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Abstract

Following a recent paper by Alday and Tachikawa, we compute the
instanton partition function in the presence of the surface operator by
the localization formula on the moduli space. For SU(2) theories, we
find an exact agreement with conformal field theory (CFT) correlation
functions with a degenerate operator insertion, which enables us to work
out the decoupling limit of the superconformal theory with four flavors to
asymptotically free theories at the level of differential equations for CFT
correlation functions (irregular conformal blocks). We also argue that
the K theory (or five-dimensional) lift of these computations gives open
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726 HIDETOSHI AWATA ET AL.

topological string amplitudes on local Hirzebruch surface and its blow
ups, which is regarded as a geometric engineering of the surface opera-
tor. By computing the amplitudes in both A and B models we collect
convincing evidences of the agreement of the instanton partition func-
tion with surface operator and the partition function of open topological
string.

1 Introduction

In the problem of the non-perturbative physics of four-dimensional gauge
theory the connection to two-dimensional theory has been an useful idea.
For instanton effects in the low-energy effective action (F -term) of N = 2
supersymmetric gauge theories, the seminal work of Nekrasov [1] gives a
combinatorial formula of the instanton partition function, which recalls us
of the theory of free fermions and bosons in two-dimensional conformal field
theory (CFT). Last year this expectation was made quite explicit by Alday-
Gaiotto-Tachikawa (AGT) relation [2]. The holomorphic version of their
proposal tells a relation of the homological (four-dimensional) instanton par-
tition function of N = 2 (quiver) gauge theories and appropriate conformal
blocks. Subsequently, this correspondence was extended to incorporate loop
and surface operators in four-dimensional gauge theory [3] (see also [4, 5]).

In this paper, we consider the instanton partition function in the pres-
ence of a surface operator and its relation to CFT correlation function with
a degenerate field insertion. In a last few months, there appeared several
works where related ideas have been developed [6–10]. We note that most of
them (except [7]) assume the extension of AGT relation proposed in [3] and
discuss the partition function with surface operators by computing the cor-
responding CFT correlation functions and/or topological string amplitudes.
However, as is clearly explained in [7] the computation of the instanton
partition function can be made more directly by localization formula on
the gauge theory side, if we consider the moduli space of instantons which
involves a certain type of surface operator. In a sense, this is a natural exten-
sion of the method, which was used by Nekrasov to derive his formula of
the instanton partition function. Based on the equivariant character formula
derived by Feigin et al. [11], we first present a few examples of direct compu-
tations of the instanton partition function with a surface operator. Precisely
speaking, the formula in [11] is expected to hold when the residual gauge
symmetry on the surface is the maximal abelian subgroup U(1)N ⊂ U(N),
which was called the full surface operator in [7]. But the surface opera-
tor that was argued to correspond to the degenerate operator insertion is
the simple surface operator on which the gauge symmetry is reduced to
U(1) × U(N − 1) ⊂ U(N). Fortunately for the gauge group U(2), these two
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types of the surface operator coincide. Since we rely on this coincidence,
we only consider U(2) gauge theories in this paper. After decoupling the
diagonal U(1) part, they describe SU(2) theories.

The original AGT relation was proposed for the superconformal gauge
theories, which are obtained by compactifying the world volume theory of
M5 branes on an appropriate Riemann surface with punctures [12]. Recent
papers on the extension of AGT relation with surface operator [6–10] mainly
considered the superconformal case. However, the AGT relation can be gen-
eralized to asymptotically free theories [13, 14]. In this paper, we will focus
on SU(2) theories where the number of flavors is in the region 0 ≤ Nf ≤ 3.
According to [3] for superconformal theories we should look at the confor-
mal blocks with a degenerate primary operator Φ1,2 insertion. On the other
hand, in the non-conformal case we have to replace the Virasoro highest
weight states with the so-called Gaiotto states [13], or an analogue of the
Whittaker vector for the Virasoro algebra [15, 16]. We derive the differen-
tial equations for the one point function of Φ1,2 operator with respect to
the Gaiotto states in a systematic manner following the appendix of [17].
In contrast to the differential equations for the usual conformal blocks, our
differential equations have irregular singularities. We then obtain solutions
to the differential equations which can be compared with the instanton par-
tition function, namely those in the form of a power series in the scale
parameter Λ, which appears in the definition of the Gaiotto state on the
CFT side. We show that they agree to the results from the localization
formula on the moduli space. We emphasize that the agreement is estab-
lished beyond the semi-classical limit which was argued in [3]. That is we
do not have to take the limit ε1, ε2 → 0 for the equality. This becomes pos-
sible, since we are able to compute an exact instanton partition function by
the localization formula. On the gauge theory side the asymptotically free
theories are obtained rather easily by taking the decoupling limit of N = 2
SU(2) theory with four flavors, where we take some of the masses of mat-
ter hypermultiplets into infinity and redefine the parameter Λ of instanton
expansion. However, it is not straightforward to achieve the corresponding
limit at the level of differential equations on the CFT side. Hence, we care-
fully work out the degeneration of the differential equations with irregular
singularities, which describes the reduction of the number of flavors. Note
that the irregular singularities appear as a consequence of the congruence
of regular singularities. As a by-product, we can also see how the Gaiotto
state arises from a degeneration of two Virasoro primaries.

As is expected from the idea of geometric engineering [18] the instan-
ton partition function without surface operator is related to the topolog-
ical string amplitudes [19–23]. Namely when the equivariant parameters
(or the Ω background) (ε1, ε2) satisfy the self-dual condition ε1 + ε2 = 0,
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Figure 1: Correspondence among instanton counting, CFT and topological
string.

the five-dimensional lift (K theory version) of the instanton partition func-
tion agrees exactly with the closed topological string partition function on
the local toric Calabi–Yau manifold whose toric diagram is dictated by
the geometric engineering. Since the closed topological string amplitudes
compute the index of Bogomol’nyi-Prasad-Sommerfield (BPS) states (the
Gopakumar–Vafa invariants), the Nekrasov partition function in general Ω
background is expected to give a refinement of the BPS state counting in
topological string theory [23,24]. As the presence of surface operators breaks
half of the supersymmetry and the semi-classical part of the partition func-
tion with surface operator is identified with the twisted superpotential [3], a
natural generalization of the above geometric engineering is to look at open
topological strings, which has been advocated by Gukov [25]. In the second
half of the paper, we explore the idea of geometric engineering of the surface
operator in N = 2 gauge theories. As was proposed by Ooguri and Vafa [26]
the open topological string amplitudes (open BPS invariants) give the knot
and link invariants via the relation to the Chern–Simons theory with the
Wilson loop operator. As the dimensional reduction to three dimensions
reduces the surface operator to the loop operator, the relation to the open
topological string is natural also from the view point of three-dimensional
Chern–Simons theory. In summary the correspondences we will explore in
this paper are shown as fig. 1.

Pure SU(2) Seiberg–Witten theory is geometrically engineered by the
local Hirzebruch surface KF0 (the total space of the canonical bundle of
F0 = P1

b × P1
f ). The local Calabi–Yau manifold KF0 has two moduli param-

eters tb and tf , which represent the Kähler parameters of the base P1
b

and the fiber P1
f , respectively. The parameter of the instanton expansion

(the dynamical mass scale) Λ and the vacuum expectation value a of the
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scalar field in the prepotential of N = 2 theory are related to these moduli
parameters by (βΛ)4 ∼ e−tb and 2βa ∼ tf with β being a scale parameter
of length. By blowing up at Nf points in toric geometry we can add Nf

matter hypermultiplets in the fundamental representation. The correspond-
ing geometry is described by the local toric del Pezzo surfaces. It has been
argued that the (simple) surface operator is geometrically engineered by a
toric Lagrangian brane inserted on the inner edge of the toric diagram which
corresponds to the base P1

b of the surface [8]. We compute topological open
string amplitudes on this local toric Calabi–Yau geometry with a brane in
both A and B model perspectives. The disc amplitude, which corresponds to
the superpotential, is most easily computed by the B model approach, since
it is naturally related to the period integral. We first use the Seiberg–Witten
curve which can be associated to the semi-classical limit of the expectation
value of the energy–momentum tensor on the CFT side. We also make
computations based on the mirror curve of the local Calabi–Yau geometry.
In both cases we can show an agreement with CFT correlation functions with
a degenerate field insertion. We employ the method of remodeling [27,28] in
our B model computations. One of the advantages of this method is that we
can easily increase the number of holes (boundaries) of the world sheet by
the topological recursion relation coming from the matrix model [29]. Moti-
vated by a recent suggestion in [6], we also compare annulus amplitude and
three hole amplitude with CFT correlation functions with multiple insertion
of Φ1,2 operator. We again find a matching of both computations as far as
the comparison is possible.

For the A model computation we use the powerful method of the topo-
logical vertex [30]. We first look at the decoupling limit of four-dimensional
gauge theory from the two-dimensional theory on the surface. As argued
in [8] in this limit the partition function is reduced to the generating function
of the vortex counting. We show that the vortex counting in [8] can be suc-
cessfully recovered from the localization formula on the affine Laumon space.
From the viewpoint of four-dimensional theory only the sector of vanishing
instanton number survives in this decoupling limit. Thus the next task is
to examine the sector of instanton number one. The corresponding part of
topological string amplitudes is the first order term in the Kähler moduli
parameter tb of the base P1

b. We check that in this order the open topo-
logical string amplitude on the local Hirzebruch surface exactly agrees with
the instanton partition function with a surface operator modulo a partial
shift of the Kähler moduli tf of the fiber P1

f by the parameter of the Ω back-
ground. We conjecture this shift becomes trivial in the limit ε2 → 0, while
keeping ε1 finite. Note that such a limit appears in the recent proposal of
a quantization of the integrable system associated with the Seiberg–Witten
geometry [31] (see also [32–34] and a more recent discussion [9]). It is desir-
able to understand the origin of the shift as an effect of the presence of
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the surface operator, or the insertion of Φ1,2 operator to CFT correlation
functions. The computations of topological string amplitudes in this paper
are subjected to the condition ε1 + ε2 = 0. In the A model, the amplitudes
in general Ω background (ε1, ε2) can be computed by the refined topological
vertex [35, 36], but the computation gets rather involved. The validity of
the above conjecture should be checked by computing the refined topological
string amplitudes. We leave these issues to future works.

The paper is organized as follows. In Section 2 we introduce the instanton
partition function with surface operator and review some of mathematical
background for the relevant moduli space. In Section 3, following the pre-
scription described in [7], we compute the instanton partition function for
pure SU(2) theory as a basic example of the application of the localization
formula. We also consider Nf = 4 theory from which asymptotically free
theories with Nf < 3 are obtained by the decoupling limit. The instanton
partition functions computed by the localization formula are compared with
the corresponding CFT correlation functions in Section 4. We have to mul-
tiply appropriate overall factors for the matching. The origin of the factor is
clarified in Section 5, where the degeneration of the differential equations for
irregular conformal blocks is derived from the consistency with the decou-
pling of the hypermultiplets on the gauge theory side. The latter half of the
paper is devoted to the geometric engineering of the half-BPS surface oper-
ator in N = 2 theories. In Sections 6 and 7, we take the B model approach
based on the topological recursion relation. In Section 8, we compute the A
model amplitude by the method of the topological vertex. Basic formulas
and some of technical details are collected in Appendices.

2 Instanton partition function with surface operator

In [3] the semi-classical matching of the instanton partition function in the
presence of a surface operator and the conformal block with the insertion
of a degenerate field was pointed out. To establish a full agreement beyond
the semi-classical limit we have to set up an appropriate framework of the
instanton counting that incorporates the surface operator. In this section,
we review a few mathematical backgrounds following [3,7] and try to make
the definition of the partition function as clear as possible, since a proper
definition of the moduli space is required to justify the computation of the
partition function by the equivariant localization.

Recall that one of the ways to define the surface operator is to prescribe
a singular behavior of the gauge field [37] (see also [38, 39] for the surface
operators in N = 2 theories and [40, 41] for more mathematical formula-
tion). Let us consider a gauge field Aμ on R

4 � C
2 with complex coordinates
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(z1, z2) and assume that there is a surface operator at z2 = 0, which fills the
z1-plane. If θ is the angular coordinate of the transverse plane (the z2-plane)
to the surface operator, the gauge field diverges as

Aμdx
μ ∼ diag (α1, α2, . . . , αN ) idθ, (2.1)

near the support S := {(z1, z2)|z2 = 0} of the surface operator. Note that
the data (α1, α2, . . . , αN ) which characterize the surface operator give an
element of the Lie algebra of the maximal Abelian subgroup U(1)N of the
gauge group G = U(N). Then we can associate a Young diagram with N
boxes (a partition of N): N = N1 +N2 + · · · +Ns, if diag (α1, α2, . . . , αN )
commutes with L := U(N1) × U(N2) × · · · × U(Ns). From the viewpoint of
the principal G-bundle this means the structure group is reduced to a Levi
subgroup L ⊂ G on the surface. The subgroup L is identified with the Levi
part of a parabolic subgroup P of the complexified Lie group GC = GL(N).
By a gauge transformation we may assume αi ≥ αi+1. When αi are the most
generic, the commutant is U(1)N and the corresponding parabolic subgroup
becomes minimal one, namely the Borel subgroup B of GL(N). The cor-
responding surface operator is called full surface operator in [7]. Note that
since we have fixed the ordering α1 > α2 > · · · > αN , the Weyl invariance
is lost. We will see its effect on the instanton partition function in the next
section. Following the terminology used in the context of N = 4 gauge the-
ory [37], we call the instantons with the singular behavior (2.1) “ramified”
instantons.1 The “ramified” instantons are anti-self-dual connections on
R

4 \ S and their topological indices are the instanton number k and the
monopole number

m :=
1
2π

∫
S
F ∈ ΛL � H2(G/L,Z). (2.2)

For the full surface operator we can see the origin of the monopole number
as follows: since the gauge group on the surface is reduced to L = U(1)N in
this case, we have N abelian gauge fields or line bundles L1, L2, . . . , LN on
the surface. Hence the “ramified” instanton has N monopole numbers

mi :=
1
2π

∫
S
Fi =

∫
S
c1(Li), i = 1, 2, . . . , N. (2.3)

1The name “ramified” comes from the fact that the ramification in the (geometric)
Langlands problem is related to the presence of a surface operator, or a codimension two
singularity in gauge theory.
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The generating function of the instanton counting with surface operator
is defined by

Z
(S)
inst =

∞∑
k=0

∑
m∈ΛL

qkzm

∫
MN,(k,m)

1, (2.4)

where q is a parameter of instanton expansion and MN,(k,m) is the mod-
uli space of “ramified” U(N) instantons with instanton number k and the
monopole number m. If the theory is superconformal, we can relate the
expansion parameter to the gauge coupling τ by q = e2πiτ . For asymptot-
ically free theories it is replaced with the parameter of dynamical scale Λ
with appropriate mass dimension. If we put the expansion parameter z
associated with the monopole number to z = e2πit, then the parameter t has
the following meaning. As was argued by Gukov and Witten [37] in N = 4
gauge theories, the surface operator may be described by a coupling of four-
dimensional gauge theory to a two-dimensional sigma model on the surface
S with the target G/L � GC/P . Then the parameter t is identified with the
complexified Kähler moduli of the flag manifold GC/P . From the view point
of the sigma model the monopole number m measures the degrees of the map
Φ : S → G/L. For example, when L = U(1) × SU(N − 1) ⊂ U(N), the tar-
get space is the projective space CPN−1 and t is the complexified Kähler
moduli of the projective space, which is one-dimensional. In this case, the
monopole number is a single integer and the corresponding surface operator
is called simple [7].

As was discussed in [7] it is convenient to combine the instanton number
and monopole numbers to define a vector �k = (k1, k2, . . . , kN ) as follows:2

k1 = k, ki+1 − ki = mi. (2.5)

The moduli space M
N,�k

of the “ramified” instantons with the topological

number �k has real dimension 4(k1 + k2 + · · · + kN ). Since we integrate 1
over the moduli space in (2.4), we may expect it computes the volume of
M

N,�k
. However, the moduli space is highly singular and “non-compact”.

