1,1 × R×Xk × T
7−k, with Xk

being one of the four types of geometric Killing spinor manifolds in dimen-
sions k = 3, 5, 6, 7. The solutions describe the intersection of a fundamental
string with an NS5-brane and an optional gauge anti-five-brane, and general-
ize the previously known case of NS1+NS5-branes on flat Minkowski space,
where X = S3. We have found the complete analytical solution for nearly
parallel G2 and nearly Kähler manifolds X in the case of absent gauge anti-
five-brane, and the complete solution for 3-Sasakian manifolds. The NS5-
brane wraps calibrated cycles of dimension k − 3 inside Xk, which is a com-
mon property of BPS branes [66], and it would be interesting to determine
the cycles in some special cases. Furthermore, on the brane world-volume
the gauge bundle associated to the NS5-brane degenerates to a sheaf, which
comes equipped with a “point-like instanton” or its higher-dimensional gen-
eralization. Contrary to the case X = S3 the singular instanton is supported
not only on the world-volume, but coincides with the pull-back of the canon-
ical connection on X away from the brane.

Motivated by the separate supergravity solutions for fundamental strings
and NS5-branes, we have made the following ansatz for the ten-dimensional
metric g and connection ∇− (In the string frame; the choice of frame is rele-
vant for the structure in which the functions h and f appear in the metric.):

g = h−1(τ)
(−dt2 + dx2

)
+ e2f(τ)

(
dτ2 + gk(τ)

)
+ gT7−k ,

∇− = ∇P + sab(τ)eaIb + e−f∂τ (h−1/2)
(
dt− dx)I8 − 1

4
d(log h)Z.

(7.1)

Here ∇P is the canonical connection on Xk, with totally antisymmetric
torsion and reduced holonomy. I8 is a generator of the R

8 subalgebra of
spin(9, 1), Z a generator of so(1, 1), the ea are a basis of one-forms on Xk,
and the Ib generate the orthogonal complement of the structure group of Xk

inside the holonomy group of the cone c(Xk). The coefficient matrix sab(τ)
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is in fact diagonal, and for a nearly Kähler or nearly parallel G2-manifold
Xk it is proportional to the unit matrix. In this case, the internal metric
gk is τ -independent, whereas it has some explicit τ -dependence if Xk comes
equipped with a Sasakian structure. The gauge connection ∇A is identi-
fied with the pull-back of the canonical connection ∇P of X away from the
horizon at r = 0 (r = eτ ) where it becomes singular, and it gives rise to the
NS5-brane. The additional gauge anti-five-brane is obtained when the con-
nection ∇̃ interpolates between ∇P as r →∞ and ∇c for r → 0, and it is
absent when ∇̃ = ∇c globally.

Solving the heterotic BPS equations (2.2), the Bianchi identity (2.5) and
the time-like components of the field equations (2.4) determines the remain-
ing degrees of freedom in g and∇−, as well as fixing the other 10-dimensional
bosonic fields H and φ. The most important deviation from the separate
solutions for fundamental strings and five-branes is that the function h is
no longer harmonic for an NS1+NS5-brane system. On the other hand,
the field components coming from the five-branes remain unchanged. The
solutions interpolate between

AdS3 ×Xk × T
7−k → R

1,1 × c(Xk)× T
7−k, (7.2)

whereby the ten-dimensional fields take the explicit form

g = s2(−dt2 + dx2) + ε1α
′ds2

s2
+ ε2

α′

4
gk + gT7−k (s ∝ rε5),

H = d(s2) ∧ dt ∧ dx+ ε3
α′

2
P, e2(φ−φ0) =

ε4
Qe

(
α′

4

)(k−1)/2

,

(7.3)

as r → 0. The AdS3 radius is determined by ε1 as R2
AdS3

= ε1α
′. For r →∞

we have

g = a2(−dt2 + dx2) + λ2(dr2 + r2gk) + gT7−k

H = 0, e2(φ−φ0) = a2λε5 .
(7.4)

This succinctly summarizes the main results of Section 5. In their limiting
behaviour, the solutions for the four types of geometric Killing spinor man-
ifolds share the same structure differing only by some numerical coefficients
ε1, . . ., ε5. The latter are collected in table 10.