Hence we have to regularize the integral. To overcome the problem we can
employ the strategy that was used to derive the Nekrasov partition function.
We consider a natural toric action of T on the moduli space and the integral
is regularized as the equivariant integral, or the push forward to the equi-
variant cohomology of a point HT(pt). In the next section, we will compute
the equivariant integral by using the localization formula. But the use of the

2In [15,16] it was pointed out that it is natural to combine k with mi from the viewpoint
of the affine Lie algebra.
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localization theorem is mathematically justified only when the moduli space
is smooth. However, M

N,�k
suffers from various types of singularities, which

keeps us from applying the localization formula. A standard method to han-
dle such a problem is to consider torsion-free sheaves with an appropriate
stability condition; see [7] and literatures in mathematics cited therein. The
use of torsion-free sheaves for the instanton counting without surface opera-
tors is clearly explained in [42,43]. It is shown that torsion-free sheaves are
also useful for constructing a Uhlenbeck space for the instantons with a par-
abolic structure [44]. For general gauge group G the existence of a smooth
moduli space is still open problem, even if we shift the construction of a
smooth moduli space to the problem of torsion-free sheaves. Fortunately for
G = U(N) a resolution of singularities M̃

N,�k
→ M

N,�k
(called small resolu-

tion in mathematics) is successfully constructed.3 The smooth moduli space
M̃

N,�k
can be regarded as an affine version of the Laumon space and called

affine Laumon space in mathematics [45, 46]. According to the description
in [7] it consists of the equivalence classes of the following data up to gauge
transformations:

• Stable rank N torsion-free sheaves on P1 × P1 with a given topological
number �k;

• A fixed framing at infinity {z1 = ∞} ∪ {z2 = ∞};
• A reduction of the gauge group GL(N) to a parabolic subgroup P on

the surface {z2 = 0}, which is called a parabolic structure.

It is remarkable that in the definition of the affine Laumon space M̃
N,�k

,
a “compactification” of C

2 is given not by P2 but by P1 × P1. The stan-
dard toric action (z1, z2) → (eiε1 · z1, eiε2 · z2) on C

2 survives after this “com-
pactification”. Thus, we can consider the fixed point of the toric action
of T := U(1)2 × U(1)N ⊂ SO(4) × U(N) on the moduli space of “ramified”
instantons, which is familiar in the computation of the Nekrasov partition
function. In [11] it was shown that the fixed point is isolated and labeled
by an N -tuple of Young diagrams �λ = (λ1, λ2, . . . , λN ). However, we should
warn that the manner how these Young diagrams appear is rather different
from the case of the standard instanton where the moduli space is con-
structed by ADHM data. In fact, the constraints imposed on the N -tuple
of Young diagrams �λ are

ki = ki(�λ) :=
∑
j≥0

λi+j,j+1, (2.6)

3We would like to thank K. Nagao for explaining this fact.
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where λi,j is the length of the jth row of the Young diagram λi and we
define λi,j for i > N by requiring λi+N ≡ λi. Thus, the fixed points on
the moduli space M̃

N,�k
are in one-to-one correspondence with �λ that sat-

isfies the condition (2.6). Because the affine Laumon space is smooth, we
can consider the tangent space at each fixed point with complex dimension
2(k1 + k2 + · · · + kN ). At fixed points the toric action induces a structure
of U(1)2 × U(1)N module on the tangent space. In [11], the structure of
this module was determined and a formula of equivariant character was pro-
vided, which allows us to compute the instanton partition function (2.4) by
the localization theorem.

It is amusing that a closely related moduli space was already appeared
in a proof of the Nekrasov conjecture from the viewpoint of integrable sys-
tem and the representation theory of the affine Lie algebra [15, 16], where
the moduli space of the instantons with parabolic structure was introduced.
In [15, 16], the Uhlenbeck compactification of the moduli space [44] and a
sophisticated theory of the intersection cohomology were used to compute
the equivariant integral. On the other hand, the affine Laumon space pro-
vides a semi-flat resolution of singularities and we can apply the standard
theory of the equivariant cohomology and the localization theorem to com-
pute our partition function (2.4).

3 Equivariant localization on affine Laumon space

In this section, following the method of computation in [7], we work out a few
examples of the instanton partition function in the presence of the surface
operator by localization formula. As was discussed in the last section if the
gauge group is U(2), the fixed points are isolated and labeled by a pair of
Young diagrams The measure of the localization formula at each fixed point
is obtained from explicit computations of the equivariant character of toric
action on the affine Laumon space. Fortunately, we have a formula of the
equivariant character derived in [11], which is given in Appendix A (see also
equation (3.10) in [7]).

3.1 Pure Yang–Mills theory

Let us assume that all the fields in the theory are in the adjoint representa-
tion. The so-called N = 2∗ theory with a massive adjoint matter, which is
a deformation of N = 4 conformal theory is a typical example. Pure Yang–
Mills theory, which can be obtained by decoupling the adjoint matter of
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N = 2∗ theory, is an example of asymptotically free theories. In this case,
we only need the diagonal component of the equivariant character provided
in Appendix A, where we set a = b and λ = μ. The fixed points of the toric
action are labeled by a pair of partitions �λ := (λ1, λ2) and λm,n = λm+2,n

denotes the nth component of the partition λm. The vacuum expectation
values of the scalar fields ak are also defined with ak+2 ≡ ak. At each fixed
point �λ the formula in Appendix A gives many terms in general. But after
several cancellations the final result should be a sum of 2|�λ| monomials with
|�λ| =

∑∞
n=1(λ1,n + λ2,n):

ch(ak, ε1, ε2) := Tr
Ext(�λ,�λ)

g =
2|�λ|∑
i=1

esi , (3.1)

where each power si is a linear combination of ε1, ε2 and ak.

By the localization theorem the instanton partition function with a (full)
surface operator is computed as follows [7]:

Z(S)(x, y; ε1, ε2, a,m) =
∑
�λ

xk1(�λ)yk2(�λ)nmatter(�λ; a,m)

ngauge(�λ, a)
. (3.2)

The equivariant character (3.1) gives nmatter(�λ; a,m) := nadj(�λ; a,m) for the
adjoint hypermultiplet with mass m and ngauge(�λ, a) := nadj(�λ; a, 0) for the
vector multiplet. For cohomology version, we have

nadj(�λ; a,m) =
2|�λ|∏
i=1

(si −m), (3.3)

while for K-theory version it is

nadj(�λ; a,m) =
2|�λ|∏
i=1

2 sinh((si −m)/2). (3.4)

In (3.2), x, y are (formal) expansion parameters and topological numbers
are defined by

k1(�λ) :=
∑
n≥1

λ1,2n−1 +
∑
n≥1

λ2,2n, k2(�λ) :=
∑
n≥1

λ1,2n +
∑
n≥1

λ2,2n−1. (3.5)
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We see that k1 + k2 = |�λ|. The relation to the instanton number k and the
monopole charge m on the surface is given by

k = k1, m = k2 − k1. (3.6)

Note that we have both positive and negative monopole charges.

In view of the comparison with CFT correlation functions, let us look at
the cohomology version:

Z
(S)
N=2∗(x, y; ε1, ε2, a,m) =

∑
�λ

xk1(�λ)yk2(�λ)

2|�λ|∏
i=1

si −m

si
. (3.7)

This is the instanton partition function for the mass deformed N = 4
theory. In the massless limit, it just counts the number of fixed points with
weight xk1(�λ)yk2(�λ). In the decoupling limit (m→ ∞), by renormalizing the
parameters x, y by m2, we have

Z
(S)
Nf=0(Λi; ε1, ε2, a) =

∑
�λ

Λk1(�λ)
1 Λk2(�λ)

2

2|�λ|∏
i=1

1
si
, (3.8)

where Λ1 = m2x and Λ2 = m2y. The condition of vanishing monopole charge
is k := k1(�λ) = k2(�λ) and in this case |�λ| = 2k. Restricting to this sector the
partition function becomes

Z
(m=0)
Nf=0 (Λi; ε1, ε2, a) =

∑
k=k1(�λ)=k2(�λ)

(Λ1Λ2)k
4k∏
i=1

1
si
. (3.9)

From the formula in Appendix A, we have computed the characters
ch(ak, ε1, ε2) for lower instanton numbers. We can see that in general the
character at (λ2, λ1) is obtained from that at (λ1, λ2) by the transformation
(a1 − a2) → (a2 − a1) − ε2 and (a2 − a1) → (a1 − a2) + ε2. Our computa-
tion gives the following partition function for pure gauge theory:

Z
(S)
Nf=0(Λi; ε1, ε2, a)

= 1 +
1

ε1(−2a+ ε1)
Λ1 +

1
ε1(2a+ ε1 + ε2)

Λ2

+
1

2ε12(−2a+ ε1)(−2a+ 2ε1)
Λ2

1
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+
1

2ε12(2a+ ε1 + ε2)(2a+ 2ε1 + ε2)
Λ2

2

+
(

1
ε1ε2(2a)(−2a+ ε1)

+
1

ε12(−2a)(2a+ ε2)

+
1

ε1ε2(2a+ ε1 + ε2)(−2a− ε2)

)
Λ1Λ2

+
1

6ε31(−2a+ ε1)(−2a+ 2ε1)(−2a+ 3ε1)
Λ3

1

+
(

1
ε12(−ε1 + ε2)(2a)(−2a+ ε1)(−2a+ 2ε1)

+
1

ε1ε2(ε1 − ε2)(2a)(−2a+ ε1)(−2a+ ε1 + ε2)

+
1

2ε13(2a− ε1 + ε2)(−2a)(−2a+ ε1)

+
1

ε12ε2(−2a)(−2a+ ε1 − ε2)(2a+ ε1 + ε2)

)
Λ2

1Λ2

+
(

1
ε12ε2(−2a+ ε1)(2a+ ε1)(2a+ ε2)

+
1

2ε13(−2a− ε1)(2a+ ε2)(2a+ ε1 + ε2)

+
1

ε12(−ε1 + ε2)(−2a− ε2)(2a+ ε1 + ε2)(2a+ 2ε1 + ε2)

+
1

ε1ε2(ε1 − ε2)(−2a− ε2)(2a+ ε1 + ε2)(2a+ ε1 + 2ε2)

)
Λ1Λ2

2

+
1

6ε31(2a+ ε1 + ε2)(2a+ 2ε1 + ε2)(2a+ 3ε1 + ε2)
Λ3

2 +O(Λ4
i ), (3.10)

where we have set a := a1 = −a2. As we will see in the next section, up to
this order the partition function Z(S)

Nf=0(Λi; ε1, ε2, a) completely agrees to the
result, which is obtained from the differential equation for CFT one point
function with Φ1,2 insertion. This means that Z(S)

Nf=0(Λi; ε1, ε2, a) satisfies
the differential equation in the Appendix of [17], after the substitution
Λ1 = −z−1Λ2, Λ2 = −zΛ2, where z is the position of the degenerate field
insertion.

The free energy is defined by

F
(S)
Nf=0(Λi; ε1, ε2, a) = logZ(S)

Nf=0(Λi; ε1, ε2, a). (3.11)
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Using log(1 + x) = x− x2

2 + x3

3 + · · · , we find

F
(S)
Nf=0(Λi; ε1, ε2, a)

=
1

ε1(−2a+ ε1)
Λ1 +

1
ε1(2a+ ε1 + ε2)

Λ2 − 1
2ε1(−2a+ ε1)2(−2a+ 2ε1)

Λ2
1

− 1
2ε1(2a+ ε1 + ε2)2(2a+ 2ε1 + ε2)

Λ2
2

− 2
ε1ε2(2a+ ε1 + ε2)(2a− ε1)

Λ1Λ2

− 2
3ε1(2a− ε1)3(2a− 2ε1)(2a− 3ε1)

Λ3
1

+
2

3ε1(2a+ ε1 + ε2)3(2a+ 2ε1 + ε2)(2a+ 3ε1 + ε2)
Λ3

2

− 2
ε1(2a− ε1)2(2a− 2ε1)(2a− ε1 − ε2)(2a+ ε1 + ε2)

Λ2
1Λ2

+
2

ε1(2a+ ε1 + ε2)2(2a− ε1)(2a+ 2ε1 + ε2)(2a+ ε1 + 2ε2)
Λ1Λ2

2

+O(Λ4
i ). (3.12)

Note that the higher pole of ε1−2 disappears in the free energy. The above
expressions are not invariant under the Weyl group action a→ −a of SU(2).
However, by the shift 2ã := 2a+ ε2

2 , we may recover the invariance under
ã→ −ã.

In the free energy (3.12), the pole structure of the terms with non-
vanishing monopole number (Λn

1Λm
2 , (n = m)) is ε−1

1 , while that of zero
monopole part is (ε1ε2)−1. Thus, it is natural to compare the zero monopole
number terms of the free energy with the Nekrasov partition function. Up
to three instantons we obtain

F
(m=0)
Nf=0 (Λi; ε1, ε2, a) =

2Λ1Λ2

ε1ε2D1(a)D1(−a− ε2/2)
− N2Λ2

1Λ
2
2

ε1ε2D2(a)D2(−a− ε2/2)

+
16
3

N3Λ3
1Λ

3
2

ε1ε2D3(a)D3(−a− ε2/2)
+O(Λ4

1Λ
4
2)

(3.13)

with

D1(a) := (2a+ ε1 + ε2),

D2(a) := (2a+ 2ε1 + ε2)(2a+ ε1 + ε2)2(2a+ ε1 + 2ε2),
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D3(a) := (2a+ 3ε1 + ε2)(2a+ 2ε1 + ε2)(2a+ ε1 + ε2)3(2a+ ε1 + 2ε2)

× (2a+ ε1 + 3ε2),

N2 := 20a2 + 10ε2a+ (7ε21 + 11ε1ε2 + 2ε22),

N3 := 144a4 + 144ε2a3 + (232ε21 + 416ε1ε2 + 88ε22)a
2

+ (116ε21 + 208ε1ε2 + 26ε22)ε2a

+ (29ε41 + 116ε31ε2 + 118ε21ε
2
2 + 13ε1ε32 + 3ε42). (3.14)

On the other hand, the free energy of the Nekrasov partition function is

F
(Nek)
Nf=0 (Λ; ε1, ε2, a) =

2Λ4

ε1ε2D1(a)D1(−a) − N
(Nek)
2 Λ8

ε1ε2D2(a)D2(−a)

+
16
3

N
(Nek)
3 Λ12

ε1ε2D3(a)D3(−a) +O(Λ16) (3.15)

with

N
(Nek)
2 := 20a2 + (7ε21 + 16ε1ε2 + 7ε22),

N
(Nek)
3 := 144a4 + (232ε21 + 568ε1ε2 + 232ε22)a

2

+ (29ε41 + 154ε31ε2 + 258ε21ε
2
2 + 154ε32ε1 + 29ε42). (3.16)

The free energy of the Nekrasov partition function is symmetric under both
a→ −a (the SU(2) Weyl invariance) and ε1 ↔ ε2. However, the existence of
the surface breaks these symmetries, even in the vanishing monopole sector.
One may argue the origin of this discrepancy from the view point of CFT
correlation function with Φ1,2 operator insertion. The comparison of (3.13)
and (3.15) suggests a simple rule of translation between the denominators.
We will encounter a similar rule in the computation of open topological
string amplitudes by the topological vertex. It is very curious that up to
three instantons both the free energies give the same result in the limit
ε2 → 0. Thus, we conjecture that

lim
ε2→0

ε1ε2 F
(m=0)
Nf=0 (Λi; ε1, ε2, a) = lim

ε2→0
ε1ε2 F

(Nek)
Nf=0 (Λ; ε1, ε2, a). (3.17)

with Λ4 = Λ1Λ2. If we assume a complete agreement of the instanton par-
tition function with a surface operator and the CFT correlation function
with a degenerate field insertion, which we confirm in lower orders in the
instanton expansion, the conjecture follows from Theorem 1.6 in [16]. This
is because the differential equation for the CFT correlation function with a
degenerate field insertion coincides with the one derived by Braverman and
Etingof [16].
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3.2 Nf = 4 theory (superconformal case)

The equivariant character Tr
Ext(�λ,�μ)

[diag.(ε1, ε2;�a,�b)] at a fixed point of the
toric action on the affine SU(2) Laumon space is given in Appendix A.
After the summation over all the contributions, the equivariant character
Tr

Ext(�λ,�μ)
[diag.(ε1, ε2;�a,�b)] is expressed as a sum of |�λ| + |�μ| monomials:

Tr
Ext(�λ,�μ)

[diag.(ε1, ε2;�a,�b)] =
|�λ|+|�μ|∑

i=1

esi , (3.18)

where each power si is a linear combination of ε1, ε2, ak and bk. Then the
basic ingredient in the following computation is

nS
f [�λ, �μ](�a,�b ;m) :=

|�λ|+|�μ|∏
i=1

(si −m), (3.19)

which was originally denoted by zS
bif in [7]. This is the contribution of

the bifundamental matter hypermultiplet in the localization formula of the
instanton partition function in the presence of the (full) surface operator.

To reformulate the instanton partition function Alday and Tachikawa
[7] introduced a Hilbert space HS

�a with basis |�λ〉〉. The inner product is
defined by

〈〈�λ|�μ〉〉 =
δ�λ,�μ

nvec[�λ](�a)
, (3.20)

where nvec[�λ](�a) := nS
f [�λ,�λ](�a,�a ; 0). We will need the operator that counts

the topological number:

K̂i|�λ〉〉 = ki(�λ)|�λ〉〉. (3.21)

Alday–Tachikawa also introduced the intertwining operator ΦS
�a,m,�b

: HS
�b
−→

HS
�a , which is defined by

ΦS
�a,m,�b

|�λ〉〉�b =
1

nvec[�λ](�b)

∑
�μ

nS
f [�μ,�λ](�a,�b ;m)|�μ〉〉�a. (3.22)

Then the instanton partition function with four flavors in the presence of
the surface operator is given by the following ‘vacuum’ expectation value
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(equation (3.21) of [7]):

Z
(S)
Nf=4(a,Mi, ε1, ε2;x, y) = a1〈〈�∅|ΦS

a1,m1,ax
K̂1yK̂2ΦS

a,m2,a2
|�∅〉〉a2 , (3.23)

where x and y are formal parameters of topological (instanton-monopole)
expansion. The mass of the hypermultiplets Mi gives the parameters ai and
mi in AGT like fashion:

a1 = M1 −M2, m1 = M1 +M2,

a2 = M3 −M4, m2 = M3 +M4. (3.24)

The above reformulation is convenient for identifying the partition function
with the conformal block on the sphere with four punctures.4 Inserting a
complete system of HS

a in the intermediate channel we obtain

Z
(S)
Nf=4(a,Mi, ε1, ε2;x, y)

=
∑
�λ

xk1(�λ)yk2(�λ)(nvec[�λ](�a))a1〈〈�∅|ΦS
a1,m1,a|�λ〉〉a · a〈〈�λ|ΦS

a,m2,a2
|�∅〉〉a2

=
∑
�λ

xk1(�λ)yk2(�λ)
nS

f [�∅, �λ](a1, a;m1) · nS
f [�λ,�∅](a, a2;m2)

nvec[�λ](�a)
. (3.25)

Hence to compute Z
(S)
Nf=4(a,Mi, ε1, ε2;x, y) we only need the equivariant

character where one of the pairs of partitions is trivial. In this case, among
eight types of contributions given in Appendix A only two terms survive,
which give

Tr
Ext(�λ,�∅)[g] = −

∑
k≥1

eak−b1 eε1−ε2� k
2
	 e−ε1λk,k − 1

eε1 − 1

−
∑
k≥1

eak+1−b2 eε1−ε2� k
2
− 1

2
	 e−ε1λk+1,k − 1

eε1 − 1
(3.26)

and

Tr
Ext(�∅,�λ)

[g] =
∑
k≥1

ea1−bk+1 eε1+ε2� k
2
+ 1

2
	 eε1λk+1,k − 1

eε1 − 1

+
∑
k≥1

ea2−bk eε1+ε2� k
2
	 eε1λk,k − 1

eε1 − 1
. (3.27)

4If we have an adjoint matter the partition function is given by the trace over HS
�a , since

it should be identified with the conformal block on the torus with a single puncture.
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From (3.26) and (3.27) we obtain the data for nS
f [�λ,�∅](a, b ;m), which leads

the partition function:

Z
(S)
Nf=4(a,Mi, ε1, ε2;x, y)

= 1 +
(−a+ ε1 − 2M1)(a− 2M3)

ε1(−2a+ ε1)
x+

(a+ ε1 + ε2 − 2M2)(−a− 2M4)
ε1(2a+ ε1 + ε2)

y

+
(−a+ ε1 − 2M1)(−a+ 2ε1 − 2M1)(a− 2M3)(a− ε1 − 2M3)

2ε12(−2a+ ε1)(−2a+ 2ε1)
x2

+

(a+ ε1 + ε2 − 2M2)(a+ 2ε1 + ε2 − 2M2)
(−a− 2M4)(−a− ε1 − 2M4)

2ε12(2a+ ε1 + ε2)(2a+ 2ε1 + ε2)
y2

+
(−a+ ε1 − 2M1)(−a+ ε1 + ε2 − 2M2)(a− 2M3)(a− 2M4)

ε1ε2(2a)(−2a+ ε1)
xy

+
(−a+ ε1 − 2M1)(a+ ε1 + ε2 − 2M2)(a− 2M3)(−a− 2M4)

ε12(−2a)(2a+ ε2)
xy

+

(a+ ε1 + ε2 − 2M1)(a+ ε1 + ε2 − 2M2)
(−a− ε2 − 2M3)(−a− 2M4)
ε1ε2(2a+ ε1 + ε2)(−2a− ε2)

xy

+ · · · . (3.28)

The instanton partition functions with surface operator for asymptotically
free theories with Nf ≤ 3 can be obtained by the decoupling limit, where the
expansion parameters x, y are promoted to Λ1,Λ2 with appropriate mass
dimension. There are several choices of the set of Mi’s with Mi → ∞. In
any case one of the characteristic features of the decoupling is that not only
the denominators but also the numerators of the x2 and y2 terms are of
factorized form. This is because there is only one fixed point with the corre-
sponding topological number. In [7] it is observed that up to an appropriate
U(1) factor the above partition function (3.28) coincides with the four-point
conformal block of SL(2) current algebra on the sphere with an insertion
of the operator K which was introduced in [7]. In Sections 4 and 5, we
will explicitly check that the partition function (3.28) and its decoupling
limit also agree with the Liouville correlation functions on the sphere with
a degenerate field insertion; see Section 5.5 for a summary and a rule of the
correspondence.

One can check that the free energy F (S)
Nf=4(a,Mi, ε1, ε2) = logZ(S)

Nf=4(a,Mi,

ε1, ε2) has a correct pole structure, namely the poles of x2 and y2 terms are
ε−1
1 , while that of xy term is (ε1ε2)−1. However, the explicit form is rather
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lengthy. We only quote the lowest terms:

lim
ε1,ε2→0

ε1 · F (S)
Nf=4(a,Mi, ε1, ε2)|x2

= − 1
16

(a+ 2M1)(a− 2M3)(3a2 + 2a(M1 −M3) + 4M1M3)
a3

,

lim
ε1,ε2→0

ε1 · F (S)
Nf=4(a,Mi, ε1, ε2)|y2

=
1
16

(a− 2M2)(a+ 2M4)(3a2 + 2a(M4 −M2) + 4M2M4)
a3

,

lim
ε1,ε2→0

ε1ε2 · F (S)
Nf=4(a,Mi, ε1, ε2)|xy

=

−a4 + 4(M1M3 +M1M4 +M2M3 +M2M4 −M1M2 −M3M4)a2

−16M1M2M3M4

2a2
.

(3.29)

4 CFT correlation functions with degenerate field insertion

In [3] it was claimed that the surface operator S ⊂ R
4 in the supersymmetric

gauge theory with eight supercharges corresponds to the degenerate primary
operator Φ1,2(z) in the Liouville CFT. An explanation of the correspondence
from the viewpoint of the M2/M5-brane system was also given. Since the
operator Φ1,2(z) that has the momentum − 1

2b satisfies the null state condi-
tion (b2L2−1 + L−2)Φ1,2(z) = 0, when it is inserted in any CFT correlation
functions, we have

b2∂2
zΦ1,2(z) = − : T (z)Φ1,2(z) :, (4.1)

where T (z) is the energy momentum tensor and : : denotes the normal
ordering. When the operator Φ1,2(z) is inserted, the correlation function
has an additional dependence on the position z of the degenerate operator.
One of the points in [3] is that this dependence appears in the subleading
term of the semi-classical approximation:

Ψ(ai, z) := 〈Φ1,2(z)Vm1(z1) · · ·Vmn(zn)〉{ai}

∼ exp
(
−F(ai)

�2
+

W(ai, z)
b�

+ · · ·
)
. (4.2)
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Recall that the original observations of [2] are that

Z(ai) := 〈Vm1(z1) · · ·Vmn(zn)〉{ai} ∼ exp
(
−F(ai)

�2
+ · · ·

)
(4.3)

coincides with the Nekrasov partition function and that

〈T (z)Vm1(z1) · · ·Vmn(zn)〉{ai} ∼ − 1
�2
φSW(z)〈Vm1(z1) · · ·Vmn(zn)〉{ai},

(4.4)

where x2 = φSW(z) gives the Seiberg–Witten curve, which is a double cov-
ering of the punctured Riemann sphere. In asymptotically free theories, we
should consider the correlation functions with respect to the state intro-
duced by Gaiotto [13]. It is natural to call them irregular conformal blocks,
since the differential equations for such correlation functions have irregu-
lar singularities in general. In the appendix of [17] it was noticed that the
differential equation for irregular conformal blocks with Φ1,2(z) insertion
coincides with the differential equation for the instanton partition function
with parabolic structure derived in [16]. Based on these works we expect
that the instanton partition functions computed in Section 3 by localization
formula are obtained from the one-point function of Φ1,2(z) with respect to
the Gaiotto state. In this section, we check the correspondence for Nf = 0, 1
and 2 (see also the next section for the discussion by degenerations from the
superconformal theory with Nf = 4). In Section 4.4, we consider the multi-
point irregular conformal blocks, which should correspond to the instanton
partition functions with multi-surface operators.

4.1 Pure SU(2)

Let us consider the (normalized) correlation function

Z
(0)
null(z, a,Λ) :=

〈Δ−,Λ|Φ1,2(z)|Δ+,Λ〉
〈Δa,Λ|Δa,Λ〉 =:

Ψ(0)(z, a,Λ)

Z
(0)
c (a,Λ)

,

Δ± := Δ
(
a± 1

4b

)
, (4.5)

where Δa := Δ(a) := (b+ b−1)2/4 − a2 is the conformal dimension and
Φ1,2(z) is the degenerate primary field with the conformal dimension
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h1,2 = −1/2 − 3/(4b2). The Gaiotto state |Δ,Λ〉 is the state in the Vira-
soro Verma module V (Δ, c) with the conformal dimension Δ and the central
charge c = 1 + 6(b+ b−1)2, which is characterized by

L1|Δ,Λ〉 = Λ2|Δ,Λ〉, L2|Δ,Λ〉 = 0. (4.6)

There is an ambiguity in the choice of the conformal weights Δ± := Δ(α±) of
the Gaiotto state. According to the fusion rule of Φ1,2 operator,
〈Δ−,Λ|Φ1,2(z)|Δ+,Λ〉 is non-vanishing if and only if α+ − α− = ± 1

2b . The
above choice α± = a± 1

4b is the symmetric one, which leads a result that is
invariant under a→ −a.

In [13] it was conjectured that Z(0)
c (a,Λ) coincides with the Nekrasov

partition function in the pure SU(2) supersymmetric gauge theory, which
has been proved in [48]. According to the appendix of [17], by putting
Ψ(0)(z, a,Λ) = zΔ−−Δ+−h1,2Y (0)(z, a,Λ), one obtains the second-order dif-
ferential equation:5

[(
bz

∂

∂z

)2

+ 2abz
∂

∂z
+ Λ2(z + z−1) +

Λ
4
∂

∂Λ

]
Y (0)(z, a,Λ) = 0. (4.7)

Since we want to compare the instanton partition function computed in the
previous section by localization theorem with solutions to the differential
equation (4.7), we look for a solution of the form

Y (0)(z, a,Λ) =
∞∑

n=0

Λ2nY (0)
n (z, a) (4.8)

with the initial condition Y (0)
0 (z, a) = 1. It is convenient to introduce a mass

scale � and scale the parameters as follows:

a −→ a

�
, Λ −→ Λ

�
. (4.9)

5Note that the operator Φ1,2(z) in this paper corresponds to Φ2,1(z) in the convention
of [17].
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We also introduce the parameters ε1 = b�, ε2 = b−1
� corresponding to the

parameters of the Ω background of Nekrasov. Then we find the following
differential equations for the coefficients Y (0)

n (z, a) in the expansion (4.8):

[(
ε1z

∂

∂z

)2

+ 2aε1z
∂

∂z
+
n

2
ε1ε2

]
Y (0)

n (z, a)

+ (z + z−1)Y (0)
n−1(z, a) = 0, n ≥ 1. (4.10)

A power series solution to (4.10) is given by

Y (0)
n (z, a) =

∞∑
k=−∞

A
(0)
n,kz

k, A
(0)
0,k = δ0,k, A

(0)
n,k = − A

(0)
n−1,k−1 +A

(0)
n−1,k+1

ε1
(
2ak + ε1k2 + 1

2nε2
) ,

(4.11)

and we find the following lower-order terms in the expansion (4.8):

Y
(0)
1 (z, a) = − 1

ε1(−2a+ ε1 + ε2
2 )z

− z

ε1(2a+ ε1 + ε2
2 )
, (4.12)

Y
(0)
2 (z, a) =

1
2ε21(−2a+ ε1 + ε2

2 )(−2a+ 2ε1 + ε2
2 )z2

+
2ε1 + ε2

ε21ε2(−2a+ ε1 + ε2
2 )(2a+ ε1 + ε2

2 )

+
z2

2ε21(2a+ ε1 + ε2
2 )(2a+ 2ε1 + ε2

2 )
, (4.13)

Y
(0)
3 (z, a) = − 1

6ε31(−2a+ ε1 + ε2
2 )(−2a+ 2ε1 + ε2

2 )(−2a+ 3ε1 + ε2
2 )z3

− 16ε21 + 14ε1ε2 + 3ε22 − 16aε1 − 4aε2
4ε31ε2(−2a+ ε1 + ε2

2 )(−2a+ 2ε1 + ε2
2 )

(−2a+ ε1 + 3ε2
2 )(2a+ ε1 + ε2

2 )z

+ · · · .