Perturbative string theory can be thought of as a double expansion in
the string coupling gs = eφ and the Regge slope α′. For a large number of
fundamental strings our solutions have a small string coupling, so that we
can trust the first expansion. The explicit α′-dependence of the solutions,
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Table 10: Numerical coefficients for the limiting solutions (7.3) to (7.4) for
the four types of geometric Killing spinor manifolds.

Xk ε1 ε2 ε3 ε4 ε5

Nearly parallel G2 9/196 1 1/3 7/9 14/3
Nearly Kähler 1/16 1 1/2 4/5 4
Sasaki–Einstein 2/(k2 − 1) k+1

2(k−1)
k+1

2(k−1)
k+1

2(k−1) (k + 1)/2
3-Sasakian 1/32 1/2 3/2 1/3 4

however, gives rise to large correction terms at higher order in α′, so that
there is a problem with this expansion. This may be resolved by considering
multiple five-branes instead of a single one. For instance, equation (5.71)
shows that in the near horizon limit for X = S3 both the AdS3 and S3 radii
are proportional to Q1/2

m , whereas the dilaton assumes the form e2(φ−φ0) =
Qm/Qe. Here Qm is the magnetic NS5-brane charge, proportional to the
number of branes, and Qe is the electric charge of the fundamental strings.
Hence, to keep the string coupling small and the volumes large we need to
have a large number of five-branes, while the ratio of five-branes to strings
must remain small. Gauge multi-five-branes on Minkowski space from G2-
and Spin(7)-instantons have been constructed in [42]. In the small instanton
limit, they should give rise to multiple NS5-branes.

ForX = S3 one can even construct a superposition of fundamental strings
with an arbitrary number of gauge five-branes and NS5-branes [11], and for
a particular choice of the parameters one obtains a solution that interpo-
lates between two AdS3 × S3 regions with different radii, which has been
interpreted as a dual gravitational theory to a renormalization group flow
of a CFT [45]. Similar solutions with S3 replaced by some arbitrary man-
ifold with geometric Killing spinors can be expected to exist, but require
the construction of a superposition of gauge five-branes with NS5-branes,
which we have not succeeded in so far. We have also considered the inter-
section of a fundamental string with a gauge five-brane only. In this case,
we do not find an asymptotic AdS3 region. The transformation behaviour of
NS1+NS5-brane systems under string dualities has been discussed in [67];
generalizing this method to our solutions should yield new curved brane
solutions of other supergravities.

The holographic properties of the supergravity solutions have not been
studied in this work, except for the super isometry algebras of the near
horizon geometries, which we determined. They are of “heterotic” type,
and hence give rise to the expectation that the dual CFT is a heterotic
world-sheet theory. Clearly, this deserves further study.
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We have found the explicit supergravity solution describing the intersec-
tion of a fundamental string and a five-brane on the cone over a manifold
with a geometric real Killing spinor, generalizing earlier constructions on
Minkowski space. It is not clear whether this is the most general situation
where our construction can be applied. Consider for instance an arbitrary
non-compact Ricci-flat manifoldM with a codimension one submanifold X.
If M has a parallel spinor ε, then its restriction to X satisfies a generalized
geometric Killing spinor equation

∇V ε− i

2
A(V ) · ε = 0 ∀V ∈ Γ(TX), (7.5)

where A ∈ Γ(End(TX)) is the Weingarten tensor of X [68]. Like the ordi-
nary geometric Killing spinor equation it implies restrictions on the torsion
classes of X. For instance, if M has holonomy Spin(7) then X carries
a cocalibrated G2-structure, if M has holonomy G2 then X is a half-flat
SU(3)-manifold, and if M is six-dimensional Calabi–Yau then X has a so-
called hypo SU(2)-structure [69–72]. Of course, these geometric structures
onX are generalizations of the nearly parallel G2, nearly Kähler and Sasaki–
Einstein geometries, which have A = id. It remains an interesting question
whether the brane solutions presented in this work can be generalized to
the case where M admits an arbitrary foliation by codimension one sub-
manifolds, with a spinor satisfying (7.5), or whether this requires additional
restrictions on A.
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