(4.14)

If we make the shift that was discussed in the last section to make the
partition function invariant under the SU(2) Weyl transformation a→ −a,
then (4.12) to (4.14) completely agree to the instanton expansion (3.10) of
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the partition function of pure SU(2) theory. The free energy is defined by

F
(0)
null(z, a,Λ) := logZ(0)

null(z, a,Λ) =
(
a

ε1
+

1
2

+
3ε2
4ε1

)
log z

+ log
1 +

∑∞
n=1 Λ2nY

(0)
n (z, a)

Z
(0)
c (a,Λ)

, (4.15)

and then we obtain

F
(0)
null(z, a,Λ) =

1
ε1

{
F

(0)
−1 +

(
ε1F

(0)
0,1 + ε2F

(0)
0,2

)
+ O(ε2)

}
, (4.16)

where the leading term is

F
(0)
−1 = log za − z2 − 1

2az
Λ2 − z4 − 1

16a3z2
Λ4 − z6 + 3z4 − 3z2 − 1

48a5z3
Λ6

− 5z8 + 16z6 − 16z2 − 5
512a7z4

Λ8 + · · · . (4.17)

4.2 SU(2) with one fundamental matter

Next, we consider the correlation function

Z
(1)
null(z, a,m,Λ) :=

〈Δ−,Λ,m|Φ1,2(z)|Δ+,Λ〉
〈Δa,Λ,m|Δa,Λ〉 =:

Ψ(1)(z, a,m,Λ)

Z
(1)
c (a,m,Λ)

, (4.18)

where the Gaiotto state |Δ,Λ,m〉 in the Virasoro Verma module V (Δ, c)
satisfies

L2|Δ,Λ,m〉 = −Λ2|Δ,Λ,m〉, L1|Δ,Λ〉 = −2mΛ|Δ,Λ,m〉. (4.19)

The denominator Z(1)
c (a,m,Λ) of (4.18) coincides with the Nekrasov parti-

tion function of SU(2) supersymmetric gauge theory with one fundamental
matter [13, 48]. By putting Ψ(1)(z, a,m,Λ) = zΔ−−Δ+−h1,2Y (1)(z, a,m,Λ),
one obtains the second-order differential equation:

[(
bz
∂

∂z

)2

+
(

2ab+
1
6

)
z
∂

∂z
− Λ2(z2 − z−1) − 2mΛz +

Λ
3
∂

∂Λ

]

× Y (1)(z, a,m,Λ) = 0. (4.20)
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By the decoupling limit of the matterm→∞,−2mΛ3 → Λ4, 4m2z3 → Λ2z3,
the differential equation (4.20) is reduced to (4.7). After introducing the
mass scale � as (4.9) and m→ m/�, we obtain the following
solution to (4.20):

Y (1)(z, a,m,Λ) =
∞∑

n=0

ΛnY (1)
n (z, a,m), Y

(1)
0 (z, a,m) = 1, (4.21)

Y (1)
n (z, a,m) =

∞∑
k=−∞

A
(1)
n,kz

k,

A
(1)
0,k = δ0,k, A

(1)
n,k =

A
(1)
n−2,k−2 −A

(1)
n−2,k+1 + 2mA(1)

n−1,k−1

ε1
(
(2a+ 1

6ε2)k + ε1k2 + 1
3nε2

) .

(4.22)

Lower-order terms in the expansion (4.21) are given by

Y
(1)
1 (z, a,m) =

2mz
ε1(2a+ ε1 + ε2

2 )
, (4.23)

Y
(1)
2 (z, a,m) =

−1
ε1(−2a+ ε1 + ε2

2 )z
+

(2ε21 + ε1ε2 + 4aε1 + 8m2)z2

4ε21(2a+ ε1 + ε2
2 )(2a+ 2ε1 + ε2

2 )
,

(4.24)

Y
(1)
3 (z, a,m) =

−2m(2ε1 + ε2)
ε21ε2(−2a+ ε1 + ε2

2 )(2a+ ε1 + ε2
2 )

+
m(10ε21 + 3ε1ε2 + 12aε1 + 8m2)z3

6ε31(2a+ ε1 + ε2
2 )(2a+ 2ε1 + ε2

2 )(2a+ 3ε1 + ε2
2 )
. (4.25)

Mimicking the prescription for the Nekrasov partition function [2], we multiply
Y (1)(z, a,m,Λ) by an overall factor exp(−Λz/ε1),

Ỹ (1)(z, a,m,Λ) := e−
Λ
ε1

z
Y (1)(z, a,m,Λ) =

∞∑
n=0

ΛnỸ (1)
n (z, a,m), (4.26)

to obtain6

Ỹ
(1)
1 (z, a,m) =

(2m− 2a− ε1 − ε2
2 )z

ε1(2a+ ε1 + ε2
2 )

, (4.27)

6The origin of the overall factor is made clear in the next section, where we discuss the
decoupling limit at the level of differential equations.
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Ỹ
(1)
2 (z, a,m) =

−1
ε1(−2a+ ε1 + ε2

2 )z

+
(2m− 2a− ε1 − ε2

2 )(2m− 2a− 3ε1 − ε2
2 )z2

2ε21(2a+ ε1 + ε2
2 )(2a+ 2ε1 + ε2

2 )
, (4.28)

Ỹ
(1)
3 (z, a,m) = − 2m(2ε1 + ε2) − 2aε2 − ε1ε2 − ε22

2

ε21ε2(−2a+ ε1 + ε2
2 )(2a+ ε1 + ε2

2 )

+

(2m− 2a− ε1 − ε2
2 )(2m− 2a− 3ε1 − ε2

2 )
(2m− 2a− 5ε1 − ε2

2 )z3

6ε31(2a+ ε1 + ε2
2 )(2a+ 2ε1 + ε2

2 )(2a+ 3ε1 + ε2
2 )
. (4.29)

We find an agreement with the computation in the gauge theory. Namely
(4.27) to (4.29) is consistent with the decoupling limit of the partition func-
tion (3.28). Especially the numerators of the coefficients of z2 and z3 are of
factorized form, which is not the case in (4.23) to (4.25). The multiplication
of the overall factor is crucial for this factorization, which is a feature of the
localization computation formula on the gauge theory side. As in the case
of pure Yang–Mills theory, the free energy is

F
(1)
null(z, a,m,Λ) := logZ(1)

null(z, a,m,Λ)

=
1
ε1

{
F

(1)
−1 +

(
ε1F

(1)
0,1 + ε2F

(1)
0,2

)
+ O(ε2)

}
(4.30)

and the leading term is

F
(1)
−1 = log za +

mz

a
Λ +

(a2 −m2)z3 + 2a2

4a3z
Λ2 − m(a2 −m2)z3

6a5
Λ3

+
{
−(a2 −m2)(a2 − 5m2)z4

32a7
+

(a2 −m2)z
4a5

+
1

16a3z2

}
Λ4 + · · · .

(4.31)

4.3 SU(2) with two fundamental matters (first realization)

Let us concentrate on the first realization [13,47] of SU(2) theory with two
fundamental matters and consider the correlation function

Z
(2)
null(z, a,mi,Λ) :=

〈Δ−,Λ,m2|Φ1,2(z)|Δ+,Λ,m1〉
〈Δa,Λ,m2|Δa,Λ,m1〉 =:

Ψ(2)(z, a,mi,Λ)

Z
(2)
c (a,mi,Λ)

,

(4.32)
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where by multiplying an overall factor, exp(−2Λ2/ε1ε2) · Z(2)
c (a,mi,Λ) coin-

cides with the Nekrasov partition function after the scaling Λ → 2Λ [13,
48]. In parallel with the above computations, by putting Ψ(2)(z, a,mi,Λ) =
zΔ−−Δ+−h1,2Y (2)(z, a,mi,Λ), one obtains the second-order differential
equation,

[(
bz

∂

∂z

)2

+ 2abz
∂

∂z
− Λ2(z2 + z−2) − 2Λ(m2z +m1z

−1) +
Λ
2
∂

∂Λ

]

× Y (2)(z, a,mi,Λ) = 0, (4.33)

where by the decoupling limit of the two fundamental matters mi → ∞,
miΛ → −Λ2/2, we see that the differential equation (4.33) is reduced to
(4.7). By introducing the mass scale � as (4.9) and mi → mi/�, we obtain
the following solution to (4.33):

Y (2)(z, a,mi,Λ) =
∞∑

n=0

ΛnY (2)
n (z, a,mi), Y

(2)
0 (z, a,mi) = 1, (4.34)

Y (2)
n (z, a,mi) =

∞∑
k=−∞

A
(2)
n,kz

k,

A
(2)
0,k = δ0,k, A

(2)
n,k =

A
(2)
n−2,k−2 +A

(2)
n−2,k+2 + 2(m2A

(2)
n−1,k−1 +m1A

(2)
n−1,k+1)

ε1
(
2ak + ε1k2 + 1

2nε2
) ,

(4.35)

with

Y
(2)
1 (z, a,mi) =

2m1

ε1(−2a+ ε1 + ε2
2 )z

+
2m2z

ε1(2a+ ε1 + ε2
2 )
, (4.36)

Y
(2)
2 (z, a,mi) =

2ε21 + ε1ε2 − 4aε1 + 8m2
1

4ε21(−2a+ ε1 + ε2
2 )(−2a+ 2ε1 + ε2

2 )z2

+
4m1m2(2ε1 + ε2)

ε21ε2(−2a+ ε1 + ε2
2 )(2a+ ε1 + ε2

2 )

+
(2ε21 + ε1ε2 + 4aε1 + 8m2

2)z
2

4ε21(2a+ ε1 + ε2
2 )(2a+ 2ε1 + ε2

2 )
, (4.37)



“ATMP-16-3-A1-AWA” — 2013/1/31 — 12:14 — page 751 — #27
�

�

�

�

�

�

�

�

LOCALIZATION WITH A SURFACE OPERATOR 751

Y
(2)
3 (z, a,mi) =

m1(10ε21 + 3ε1ε2 − 12aε1 + 8m2
1)

6ε31(−2a+ ε1 + ε2
2 )(−2a+ 2ε1 + ε2

2 )
(−2a+ 3ε1 + ε2

2 )z3

+ · · · . (4.38)

As before, multiplying Y (2)(z, a,mi,Λ) by an overall factor exp(−Λ(z +
z−1)/ε1 − 2Λ2/ε1ε2),

Ỹ (2)(z, a,mi,Λ) := e−
Λ
ε1

(z+z−1) e−
2Λ2

ε1ε2 Y (2)(z, a,mi,Λ)

=
∞∑

n=0

ΛnỸ (2)
n (z, a,mi), (4.39)

we arrive at

Ỹ
(2)
1 (z, a,mi) =

2m1 + 2a− ε1 − ε2
2

ε1(−2a+ ε1 + ε2
2 )z

+
(2m2 − 2a− ε1 − ε2

2 )z
ε1(2a+ ε1 + ε2

2 )
, (4.40)

Ỹ
(2)
2 (z, a,mi) =

(2m1 + 2a− ε1 − ε2
2 )(2m1 + 2a− 3ε1 − ε2

2 )
2ε21(−2a+ ε1 + ε2

2 )(−2a+ 2ε1 + ε2
2 )z2

+
(2m2 − 2a− ε1 − ε2

2 )(2m2 − 2a− 3ε1 − ε2
2 )z2

2ε21(2a+ ε1 + ε2
2 )(2a+ 2ε1 + ε2

2 )
+ · · · ,

(4.41)

Ỹ
(2)
3 (z, a,mi) =

(2m1 + 2a− ε1 − ε2
2 )(2m1 + 2a− 3ε1 − ε2

2 )
(2m1 + 2a− 5ε1 − ε2

2 )
6ε31(−2a+ ε1 + ε2

2 )(−2a+ 2ε1 + ε2
2 )

(−2a+ 3ε1 + ε2
2 )z3

+ · · · . (4.42)

Again we find an agreement with the decoupling limit of the partition func-
tion (3.28) computed by the localization theorem on the gauge theory side.
The multiplication of the overall factor makes the numerator factorized. The
free energy is

F
(2)
null(z, a,mi,Λ) := logZ(2)

null(z, a,mi,Λ)

=
1
ε1

{
F

(2)
−1 +

(
ε1F

(2)
0,1 + ε2F

(2)
0,2

)
+ O(ε2)

}
, (4.43)

where the leading term is

F
(2)
−1 = log za − m1 −m2z

2

az
Λ +

m2
1 − a2 + (a2 −m2

2)z
4

4a3z2
Λ2 + · · · . (4.44)



“ATMP-16-3-A1-AWA” — 2013/1/31 — 12:14 — page 752 — #28
�

�

�

�

�

�

�

�

752 HIDETOSHI AWATA ET AL.

4.4 Multi-point irregular conformal block

In the above computations, we explicitly checked that a single surface opera-
tor in SU(2) gauge theories corresponds to the degenerate primary operator
Φ1,2(z) on the CFT side. It is natural to expect that the multi-surface oper-
ators correspond to the multi-degenerate primary operators Φ1,2(z1), . . . ,
Φ1,2(zh). Here we introduce the multi-point irregular conformal blocks which
are to be compared with the computations in the B model in Sections 5 and
6 (see also Appendix B for more detail). Let us consider

Znull(z1, . . . , zh) :=
〈G′|Φ1,2(z1) · · ·Φ1,2(zh)|G′′〉

〈G|G〉 =:
Ψ(z1, . . . , zh)

Zc
, (4.45)

where |G〉 is the Gaiotto state that reproduces the Nekrasov partition func-
tion Zc. The states |G′〉 and |G′′〉 in the numerator should have shifted a
parameters in order to be consistent with the fusion rule of the Φ1,2 operator.
In Appendix B.1, Ψ(z1, z2) and Ψ(z1, z2, z3) for Nf = 0 theory are computed
by solving the differential equation and in Appendix B.2 Ψ(z1, z2) is com-
puted for Nf = 1 theory.

After the scaling (4.9) we consider the self-dual case ε1 = −ε2 = i� and
define the free energy

Fnull(z1, . . . , zh) = logZnull(z1, . . . , zh) =
∞∑

k=−1

�
kF

(k)
CFT(z1, . . . , zh), (4.46)

since the B model computations in Sections 5 and 6 only provide the free
energy with the self-dual Ω background. Some of the explicit computation
are provided in Appendix B.

5 Degeneration scheme of CFT differential equations

5.1 Ward identities

In general, the N (or N + 2)-points block on the Riemann sphere

Ψ(z1, . . . , zN ) = 〈A|Oh1(z1) · · · ON (zN )|B〉, (5.1)
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can be determined by the Ward identity

∑
all poles

〈A|Res
(
ξ(x)T (x)dx

)
O1(z1) · · · ON (zN )|B〉 = 0, (5.2)

where ξ = ξ(x) ∂
∂x is any rational vector field. For example, choosing the

vector field ξ as ξ(x) = z1x
z1−x , one has

[(
L0 +

1
z1
L1 +

1
z2
1

L2 + · · ·
)

0

+
(
− z2

1L−2 − z1L−1

)
z1

+
N∑

j=2

(
z1zj
z1 − zj

L−1 +
z2
1

(z1 − zj)2
L0 +

z2
1

(z1 − zj)3
L1 + · · ·

)
zj

+
(
z1L−1 + z2

1L−2 + z3
1L−3 + · · ·

)
∞

]
Ψ = 0, (5.3)

where (· · · )z means the action of T (x) at z defined by

(Ln)z〈· · · O(z) · · · 〉 =
∮

x=z

dx

2πi
(x− z)n+1〈· · ·T (x)O(z) · · · 〉. (5.4)

In the case where the operator O1 is the degenerate field Φ1,2 such that

L−2Φ1,2 = −b2L2
−1Φ1,2, (5.5)

and other Oj are primaries with dimension hj , then we have

[(
L0 +

1
z1
L1 +

1
z2
1

L2 + · · ·
)

0

+
(
b2z2

1∂
2
z1

− z1∂z1

)

+
N∑

j=2

(
z1zj
z1 − zj

∂zj +
z2
1

(z1 − zj)2
hj

)

+
(
z1L−1 + z2

1L−2 + z3
1L−3 + · · ·

)
∞

]
Ψ = 0. (5.6)

5.2 Differential equations

We will give a list of CFT differential equations with single Φ1,2(z) operator
insertion (figure 2).
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Figure 2: Conformal blocks and their degenerations.

• Nf = 0: Ψ(z,Λ) =
〈
Δ−,Λ

∣∣Φ1,2(z)
∣∣Δ+,Λ

〉
,

b2z2Ψzz − 3
2
zΨz +

Λ
4

ΨΛ +
(

Δ− + Δ+ − h1,2

2
+ Λ2

(
z +

1
z

))
Ψ = 0.

(5.7)
• Nf = 1: Ψ(z,Λ) =

〈
Δ−,Λ,m

∣∣Φ1,2(z)
∣∣Δ+,Λ

〉
,

b2z2Ψzz − 4
3
zΨz +

Λ
3

ΨΛ +
(

Δ− + 2Δ+ − h1,2

3

+Λ2

(
1
z
− z2

)
− 2Λmz

)
Ψ = 0. (5.8)
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• Nf = 2(1) (1st realization): Ψ(z,Λ) =
〈
Δ−,Λ,m2

∣∣Φ1,2(z)
∣∣Δ+,Λ,m1

〉
,

b2z2Ψzz − 3
2
zΨz +

Λ
2

ΨΛ +
(

Δ− + Δ+ − h1,2

2
− Λ2

(
z2 +

1
z2

)

− 2Λ
(m1

z
+m2z

))
Ψ = 0. (5.9)

• Nf = 2(2) (2nd realization): Ψ(z,Λ) =
〈
Δm+

∣∣ΦΔm− (1)Φ1,2(z)
∣∣Δ+,Λ

〉
,

b2z(z − 1)Ψzz − (2z − 1)Ψz − Λ
2z

ΨΛ +
(

Δm−
z − 1

+ Δm+ − Δ+

z

−h1,2 +
Λ2(z − 1)

z2

)
Ψ = 0. (5.10)

• Nf = 3: Ψ(z,Λ) =
〈
Δm+

∣∣ΦΔm− (1)Φ1,2(z)
∣∣Δ+,Λ,m

〉
,

b2z(z − 1)Ψzz − (2z − 1)Ψz − Λ
z

ΨΛ

+
(

Δm−
z − 1

+ Δm+ − Δ+

z
− h1,2 − 2mΛ(z − 1)

z2
− Λ2(z − 1)

z3

)
Ψ = 0.

(5.11)

• Nf = 4: Ψ(z, t) =
〈
Δm4

∣∣ΦΔm3
(1)Φ1,2(z)ΦΔm2

(t)
∣∣Δm1

〉
,

b2(z − 1)zΨzz − (2z − 1)Ψz +
(t− 1)t
(z − t)

Ψt

+
(

Δm3

z − 1
+ Δm4 −

Δm1

z
− Δm2(t

2 − 2tz + z)
(z − t)2

− h1,2

)
Ψ = 0. (5.12)

For the block of the form Ψ(z) = 〈A|O1(1)Φ1,2(z) · · · |B〉 (Nf = 2(2), 3 and
4), a convenient choice of the vector field ξ is ξ = x(x−1)

x−z
∂
∂x .

5.3 Quantum Seiberg–Witten curves

The CFT differential equation in previous subsection can be considered as a
natural candidate for the speculated quantized Seiberg–Witten curve, that
is an operator version of the equation x2 = φ2(z) (see the end of Section 5
of [2]). By a gauge transformation7 Ψ = UZ, it can be written in the form

7The factors U are determined by comparison with the gauge theory (localization)
results. It may be interesting to note that the factor U for Nf = 4 case is exactly the same
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DSW
Nf

Z = 0 which looks like the Seiberg–Witten curve in the standard brane
setup. The operator v̂ = bz∂z is a quantization of the variable v = zx.

• Nf = 0: U = zΔ−−Δ+−h1,2 ,

DSW
0 =

1
4
Λ∂Λ + 2av̂ + v̂2 + Λ2

(
z +

1
z

)
. (5.13)

• Nf = 1: U = e
Λ
b

zzΔ−−Δ+−h1,2 ,

DSW
1 =

1
3
Λ∂Λ +

(
2a+

1
6b

)
v̂ + v̂2 + 2Λz

(
v̂ + a+

1
4b

+
b

2
−m

)
+

Λ2

z
.

(5.14)
• Nf = 2(1): U = e2Λ2+Λ

b (z+ 1
z )zΔ−−Δ+−h1,2 ,

DSW
2(1) =

1
2
Λ∂Λ + 2av̂ + v̂2 − 2Λ

z

(
v̂ + a− 1

4b
− b

2
+m1

)

+ 2Λz
(
v̂ + a+

1
4b

+
b

2
−m2

)
. (5.15)

• Nf = 2(2): U = (z − 1)
1+b2−2bm−

2b2 zΔ−−Δ+−h1,2 ,

DSW
2(2) =

1
2
Λ∂Λ − Λ2 +

(
2a+

1
2b

)
v̂ + v̂2 +

Λ2

z

− z

(
v̂ + a+

1
4b

+
b

2
−m− −m+

)(
v̂ + a+

1
4b

+
b

2
−m− +m+

)
.

(5.16)

• Nf = 3: U = e−Λ(b+ 1
b
−2m−− 1

bz
)(z − 1)

1+b2−2bm−
2b2 zΔ−−Δ+−h1,2 ,

DSW
3 = Λ∂Λ +

(
2a− 1

2b
− b+ 2m

)
Λ +

(
2a+

1
2b

+ 2Λ
)
v̂ + v̂2

− 2Λ
z

(
v̂ + a− 1

4b
− b

2
+m

)
− z

(
v̂ + a+

1
4b

+
b

2
−m− −m+

)

×
(
v̂ + a+

1
4b

+
b

2
−m− +m+

)
. (5.17)

as the pre-factor appearing in the integral (free field) representation of the conformal
block.
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• Nf = 4: U = (1 − t)−
(1+b2−2bm2)(1+b2−2bm3)

2b2 (1 − t
z )

1+b2−2bm2
2b2

(1 − z)
1+b2−2bm3

2b2 zΔ−−Δ+−h1,2tΔ+−Δm1−Δm2 ,

DSW
4 = (1 − t)t∂t + (μ1μ2 + μ3μ4)t+

((
2a+

1
2b

)
(1 − t)

+(μ1 + μ2 + μ3 + μ4)t
)
v̂ + (1 + t)v̂2

− t

z
(v̂ + μ1)(v̂ + μ2) − z(v̂ + μ3)(v̂ + μ4), (5.18)

where

μ1 = a− 1
4b

− b

2
−m1 +m2, μ2 = a− 1

4b
− b

2
+m1 +m2,

μ3 = a+
1
4b

+
b

2
−m3 −m4, μ4 = a+

1
4b

+
b

2
−m3 +m4.

(5.19)

We remark that the equations for the (irregular) conformal blocks con-
sidered here are the same as the Schrödinger equation for quantum Painlevé
equations [49]. The connection between CFT, iso-monodromy deforma-
tion, and Seiberg–Witten curves are natural because (i) CFT (Knizhnik-
Zamolodchikov (KZ) equation for example) are the quantization of iso-
monodromy deformation (Schlesinger system) [50,51] and (ii) the cubic equa-
tions which determine the classical Painlevé Hamiltonians coincide with the
SU(2) Seiberg–Witten curves [52].

5.4 Degenerations

Here, we give the degeneration scheme that connect the Nf and Nf − 1
equations. We use the notation ΛNf

and zNf
for Λ, z variables of Nf =

0, 1, 2(1), 2(2), 3 and 4.

• We have DSW
4 → DSW

3 under the limit

m1 +m2 = m, m3 = m−, m4 = m+, tm2 = Λ3,

m2 → ∞, z4 = z3. (5.20)

• We have DSW
3 → DSW

2(1) under the limit

m = m1, m+ +m− = m2, m− → ∞, Λ3m− = Λ2
2(1) ,

z3
Λ3

=
z2(1)

Λ2(1)

.

(5.21)
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• We have DSW
3 → DSW

2(2) under the limit

m→ ∞, −2Λ3m = Λ2
2(2) , z3 = z2(2) . (5.22)

• We have DSW
2(1) → DSW

1 under the limit

m1 → ∞, m2 = m, −2Λ2
2(1)m1 = Λ3

1, z2(1)Λ2(1) = z1Λ1. (5.23)

• We have DSW
2(2) → DSW

1 under the limit

m− → ∞, m+ +m− = m, Λ2
2(2)m− = Λ3

1,
z2(2)

Λ2
2(2)

=
z1
Λ2

1

. (5.24)

• We have DSW
1 → DSW

0 under the limit

m→ ∞, −2Λ3
1m = Λ4

0,
z1
Λ2

1

=
z0
Λ2

0

. (5.25)

In all the cases, the degenerations of the CFT are consistent with the
decoupling limit of the gauge theory as discussed in the case of without
surface operator [14]. By the parameter relation (5.33), the decoupling limit
are described as follows:

4 → 3 : t = Λ3
�

M2
, M2 → ∞,

3 → 2(1) : Λ3 = Λ2
2(1)

�

−M3
, z3 = z2(1)Λ2(1)

�

−M3
, −M3 → ∞,

3 → 2(2) : Λ3 = Λ2
2(2)

�

4M4
, M4 → ∞,

2(1) → 1 : Λ2
2(1) = Λ3

1

�

4M4
, z2(1) = z1

(
Λ1

�

4M4

)−1/2

, M4 → ∞,

2(2) → 1 : Λ2
2(2) = Λ3

1

�

−M3
, z2(2) = z1Λ1

�

−M3
, −M3 → ∞

1 → 0 : Λ3
1 = Λ4

0

�

−4M1
, z1 = z0

(
Λ0

�

−4M1

)2/3

, −M1 → ∞,

� = (ε1ε2)1/2. (5.26)
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The degeneration relation of Nf = 4 → Nf = 3 (and similarly Nf = 3 →
Nf = 2(1)) has simple interpretation in operator level as follows. Consider
the product

∣∣ψ〉 = zΔm1+Δm2−ΔaΦΔm1
(z)
∣∣Δm2

〉
. (5.27)

By the definition of the primary filed, it satisfies

Ln

∣∣ψ〉 = zn
(
z∂z + Δa + nΔm1 − Δm2

)∣∣ψ〉 (n > 0). (5.28)

Here, we will put

z = εΛ, m1 = −1
ε
−m, m2 =

1
ε
. (5.29)

Then, under the limit ε→ 0, we have Δa + nΔm1 − Δm2 = 1−n
ε2

+ −2mn
ε +

O(ε0) and

L1

∣∣ψ〉 = −2mΛ
∣∣ψ〉, L2

∣∣ψ〉 = −Λ2
∣∣ψ〉, Ln

∣∣ψ〉 = 0 (n ≥ 3). (5.30)

Thus, the Gaiotto state
∣∣Δa,Λ,m

〉
can be obtained as a degeneration limit

(5.29) of two primaries.

5.5 Solutions

The equation DSW
4 Z(z, t) = 0 has the following series solution

Z(z, t) =
∞∑

n=0

Zn(z)tn, Zn(z) =
∞∑

k=−n

cn,kz
k. (5.31)

First few terms are as follows:

Z0 = 1 +
2μ3μ4

2b2 + 4ab+ 1
z +

2μ3(b+ μ3)μ4(b+ μ4)
(2b2 + 4ab+ 1) (4b2 + 4ab+ 1)

z2 + O(z3),
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Z1 =
2μ1μ2

2b2 − 4ab+ 1
1
z
− μ1μ2 − μ3μ4 +

2μ1μ2(b− μ3)(b− μ4)
2b2 − 4ab+ 1

+
2(b+ μ1)(b+ μ2)μ3μ4

2b2 + 4ab+ 1
+ O(z),

Z2 =
2(b− μ1)μ1(b− μ2)μ2

(2b2 − 4ab+ 1) (4b2 − 4ab+ 1)
1
z2

+ O
(

1
z

)
, (5.32)

These agree with the localization results (3.28) by the following correspon-
dence:8

a→ −a− ε2/4√
ε1ε2

, b→
√
ε1
ε2
, z → −x, t

z
→ −y,

μ1 → −a− ε1 − ε2 + 2M2√
ε1ε2

, μ2 → −a− 2M4√
ε1ε2

, μ3 → −a+ ε1 − 2M1√
ε1ε2

,

μ4 → −a+ 2M3√
ε1ε2

. (5.33)

The coefficients of the border terms zn and ( t
z )n are always factorized.

From the CFT point of view, this can be understood by fusion (not degener-
ation) of primary operators. More precisely, for t→ 0, then ΦΔ(m2)(t) and
|Δ(m1)〉 are fused and we have

Z(z, 0) = 2F1

(
μ3

b
,
μ4

b
,
2a
b

+ 1 +
1

2b2
, z

)
. (5.34)

Similarly, for z → 0 (with u = t
z fixed), then 〈Δ(m4)| and ΦΔ(m2)(1) are

fused and

Z(z, uz) = 2F1

(
−μ1

b
,−μ2

b
,−2a

b
+ 1 +

1
2b2

, u

)
. (5.35)

For the degenerate cases Nf ≤ 3, one can also solve the differential equa-
tions DSW

Nf
Z = 0 in series expansion. Alternatively, such solutions can be

obtained through the limiting procedure starting form Nf = 4 case. Since
the limit can be taken term by term with respect to the variables z and Λ
(or t), we will illustrate the procedure on simplest examples.

8We have checked this up to the order 7 in x and y variables.
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The first example is the term z in Nf = 4 solution and its degenerations:

(2b2+4ab−4m3b−4m4b+1)(2b2+4ab−4m3b+4m4b+1)z

8b2(2b2+4ab+1)

↓
(2b2+4ab−4m−b−4m+b+1)(2b2+4ab−4m−b+4m+b+1)z

8b2(2b2+4ab+1)

↙ ↘
−Λ(2b2+4ab−4m2b+1)z

b(2b2+4ab+1)

(2b2+4ab−4m−b−4m+b+1)(2b2+4ab−4m−b+4m+b+1)z

8b2(2b2+4ab+1)

↘ ↙
−Λ(2b2+4ab−4mb+1)z

b(2b2+4ab+1)

↓
− 2Λ2z

2b2+4ab+1 .

Here, the arrows are the same meaning as figure 2. This degeneration
corresponds to the decoupling of the fundamental matter attached to the
vertical brane at z = 0. The next example represents the similar decoupling
process around the brane at z = ∞:

(2b2−4ab−4m1b−4m2b+1)(2b2−4ab+4m1b−4m2b+1)t

8b2(2b2−4ab+1)z

↓
−(2b2−4ab−4mb+1)Λ

b(2b2−4ab+1)z

↙ ↘
−Λ(2b2−4ab−4m1b+1)

b(2b2−4ab+1)z
2Λ2

(−2b2+4ab−1)z

↘ ↙
2Λ2

(−2b2+4ab−1)z

↓
2Λ2

(−2b2+4ab−1)z
.

6 B model computations via Seiberg–Witten curve

In [2] it is argued that the Seiberg–Witten curve arises in the “semiclassical
limit” ε1,2 � ai,mi of the expectation value of the energy momentum tensor.
For example, by taking the limit � → 0 one finds the following Seiberg–
Witten curves x2 = φSW

n (z) [13],

SU(2), Nf = 0 : 〈Δa,Λ|T (z)|Δa,Λ〉 −→ − 1
�2
φSW

0 (z)〈Δa,Λ|Δa,Λ〉

φSW
0 (z) = M0(z)2σ0(z), σ0(z) := −z

(
z2 − u

Λ2
z + 1

)
, M0(z) :=

Λ
z2
,

(6.1)
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SU(2), Nf = 1 : 〈Δa,Λ,m|T (z)|Δa,Λ〉 −→ − 1
�2
φSW

1 (z)〈Δa,Λ,m|Δa,Λ〉,

φSW
1 (z) = M1(z)2σ1(z), σ1(z) := z

(
z3 +

2m
Λ
z2 +

u

Λ2
z − 1

)
,

M1(z) :=
Λ
z2
, (6.2)

SU(2), Nf = 2 : 〈Δa,Λ,m2|T (z)|Δa,Λ,m1〉
−→ − 1

�2
φSW

2 (z)〈Δa,Λ,m2|Δa,Λ,m1〉,

φSW
2 (z) = M2(z)2σ2(z), σ2(z) := z4 +

2m2

Λ
z3 +

u

Λ2
z2 +

2m1

Λ
z + 1,

M2(z) :=
Λ
z2
, (6.3)

where in this section the subscript n of φSW
n (z) = Mn(z)2σn(z) stands for

the number of flavors. The Coulomb moduli parameter u = a2 + O(Λ) in
each N = 2 supersymmetric gauge theory is determined from the period

a(u) =
∮

A
λSW(z), λSW(z) := x(z)dz, (6.4)

where A is the A-cycle on the Seiberg–Witten curve x2 = φSW
n (z). Using the

discussion in [3], one can find that the leading term (disc amplitude) F−1 of
the free energy Fnull in Section 4 is related to the Seiberg–Witten curve by

(
∂F−1(z)
∂z

)2

= φSW
n (z), −→ F−1(z) = ±

∫ z

λSW(z′). (6.5)

Note that in this computation we do not know how to determine the constant
of integration for F−1(z). Actually for (6.1) to (6.3), we can check that the
right-hand side of (6.5) agrees with the computations (4.17), (4.31) and
(4.44) in Section 4 for the first few orders in Λ except constant terms in the
insertion point z of the degenerate operator.

In [29], Eynard and Orantin defined the free energies on arbitrary com-
plex plane curves by the topological recursion, which has its origin to the
loop equation in matrix models. In [6], it was claimed that the correlation
functions in the CFT for N = 2 superconformal quiver gauge theories can
be related to the free energies defined by the topological recursion on the
Seiberg–Witten curves obtained from the energy momentum tensor of the
CFT as (6.1)–(6.3). In this section, we generalize their claim to asymp-
totically free theories. Following the construction of Eynard and Orantin,
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let us define the free energies F (g,h)
SW (z1, . . . , zh), g, h ∈ Z≥0, h ≥ 1 on the

Seiberg–Witten curve CSW: x2 = φSW
n (z) = Mn(z)2σn(z) by

F (g,h)
SW (z1, . . . , zh) :=

∫ z1

· · ·
∫ zh

W (g,h)(z′1, . . . , z
′
h), (6.6)

W (0,1)(z) := λSW(z), W (0,2)(z1, z2) := B(z1, z2) − dz1dz2
(z1 − z2)2

,

W (g,h)(z1, . . . , zh) := W̃ (g,h)(z1, . . . , zh) for (g, h) = (0, 1), (0, 2),

where F (0,1)
SW (z) is nothing but the disc amplitude (6.5). The multilinear

meromorphic differentials W (g,h)(z1, . . . , zh) are defined on CSW by the topo-
logical recursion relation

W̃ (0,1)(z) := 0, W̃ (0,2)(z1, z2) := B(z1, z2),

dEq,q̄(z) :=
1
2

∫ q̄

q
B(z, ξ), near a branch point qi,

W̃ (g,h+1)(z, z1, . . . , zh) :=
∑

qi∈CSW

Res
q=qi

dEq,q̄(z)
λSW(q) − λSW(q̄)

×
{
W̃ (g−1,h+2)(q, q̄, z1, . . . , zh)

+
g∑

�=0

∑
J⊂H

W̃ (g−�,|J |+1)(q, zJ)

× W̃ (�,|H|−|J |+1)(q̄, zH\J)
}
, (6.7)

where qi are the branch points on CSW, H = {1, . . . , h}, J = {i1, . . . , ij} ⊂ H
and zJ = {zi1 , . . . , zij}. q and q̄ denote the positions on the upper and the
lower sheet, respectively. The Bergman kernel B(z1, z2) is given by the
Akemann’s formula [53,54],

B(z1, z2) =
dz1dz2

2(z1 − z2)2

(
2f(z1, z2) +G(k)(z1 − z2)2

2
√
σn(z1)σn(z2)

+ 1
)
, (6.8)

f(z1, z2) := z2
1z

2
2 +

1
2
z1z2(z1 + z2)S1 +

1
6
(z2

1 + 4z1z2 + z2
2)S2

+
1
2
(z1 + z2)S3 + S4, (6.9)
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G(k) := −1
3
S2 + (q1q2 + q3q4) − E(k)

K(k)
(q1 − q3)(q2 − q4), (6.10)

K(k) =
∫ 1

0

dt√
(1 − t2)(1 − k2t2)

, E(k) =
∫ 1

0
dt

√
1 − k2t2

1 − t2
,

k2 =
(q1 − q2)(q3 − q4)
(q1 − q3)(q2 − q4)

, (6.11)

where Sk is the coefficient of z4−k in σn(z). K(k) (resp. E(k)) is the com-
plete elliptic integral of the first (resp. the second) kind with the modulus
k.

For N = 2 superconformal quiver gauge theories with the self-dual con-
straint ε1 = −ε2 = i�, the claim of [6] may be summarized as

F
(k)
CFT(z1, . . . , zh̃) =

∑
2−2g−h=−k

1
h!

h̃∑
i1,...,ih=1

F (g,h)
SW (zi1 , . . . , zih), (6.12)

where the left-hand side is the h̃-points free energy defined by (4.46) on the
CFT side with internal channels chosen so that the result is symmetric in
variables z1, . . . , zh̃. Under this constraint on the internal channel, the left-
hand side is essentially fixed. On the other hand, there exist ambiguities
of the constants of integration in (6.6). Thus we will make a more modest
proposal by keeping only universal terms on the right-hand side of (6.12),
which are independent of these ambiguities. For both the superconformal
and the asymptotically free theories we expect that at least a part of the
relation (6.12) is valid,

F
(h−2)
CFT (z1, . . . , zh) = F (0,h)

SW (z1, . . . , zh), (6.13)

where F (0,h)
SW (z1, . . . , zh) is the summation of all the universal terms which are

of the form an1n2...nh
zn1
1 zn2

2 · · · znh
h (ni ∈ Z) with the condition

∏h
i=1 ni = 0.

In the rest of this section, we will explicitly check the relation (6.13) for
Nf = 0 and Nf = 1.

6.1 Pure SU(2)

Here we compute the free energies on the Seiberg–Witten curve (6.1) corre-
sponding to pure SU(2) supersymmetric gauge theory. The period (6.4) is
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obtained from the complete elliptic integral as follows:

da(u)
du

=
∮

A

∂λSW(z)
∂u

=
1

2Λ

∮
A

dz√
σ0(z)

=
1

πΛ
√
q3 − q1

K(k), k2 =
q1 − q2
q1 − q3

,

(6.14)

where q1 = 0, q2 = (u−√
u2 − 4Λ4)/2Λ2 and q3 = (u+

√
u2 − 4Λ4)/2Λ2

are the branch points of the curve (6.1). Thus, one obtains

u(a) = a2 +
Λ4

2a2
+

5Λ8

32a6
+

9Λ12

64a10
+

1469Λ16

8192a14
+

4471Λ20

16384a18
+ O(Λ24). (6.15)

To compute the annulus amplitude F (0,2)
SW (z1, z2) on the curve (6.1), taking

the limit q4 → ∞ in (6.8), one obtains the Bergman kernel on the curve by
replacing f(z1, z2) and G(k) with

f̃(z1, z2) = −1
2
z1z2(z1 + z2) − 1

6
(z2

1 + 4z1z2 + z2
2)S̃1 − 1

2
(z1 + z2)S̃2 − S̃3,

G̃(k) =
1
3
S̃1 + q3 +

E(k)
K(k)

(q1 − q3), (6.16)

where S̃k is the coefficient of z3−k in σ0(z). Thus we obtain the annulus
amplitude

F (0,2)
SW (z1, z2) =

z2
1z

2
2 + 1

16a4z1z2
Λ4 +

(z1 + z2)(z3
1z

3
2 + 1)

32a6z2
1z

2
2

Λ6

+

10(z2
1 + z2

2)(z
4
1z

4
2 + 1) + 9z1z2(z4

1z
4
2 + 1)

+32z2
1z

2
2(z

2
1z

2
2 + 1) − 4z2

1z
2
2(z

2
1 + z2

2)
512a8z3

1z
3
2

Λ8

+ O(Λ10). (6.17)

We can see that the amplitude agrees with (B.7) up to Λ8. Hence, the
relation (6.13) is correct as was expected.

Higher topology amplitudes are iteratively computed by the recursion
(6.7) and the multilinear meromorphic differentials W (g,h)(z1, . . . , zh) can
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be expanded by the kernel differentials [28],

χ
(n)
i (z) := Res

q=qi

(
− 2dEq,q̄(z)
λSW(q) − λSW(q̄)

dq

(q − qi)n

)
. (6.18)

For example, W (0,3)(z1, z2, z3) is written as

W (0,3)(z1, z2, z3) =
∑
qi

Res
q=qi

2dEq,q̄(z)
λSW(q) − λSW(q̄)

B(z2, q)B(z3, q̄)

=
1
2

∑
qi

Mn(qi)2σ′n(qi)χ
(1)
i (z1)χ

(1)
i (z2)χ

(1)
i (z3), (6.19)

χ
(1)
i (z) =

dz

2Mn(qi)σ′n(qi)
√
σn(z)

(
G(k) +

2f(z, qi)
(z − qi)2

)
. (6.20)

Thus, we obtain the three-holed amplitude F (0,3)
SW (z1, z2, z3) on the Seiberg–

Witten curve (6.1),

F (0,3)
SW (z1, z2, z3)

=
z2
1z

2
2z

2
3 − 1

16a7z1z2z3
Λ6 +

3
(
z3
1z

3
2z

3
3(z1 + z2 + z3) − (z1z2 + z2z3 + z3z1)

)
64a9z2

1z
2
2z

2
3

Λ8

+
{
z2
1 + z2

2 + z2
3 − (z2

1z
2
2 + z2

2z
2
3 + z2

3z
2
1)

128a11z1z2z3

+
5
(
z4
1z

4
2z

4
3(z

2
1 + z2

2 + z2
3) − (z2

1z
2
2 + z2

2z
2
3 + z2

3z
2
1)
)

128a11z3
1z

3
2z

3
3

+
9
(
z3
1z

3
2z

3
3(z1z2 + z2z3 + z3z1) − (z1 + z2 + z3)

)
256a11z2

1z
2
2z

2
3

+
9(z2

1z
2
2z

2
3 − 1)

64a11z1z2z3

}
Λ10 + O(Λ12), (6.21)

and in (B.11) we checked the relation (6.13) up to Λ6.

6.2 SU(2) with one fundamental matter

We compute the annulus amplitude F (0,2)
SW (z1, z2) on the Seiberg–Witten

curve (6.2) corresponding to SU(2) supersymmetric gauge theory with one
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fundamental matter. The period (6.4) is computed from

da(u)
du

=
1

πΛ
√

(q1 − q3)(q2 − q4)
K(k), k2 =

(q1 − q2)(q3 − q4)
(q1 − q3)(q2 − q4)

, (6.22)

where q1,2 = −(m±√
m2 − u)/Λ + Λ2/(2(m2 ±m

√
m2 − u− u)) + O(Λ5),

q3 = 0 and q4 = Λ2/u+ O(Λ5). One finds

u(a) = a2 − mΛ3

a2
− (3a2 − 5m2)Λ6

8a6
+ O(Λ9). (6.23)

Then, from (6.8) we obtain the annulus amplitude

F (0,2)
SW (z1, z2) = −(a2 −m2)z1z2

4a4
Λ2 +

m(a2 −m2)z1z2(z1 + z2)
4a6z1z2

Λ3

+

2(a2 −m2)(a2 − 5m2)(z2
1 + z2

2)z
2
1z

2
2

+(a2 −m2)(a2 − 9m2)z3
1z

3
2 + 2a4

32a8z1z2
Λ4 + O(Λ5). (6.24)

As before this agrees with F
(0)
CFT(z1, z2) up to Λ4 (see (B.16)). Hence the

relation (6.13) also holds in this case.

7 Geometric engineering and open topological B model

Hereafter, we consider the open topological string on toric Calabi–Yau three-
folds (local A model), which is expected to realize a surface operator in
N = 2 SU(2) gauge theories in four dimensions. In this section we com-
pute the topological open string amplitude by combining the local mirror
symmetry with the conjecture of remodeling the B model [27,28], by which
we have the equality between the local A model amplitudes and the free
energies F (g,h)(x1, . . . , xh), g, h ∈ Z≥0, h ≥ 1 on the mirror curve

C = {x, y ∈ C
∗|H(x, y) = 0} ⊂ C

∗ × C
∗, (7.1)

computed by the topological recursion relation of Eynard and Orantin we
employed in Section 5. The free energies are defined by (6.6) and (6.7) under
the replacement

λSW(z), −→ ω(x) := log y(x)
dx

x
. (7.2)
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Figure 3: Local Hirzebruch surface KF0 .

7.1 Toric brane on local Hirzebruch surface KF0: pure SU(2)

The pure SU(2) gauge theory is realized by the Hirzebruch surface F0 =
P1

f × P1
b, and we insert a toric brane on the base P1

b as the blue line in
figure 3. The Kähler parameters Qf , Qb of P1

f , P1
b and the parameters on

the gauge theory side are related by [18],

Qf = e−2βa, Qb = X1X2 = β4Λ4, X1 := β2Λ2w−1, X2 := β2Λ2w,
(7.3)

where β is a scale parameter which corresponds to the radius of the fifth
dimension in the gauge theory and X1, (X2) represents the distance between
the toric brane and the trivalent vertex in the web diagram as indicated in
figure 3. The charge vectors of KF0 are given by

�b = (−2, 1, 0, 1, 0), �f = (−2, 0, 1, 0, 1). (7.4)

By taking the local coordinate patch as figure 3, the mirror curve which
describes the moduli of the toric brane is obtained as

xy2 + (x2 + x+ zb)y + zfx = 0, σ(x) := (x2 + x+ zb)2 − 4zfx2, (7.5)

where zf , zb are the moduli parameters of complex structure of the mirror
Calabi–Yau threefold. The closed and open mirror maps are given by
[55–57],

logQb = log zb + 2
∞∑

m,n≥0,(m,n) �=(0,0)

(2m+ 2n− 1)!
m!2n!2

zm
b z

n
f ,

log
Qf

Qb
= log

zf
zb
, X =

(
Qb

zb

) 1
2

x, (7.6)
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where X = X(x) is the open string moduli on the A model side. The disc
amplitude is computed in a similar manner to [56],

F (0,1)(Qf ,Λ, w) =
∫ x

ω(x′) =
∫ x

log
{

(x′2 + x′ + zb) +
√
σ(x′)

2x′

}
dx′

x′

� − w2 − 1
(1 −Qf )w

(βΛ)2 +
(1 +Qf )(w4 − 1)

4(1 −Qf )3w2
(βΛ)4

− (1 + 4Qf +Q2
f )(w6 − 1)

9(1 −Qf )5w3
(βΛ)6 − 2(w2 − 1)

(1 −Qf )5w
(βΛ)6

+
(1 + 9Qf + 9Q2

f +Q3
f )(w8 − 1)

16(1 −Qf )7w4
(βΛ)8

+
2(1 +Qf )(w4 − 1)

(1 −Qf )7w2
(βΛ)8 + O(Λ10), (7.7)

where in the second equality, since the toric brane is inserted on the base P1
b,

we expanded the integrand around the midpoint x′ = z
1/2
b and took away a

logarithmic term from the final result. When we compute the annulus and
the three-holed amplitudes F (0,2),F (0,3) in the following, we will use a similar
prescription as above. Using the relation (7.3) of geometric engineering
and taking the limit β → 0, we find a matching of (7.7) up to Λ8 with the
leading term (4.17) of the free energy obtained from the CFT one point
function of Φ1,2.

We can compute the annulus amplitude F (0,2)(x, y) using (6.8), where
G(k) can be rewritten in terms of the period Tb = − logQb as was shown
in [58],

G(k) = − 1
12

Δ0(zb, zf )z̃b
∂

∂z̃b

{
12 log z̃b

∂

∂z̃b
Tb + 4 log z̃b + log Δ0(z̃b, z̃bz̃f )

}
,

(7.8)

where z̃b = zb, z̃f = zf/zb, and Δ0(zb, zf ) := 1 − 8(zb + zf ) + 16(zb − zf )2 is
a component of the discriminant of the mirror curve (7.5). Thus, we obtain
the annulus amplitude

F (0,2)(Qf ,Λ, wi)

=
∫ x∫ y

B(x′, y′) − dx′dy′

(x′ − y′)2
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� Qf (w2
1w

2
2 + 1)

(1 −Qf )4w1w2
(βΛ)4 − Qf (1 +Qf )(w1 + w2)(w3

1w
3
2 + 1)

(1 −Qf )6w2
1w

2
2

(βΛ)6

+
Qf (1 + 3Qf +Q2

f )(w2
1 + w2

2)(w
4
1w

4
2 + 1)

(1 −Qf )8w3
1w

3
2

(βΛ)8

+
Qf (2 + 5Qf + 2Q2

f )(w4
1w

4
2 + 1)

2(1 −Qf )8w2
1w

2
2

(βΛ)8

+
2Qf (1 + 6Qf +Q2

f )(w2
1w

2
2 + 1)

(1 −Qf )8w1w2
(βΛ)8

− 2Q2
f (w2

1 + w2
2)

(1 −Qf )8w1w2
(βΛ)8 + O(Λ10), (7.9)

where in the second equality, we used a similar prescription to the case of
the disc amplitude. The annulus amplitude with two arguments gives the
contribution from a geometry where two toric branes are inserted on the
base P1

b. X := β2Λ2w−1
1 and Y := β2Λ2w−1

2 represent the positions of the
first and the second toric brane, respectively. Using the relation (7.3) and
taking the limit β → 0, we find that (7.9) coincides with (6.17) and (B.7).

Higher topology amplitudes can be also computed by the topological
recursion (6.7). As an example let us compute the three-holed amplitude
F (0,3)(x, y, z) using (6.19), where the moment function M(x) is defined by

1
2
(ω(x) − ω(x̄)) =

dx

x
tanh−1

[ √
σ(x)

x2 + x+ zb

]
=: M(x)

√
σ(x)dx,

−→M(x) =
1

x
√
σ(x)

tanh−1

[ √
σ(x)

x2 + x+ zb

]

=
1
x

∞∑
n=0

1
2n+ 1

σ(x)n

(x2 + x+ zb)2n+1
. (7.10)

Thus, we obtain the three-holed amplitude

F(0,3)(Qf , Λ, wi)

=

∫ x ∫ y ∫ z

W (0,3)(x′, y′, z′)


(Qf + 6Q2

f + Q3
f )(w2

1w2
2w2

3 − 1)

(1 − Qf )7w1w2w3
(βΛ)6

+
(Qf + 11Q2

f + 11Q3
f + Q4

f )(w3
1w3

2w3
3(w1 + w2 + w3) − (w1w2 + w2w3 + w3w1))

(1 − Qf )9w2
1w2

2w2
3

(βΛ)8

+

{
2(Q2

f + 6Q3
f + Q4

f )
(
w2

1 + w2
2 + w2

3 − (w2
1w2

2 + w2
2w2

3 + w2
3w2

1)
)

(1 − Qf )11w1w2w3
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Figure 4: Local del Pezzo surface KdP 2 .

+
(Qf + 17Q2

f + 36Q3
f + 17Q4

f + Q5
f )(w3

1w3
2w3

3(w1w2 + w2w3 + w3w1) − (w1 + w2 + w3))

(1 − Qf )11w2
1w2

2w2
3

+
(Qf + 18Q2

f + 42Q3
f + 18Q4

f + Q5
f )(w4

1w4
2w4

3(w2
1 + w2

2 + w2
3) − (w2

1w2
2 + w2

2w2
3 + w2

3w2
1))

(1 − Qf )11w3
1w3

2w3
3

+
2(Qf + 28Q2

f + 86Q3
f + 28Q4

f + Q5
f )(w2

1w2
2w2

3 − 1)

(1 − Qf )11w1w2w3

}
(βΛ)10 + O(Λ12). (7.11)

The three-holed amplitude with three arguments gives the leading contri-
bution when three toric branes are inserted on the base P1

b. X := β2Λ2w−1
1 ,

Y := β2Λ2w−1
2 and Z := β2Λ2w−1

3 represent the position of each toric brane.
Using (7.3) and taking the limit β → 0, we find that (7.11) agrees with (6.21)
and (B.11).

7.2 Toric brane on local del Pezzo surface KdP2: SU(2) with one
fundamental matter

By the geometric engineering, one can also introduce fundamental matters.
The SU(2) theory with one fundamental matter is realized by the del Pezzo
surface dP 2, which is obtained by a blow up at a torus fixed point on the
Hirzebruch surface F0. Let us insert a toric brane on the base P1

b as the
blue line in figure 4. As in (7.3), the Kähler parameters Qf , (resp. Qb, Qe)
of the fiber P1

f , (resp. base P1
b, the exceptional curve P1

e), and the distance
between the toric brane and the vertices in the web diagram X1, (X2) can
be related to the parameters on the gauge theory side as [18,21],

Qf = e−2βa, Qe = e−β(a−m), Qb = X1X2 = 2β3Λ3,

X1 := β2Λ2w−1, X2 := 2βΛw. (7.12)
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The charge vectors of KdP 2 are given by

�b = (−1, 1, 0, 0, 1,−1), �f = (−2, 0, 1, 0, 0, 1), �e = (−1, 0, 1,−1, 1, 0).
(7.13)

By taking the local coordinate patch as figure 4, we obtain the mirror curve
which describes the moduli of the toric brane,

(x+ zb)y2 + (x2 + x+ zbzfz
−1
e )y + zfx = 0,

σ(x) := (x2 + x+ zbzfz
−1
e )2 − 4zfx(x+ zb), (7.14)

where zf , zb and ze are the moduli parameters of complex structure the
mirror Calabi–Yau threefold. The closed and open mirror maps are given
by [57],

log Qb = log zb +

∞∑
m,n,k≥0,(m,n,k) �=(0,0,0)

(−1)m (3m + 2n + 2k − 1)!

m!n!k!(m + k)!(m + n)!
zm+k

b zm+n+k
f z−k

e ,

log
Qf

Q2
b

= log
zf

z2
b

, log
Qe

Qb
= log

ze

zb
, X =

Qb

zb
x, (7.15)

where X = X(x) is the open string moduli on the A model side. The disc
amplitude is computed as

F(0,1)(Qf , Qe, Λ, w)

=

∫ x

ω(x′) =

∫ x

log

{
(x′2 + x′ + zbzf z−1

e ) +
√

σ(x′)
2(x′ + zb)

}
dx′

x′

 −2(Qf − Qe)w

(1 − Qf )Qe
βΛ +

1

(1 − Qf )w
(βΛ)2 +

(Qf − Qe)(Q2
f + Qf + Qe − 3Qf Qe)w2

(1 − Qf )3Q2
e

(βΛ)2

−
8(Qf − Qe)(Q4

f + 4Q3
f + Q2

f − (8Q3
f + 5Q2

f − Qf )Qe + (10Q2
f − 5Qf + 1)Q2

e)w3

9(1 − Qf )5Q3
e

(βΛ)3

+

{
(Qf − Qe)

(1 − Qf )7Q4
e

((Qf + 1)(Q2
f + 8Qf + 1)Q3

f − (15Q3
f + 39Q2

f + 7Qf − 1)Q2
f Qe

+ (45Q3
f + 21Q2

f − 7Qf + 1)Qf Q2
e − (35Q3

f − 21Q2
f + 7Qf − 1)Q3

e)w4

−
8Q2

f (Qf − Qe)(1 − Qe)w

(1 − Qf )5Q2
e

− 1 + Qf

4(1 − Qf )3w2

}
(βΛ)4 + O(Λ5), (7.16)

where in the second equality we expanded the integrand around the midpoint
x′ = z

1/2
b and removed a logarithmic term. We see that this result is consis-

tent with (7.7) in the limit Qe → 0, Qf/Qe → 1. Using the relation (7.12)
and taking the limit β → 0, we find that (7.16) agrees with (4.31) except
the coefficient of wΛ. The difference of the coefficient of wΛ is nothing but
the overall factor exp(−Λw/�) which compensates the difference between
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the instanton partition function with surface operator and the correlation
function with the degenerate primary field insertion. Therefore (7.16) agrees
with the computation on the gauge theory side.

From (6.8) we can also compute the annulus amplitude F (0,2)(x, y), where
G(k) can be rewritten in terms of the period Tb = − logQb as [58],

G(k) = − Δ0(zb, zf , ze)

24z2
eC(zb, zf , ze)

z̃b
∂

∂z̃b

{
12 log z̃b

∂

∂z̃b
Tb + 7 log z̃b + log Δ0(z̃b, z̃

2
b z̃f , z̃bz̃e)

}
,

Δ0(zb, zf , ze) := 16z3
b z2

f ze − (27z4
e − 12(3ze − 2zf )z2

e + 8(z2
e + 2zf ze − 2z2

f ))z2
b zf

+(12(3ze − 2zf )zf z2
e − (z3

e +46zf z2
e − 64z2

f ze + 32z3
f ) + (z2

e + 8zf ze − 8z2
f ))zbze

+ (4zf − 1)2(z2
e − ze + zf )z2

e ,

C(zb, zf , ze) := −9

8
zbz

2
e + (zb + ze)ze − 1

8
(7ze + 4zf (zb + ze)) + zf , (7.17)

where z̃b = zb, z̃f = zf/z
2
b , z̃e = ze/zb and Δ0(zb, zf , ze) is a component of

the discriminant of the mirror curve (7.14). Thus, we obtain the annulus
amplitude

F (0,2)(Qf , Qe, Λ, wi)

=

∫ x ∫ y

B(x′, y′) − dx′dy′

(x′ − y′)2

� 4Q2
f (Qf − Qe)(1 − Qe)w1w2

(1 − Qf )4Q2
e

(βΛ)2

− 8Q3
f (Qf − Qe)(1 − Qe)(Qf + 1 − 2Qe)w1w2(w1 + w2)

(1 − Qf )6Q3
e

(βΛ)3

+

{
16Q4

f (Qf − Qe)(1 − Qe)
(
Q2

f + 3Qf + 1 + 5(Qe − Qf − 1)Qe

)
(w2

1 + w2
2)w1w2

(1 − Qf )8Q4
e

+
8Q4

f (Qf − Qe)(1 − Qe)(2Qf + 1 − 3Qe)(Qf + 2 − 3Qe)w
2
1w2

2

(1 − Qf )8Q4
e

+
Qf

(1 − Qf )4w1w2

}
(βΛ)4 + O(Λ5), (7.18)

where in the second equality we expanded the Bergman kernel around the
point x′ = z

1/2
b , y′ = z

1/2
b and removed a logarithmic term. X := β2Λ2w−1

1

and Y := β2Λ2w−1
2 represent the position of two toric branes. Using the

geometric engineering (7.12) and taking the limit β → 0, we see that (7.18)
agrees with (6.24) and (B.16).

8 Vortex counting and open topological A model

In a recent paper [8], the instanton partition function with surface operator
has been worked out from the viewpoint of the coupling of four-dimensional
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gauge theory with a two-dimensional theory on the surface. It was argued
that in the decoupling limit Λinst → 0, where only zero instanton sector of
the four-dimensional theory survives, the partition function reduces to the
vortex counting in the two-dimensional theory. By the localization compu-
tation on the affine Laumon space which we used in Section 3, the vortex
counting of [8] can be derived in the following way. Recall our identification
of the instanton number k and the monopole number m:

k = k1, m = k2 − k1, (8.1)

where k1 and k2 are given by (3.5) in terms of a pair of Young diagrams
(λ1, λ2).

Thus when we look at the zero instanton sector, we have to set k1 = 0
and the monopole number is restricted to take non-negative integer.9 This
means that λ1 has to be trivial and λ2 has only a single row, whose length
gives the monopole number. Let us first consider pure SU(2) theory for
simplicity. Then almost all terms in the diagonal part of the equivariant
character vanish. The remaining terms are

ch�λ,�λ
(a, a) = ea1−a2+ε1+ε2

eε1λ2,1 − 1
eε1 − 1

− eε1
(eε1λ2,1 − 1)(e−ε1λ2,1 − 1)

eε1 − 1

− eε1 (e−ε1λ2,1 − 1)
eε1 − 1

=
(
ea1−a2+ε1+ε2 + eε1

) eε1m − 1
eε1 − 1

=
(
ea1−a2+ε2 + 1

) m∑
k=1

ekε1 .

(8.2)

Hence, the zero instanton part of the partition function (3.8) is

Zmonopole(a, ε1, ε2; z) = 1 +
∞∑

m=1

1
m!

(
z

ε1

)m m∏
k=1

1
2a+ ε2 + kε1

, (8.3)

where we have replaced the parameter Λ2 in (3.8) to z. We see that with
the choice of equivariant parameters ε1 = �, ε2 → 0 the partition function
(8.3) agrees with the generating function of vortex counting, equation (3.24)
in [8], where it was argued that the K theory version of (3.24) coincides with
a refined open topological string amplitude in the limit where the Kähler
parameter Qb of the base P1

b vanishes.

9As we will see the next subsection, for k > 0 the negative monopole number is allowed.
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Let us look at a similar vortex counting in zero instanton background
in Nf = 4 theory. The results for 1 ≤ Nf ≤ 3 theories can be obtained by
the decoupling limit. The contributions from (∅, (m)) gives the partition
function

ZNf=4
monopole(a,Mi, ε1, ε2; y)

= 1 +
∞∑

m=1

ym
nS

f [�∅, (∅, (m))](a1, a;m1) · nS
f [(∅, (m)),�∅](a, a2;m2)

nvec[(∅, (m))](�a)
. (8.4)

Since only the non-vanishing component of �λ is λ2,1 = m, we have

nS
f [(∅, (m)),�∅](a, b ;m) =

m−1∏
k=0

(−a+ b− kε1 −m), (8.5)

nS
f [�∅, (∅, (m))](a, b ;m) =

m∏
k=1

(a+ b+ kε1 + ε2 −m). (8.6)

Combined with the previous computation of nvec[(∅, (m))](�a) in pure SU(2)
theory, this gives

ZNf=4
monopole(a,Mi, ε1, ε2; y)

= 1 +
∞∑

m=1

(−y)m

∏m
k=1(a− 2M2 + kε1 + ε2)(a+ 2M4 + (k − 1)ε1)

m!εm1
∏m

k=1(2a+ kε1 + ε2)
(8.7)

After the identification z≡ (−y), 2M2 ≡m1 − 1
2ε1 + 1

2ε2, 2M4 ≡ −m2 + 3
2ε1

+ 1
2ε2, (8.7) agrees to (4.26) in [8] up to U(1) factor (an appropriate power

of (1 − z)), which is also related to the hypergeometric series.

8.1 Localization on one instanton sector

We generalize the vortex counting to one instanton sector of the four-
dimensional gauge theory. For one instanton sector, the pair of partitions
�λ := (λ1, λ2) satisfies

k1 = 1, k2 = m + 1. (8.8)
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There are four choices for �λ as follows:

(A) �λmA = ((1), (m + 1)), m≥−1, (B) �λmB = (∅, (m+ 1, 1)), m≥ 0,

(C) �λmC = (∅, (m, 1, 1)), m ≥ 1, (D) �λmD = ((1, 1), (m)), m ≥ 0.
(8.9)

For Nf = 4 theory, by evaluating the three characters Tr
Ext(�λ,�λ)

[g], Tr
Ext(�λ,�∅)[g] with a1 = a, a2 = −a, b1 = M3 −M4, b2 = M4 −M3,

m2 = M3 +M4 and Tr
Ext(�∅,�λ)

[g] with a1 = M1 −M2, a2 = M2 −M1, b1 = a,
b2 = −a, m1 = M1 +M2 we can read off the partition function in one instan-
ton sector for each partition.

Z
(A)
1 (a, Mi, ε1, ε2; x, y) =

∞∑
m=−1

xym+1 nS
f [�∅, �λmA](a1, a; m1) · nS

f [�λmA,�∅](a1, a; m2)

nvec[�λmA](�a)
,

(8.10)

nS
f (�λmA,�∅) = (a − 2M3)

m∏
k=0

(−a − 2M4 − kε1),

nS
f (�∅, �λmA) = (−a − 2M1 + ε1)

m+1∏
k=1

(a − 2M2 + kε1 + ε2),

nvec[�λmA](�a) = (−2a − mε1)ε
m+2
1 (m + 1)!

m∏
k=0

(2a + kε1 + ε2),

Z
(B)
1 (a, Mi, ε1, ε2; x, y) =

∞∑
m=0

xym+1 nS
f [�∅, �λmB ](a1, a; m1) · nS

f [�λmB ,�∅](a1, a; m2)

nvec[�λmB ](�a)
,

(8.11)

nS
f (�λmB ,�∅) = (−a − 2M3 − ε2)

m∏
k=0

(−a − 2M4 − kε1),

nS
f (�∅, �λmB) = (a − 2M1 + ε1 + ε2)

m+1∏
k=1

(a − 2M2 + kε1 + ε2),

nvec[�λmB ](�a) = (mε1 − ε2)ε
m+1
1 m!

m+1∏
k=0

(2a + kε1 + ε2),

Z
(C)
1 (a, Mi, ε1, ε2; x, y) =

∞∑
m=1

xym+1 nS
f [�∅, �λmC ](a1, a; m1) · nS

f [�λmC ,�∅](a1, a; m2)

nvec[�λmC ](�a)
,

(8.12)

nS
f (�λmC ,�∅) = (−a − 2M3 − ε2)(−a − 2M4 − ε2)

m−1∏
k=0

(−a − 2M4 − kε1)

nS
f (�∅, �λmC) = (a− 2M1 + ε1 + ε2)(a− 2M2 + ε1 + 2ε2)

m∏
k=1

(a− 2M2 + kε1 + ε2),

nvec[�λmC ](�a) = (2a + ε1 + 2ε2)(−mε1 + ε2)ε2ε
m
1 (m − 1)!

m∏
k=0

(2a + kε1 + ε2),
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Z
(D)
1 (a, Mi, ε1, ε2; x, y) =

∞∑
m=0

xym+1 nS
f [�∅, �λmD](a1, a; m1) · nS

f [�λmD,�∅](a1, a; m2)

nvec[�λmD](�a)
,

(8.13)

nS
f (�λmD,�∅) = (a − 2M3)(a − 2M4)

m−1∏
k=0

(−a − 2M4 − kε1),

nS
f (�∅, �λmD) = (a + 2M1 − ε1)(a + 2M2 − ε1 − ε2)

m∏
k=1

(a − 2M2 + kε1 + ε2),

nvec[�λmD](�a) = (−2a + ε1)(2a + mε1)ε2ε
m+1
1 m!

m−1∏
k=0

(2a + kε1 + ε2).

Taking a decoupling limit

M2,M3,M4 → ∞, Λ1 = −2M3x, Λ2 = 4M2M4y, (8.14)

one obtains the partition function for Nf = 1 theory

Z
(A)
1 (a,M1, ε1, ε2; Λ1,Λ2)

=
∞∑

m=−1

Λ1Λm+1
2

a+ 2M1 − ε1

(2a+ mε1)εm+2
1 (m + 1)!

∏m
k=0(2a+ kε1 + ε2)

,

Z
(B)
1 (a,M1, ε1, ε2; Λ1,Λ2)

=
∞∑

m=0

Λ1Λm+1
2

a− 2M1 + ε1 + ε2

(mε1 − ε2)εm+1
1 m!

∏m+1
k=0 (2a+ kε1 + ε2)

,

Z
(C)
1 (a,M1, ε1, ε2; Λ1,Λ2)

=
∞∑

m=1

Λ1Λm+1
2

a− 2M1 + ε1 + ε2
(2a+ ε1 +2ε2)(−mε1 + ε2)ε2εm1 (m − 1)!

∏m
k=0(2a+ kε1 + ε2)

,

Z
(D)
1 (a,M1, ε1, ε2; Λ1,Λ2)

=
∞∑

m=0

Λ1Λm+1
2

a+ 2M1 − ε1

(2a− ε1)(2a+ mε1)ε2εm+1
1 m!

∏m−1
k=0 (2a+ kε1 + ε2)

.

(8.15)

The decoupling limit

M1,M2,M3,M4 → ∞, Λ1 = 4M1M3x, Λ2 = 4M2M4y, (8.16)
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gives the one instanton partition function for Nf = 0 theory

Z
(A)
1 (a, ε1, ε2; Λ1,Λ2)

= −
∞∑

m=−1

Λ1Λm+1
2

1
(2a+ mε1)εm+2

1 (m + 1)!
∏m

k=0(2a+ kε1 + ε2)
,

Z
(B)
1 (a, ε1, ε2; Λ1,Λ2)

=
∞∑

m=0

Λ1Λm+1
2

1
(mε1 − ε2)εm+1

1 m!
∏m+1

k=0 (2a+ kε1 + ε2)
,

Z
(C)
1 (a, ε1, ε2; Λ1,Λ2)

=
∞∑

m=1

Λ1Λm+1
2

1
(−mε1 + ε2)(2a+ ε1 + 2ε2)ε2εm1 (m− 1)!

∏m
k=0(2a+ kε1 + ε2)

,

Z
(D)
1 (a, ε1, ε2; Λ1,Λ2)

=
∞∑

m=0

Λ1Λm+1
2

1
(2a− ε1)(2a+ mε1)(−ε2)εm+1

1 m!
∏m−1

k=0 (2a+ kε1 + ε2)
.

(8.17)

8.2 Topological vertex computation

Now we discuss the one instanton partition function for the four-dimensional
gauge theory from the A model via geometric engineering. The pure gauge
theory is engineered by the A model on the local Hirzebruch surface
F0 = P1

b × P1
f with a toric brane. The Kähler parameters for the base P1

b

and the fiber P1
f correspond to Qb = β4Λ4 and Qf = e−2βa, respectively.

To realize the surface operator in four-dimensional theory, the toric brane
should be inserted as fig. 5 on the inner leg, which denotes the base P1

b in the
toric diagram [6,8, 25], and we choose the open string moduli X = β2Λ2w.

Figure 5: D-brane inserted on an inner leg of local Hirzebruch surface.
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The topological vertex computes the open BPS invariants [30, 59].

Zopen
BPS (X,Qb, QfL, QfR; q) =

ZD-brane(X,Qb, QfL, QfR; q)
Zclosed

BPS (Qb, QfL, QfR; q)
. (8.18)

Each factor is given by the representation sums

Zclosed
BPS (Qb, QfL, QfR; q)

=
∑

μ,ν,λ1,λ2

Cλ1μt∅Cνλt
1∅Cλ2νt∅Cμλt

2∅q
(κν+κλ2

+κμ+κλ1
)/2Q

|ν|
fLQ

|μ|
fRQ

|λ1|+|λ2|
b ,

(8.19)

ZD-brane(X,Qb, QfL, QfR; q)

=
∑

μ,ν,λ1,λ2,α,β

C(λ1⊗α)μt∅

× Cν(λt
1⊗β)∅Cλ2νt∅Cμλt

2∅q
(κν+κλ2

+κμ+(p−1)κλt
1⊗β+pκλ1⊗α)/2

×Q
|ν|
fLQ

|μ|
fRQ

|λ1|+|λ2|+|β|
b (−1)|λ1|+(p−1)|λt

1⊗β|+p|λ1⊗α|TrαV TrβV
−1,

(8.20)

where V = X and p denotes the framing of the toric brane. For the tensor
product representation α⊗ β, κα⊗β = κα + κβ and C(α⊗β)μν =

∑
γ c

γ
αβCγμν

where cγαβ is Littlewood–Richardson coefficient [60]. In the following we
choose the framing p = −1. In order to compare with the four-dimensional
gauge theory in detail, we have set the Kähler parameter for the fiber P1

f in
the left/right side in the toric diagram independently as QfL = e−2βaL and
QfR = e−2βaR .

The one instanton part of the topological string amplitude is the first order
in Q1

b . For the closed string partition function Zclosed
BPS (Qb, QfL, QfR; q), we

only need to consider the terms with λ1 = λ2 = ∅. For such choice of the
partitions, one finds the closed string partition function

Zclosed
BPS 0(Qb, QfL, QfR; q) = M(QfL; q)M(QfR; q), (8.21)

M(Q; q) =
∞∏

n=1

(1 −Qqn)−n. (8.22)

On the other hand, the D-brane partition function ZD-brane(X,Qb, QfL,
QfR; q) in one instanton sector comes from the following three choices of the
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partitions:

(1) (β, λ1, λ2) = (�, ∅, ∅), (2) (β, λ1, λ2) = (∅, ∅,�),

(3) (β, λ1, λ2) = (∅,�, ∅). (8.23)

At this point, we should point out a crucial difference from the case of
the geometric engineering of the Nekrasov partition function in terms of
closed topological string. In the case of the Nekrasov partition function for
SU(N) gauge theory, the fixed points on the instanton moduli space are
in one to one correspondence with the assignments of the Young diagrams
on N parallel inner edges representing the base P1

b of ALE fibration of
type AN−1. However, in the present case even at one instanton level the
one to one correspondence is lost. In fact, we found four fixed points (8.9)
on the affine Laumon space with instanton number one, while (8.23) gives
only three configurations. The lack of one to one correspondence makes the
problem of matching the instanton partition function with surface operator
to open topological string amplitudes highly non-trivial.

Let us compute the open BPS partition function for each choice of par-
titions. For case (1), the open BPS partition function Zopen (1)

BPS 1 (X,Qb, QfL,
QfR; q) becomes

Z
open (1)
BPS 1 (X,Qb, QfL, QfR; q)

=
1

Zclosed
BPS 0(Qb, QfL, QfR; q)

×Qb

∑
α

sα(q−ρ)sα(X)s�(qρ)q−κ�/2
∑

μ

sμ(qρ+α)sμ(qρ)Q|μ|
fR

×
∑

ν

sν(qρ+�)sν(qρ)Q|ν|
fLs�(X−1)

= Qb
q1/2

q − 1
1

1 −QfL

∞∑
m′=0

X−1(Xq1/2)m′

∏m′
k=1(1 − qk)(1 −QfRqk−1)

. (8.24)

In the computation, we used the following relations.

s(m)(q
−ρ) =

qm/2∏m
k=1(1 − qk)

, Tr(m)X = s(m)(X) = Xm,

(8.25)

∑
μ

sμ(qρ+(m))sμ(qρ)Q|μ| = M(Q; q)
m∏

k=1

1
1 −Qqk−1

. (8.26)
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For case (2), we obtain

Z
open (2)
BPS 1 (X,Qb, QfL, QfR; q)

=
1

Zclosed
BPS 0(Qb, QfL, QfR; q)

×Qb

∑
α

sα(q−ρ)sα(X)s�(qρ)2
∑

μ

sμ(qρ+α)sμ(qρ+�)Q|μ|
fR

×
∑

ν

sν(qρ)sν(qρ+�)Q|ν|
fL

= Qb
q

(q − 1)2
1

1 −QfL

∞∑
m=0

1
(1 −QfRq−1)(1 −QfRqm)

× (Xq1/2)m

∏m
k=1(1 − qk)

∏m−1
k=1 (1 −QfRqk−1)

. (8.27)

To derive this result, we applied a relation
∑

μ

sμ(qρ+(m))sμ(qρ+�)Q|μ|

= M(Q; q)
1

(1 −Qq−1)(1 −Qqm)
1∏m−1

k=1 (1 −Qqk−1)
. (8.28)

This is found from the Cauchy formula (C.5).

For case (3), we have to consider the topological vertex with a tensor
product representation C(α⊗�)μt∅ seriously. For the tensor product repre-
sentation α⊗ β, the Schur function obeys [60]

sα⊗β = sαsβ =
∑

γ

cγαβsγ . (8.29)

Then the topological vertex with a tensor product representation is com-
puted as

C∅(α⊗β)μ =
∑

γ

cγαβC∅γμ =
∑

γ

cγαβsγ(qρ)sμt(qρ+γ)qκμ/2

=
∑

γ

cγαβsγ(qρ+μt
)sμt(qρ)qκμ/2

= sα(qρ+μt
)sβ(qρ+μt

)sμt(qρ)qκμ/2

= sα(qρ)sβ(qρ)sμt(qρ+α)
sμt(qρ+β)
sμt(qρ)

qκμ/2. (8.30)
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Applying this expression to (8.20), we find that the partition function in
this case coincides with (8.27):

Z
open (3)
BPS 1 (X,Qb, QfL, QfR; q) = Z

open (2)
BPS 1 (X,Qb, QfL, QfR; q). (8.31)

Summing these three contributions, we find the partition function in one
instanton sector.

Zopen
BPS 1(X,Qb, QfL, QfR; q)

= Qb
q1/2

q − 1
1

1 −QfL

∞∑
m′=0

X−1(Xq1/2)m′

∏m′
k=1(1 − qk)(1 −QfRqk−1)

+ 2Qb
q

(q − 1)2
1

1 −QfL

∞∑
m=0

1
(1 −QfRq−1)(1 −QfRqm)

× (Xq1/2)m∏m
k=1(1 − qk)

∏m−1
k=1 (1 −QfRqk−1)

. (8.32)

In the four-dimensional limit β → 0, the open BPS partition function become

Z
open(4D)
BPS 1 (w,Λ, aL, aR; �)

= −Λ4
∞∑

m′=0

(Λ2w)m′−1 1

(2aL)�m′+1m′!
∏m′

k=1(2aR + (k − 1)�)

+ 2Λ4
∞∑

m=1

(Λ2w)m 1
(2aL)(2aR − �)(2aR + m�)�m+2m!

∏m−1
k=1 (2aR + (k − 1)�)

,

(8.33)

where q = e−β�.

On the other hand, in the self-dual case ε1 = −ε2 = �, the one instanton
partition function for the gauge theory (8.17) yields

Z
(4D)
1-inst(a, �,−�; Λ2w,Λ2w−1)

= −Λ4
∞∑

m=−1

(Λ2w)m 1
�m+2(m + 1)!

∏m+1
k=0 (2a+ (k − 1)�)

+ 2Λ4
∞∑

m=0

(Λ2w)m 1
(2a− �)2(2a+ m�)�m+2m!

∏m−1
k=1 (2a+ (k − 1)�)

.

(8.34)
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Choosing aL and aR by

aL = a− �/2, aR = a, (8.35)

we find a coincidence between the one instanton partition function for gauge
theory and four-dimensional limit of the partition function for the open BPS
states in the A model.

8.2.1 Geometric engineering of N f = 1 theory

Geometrically the four-dimensional gauge theory with Nf = 1 flavor is engi-
neered by the A model on local del Pezzo surface dP2 with Kähler parameters

Qf = e−2βa, Qe = e−β(a−m), Qb = 2β3Λ3. (8.36)

So as to realize the surface operator, we introduce toric D-brane as figure 6,
and the open string moduli is also identified by

X = β2Λ2w. (8.37)

The topological vertex computes the open BPS invariants on local del
Pezzo surface.

Zopen
BPS (X,Qb, Qe, QfL, QfR; q) =

ZD-brane(X,Qb, Qe, QfL, QfR; q)
Zclosed

BPS (Qb, Qe, QfL, QfR; q)
, (8.38)

Zclosed
BPS (Qb, Qe, QfL, QfR; q)

=
∑

λ1,λ2,μ,ν,τ

Cλ1νt∅Cμλt
1∅Cτμt∅Cλ2τ tφCνλt

2∅

× q(κν+κλ2
)/2(−Qb)|λ1|(−QfRQ

−1
e )|μ|(−Qe)|τ |(QbQfRQ

−1
e )|λ2|Q|ν|

fL,

(8.39)

ZD-brane
BPS (X,Qb, Qe, QfL, QfR; q)

=
∑

λ1,λ2,μ,ν,τ,α,β

C(λ1⊗α)νt∅Cμ(λt
1⊗β)∅Cτμt∅Cλ2τ tφCνλt

2∅

× q
(pκλ1⊗α+pκ

λt
1⊗β

+κν+κλ2
)/2

(−Qb)|λ1|(−QfRQ
−1
e )|μ|(−Qe)|τ |

× (QbQfRQ
−1
e )|λ2|Q|ν|

fLQ
|β|
b

× (−1)p|α|+p|β| TrαV TrβV
−1. (8.40)

For later convenience, we have changed the Kähler parameter Qf as in the
local Hirzebruch case.

QfL = e−2βaL , QfR = e−2βaR , Qe = e−β(aR−m). (8.41)
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Figure 6: D-brane inserted on an inner leg of local del Pezzo surface.

In the following we choose the framing p = −1.

The one instanton sector for four-dimensional theory comes from a part
of the above representation sums, which satisfies |β| + |λ1| + |λ2| = 1 for
the D-brane partition function and |λ1| + |λ2| = 0 for closed string partition
function. We find the closed string partition function

Zclosed
BPS 0(Qb, Qe, QfL, QfR; q) =

M(QfL; q)M(QfR; q)
M(Qe; q)M(QfRQ

−1
e ; q)

. (8.42)

The computation of the D-brane partition function for the one instan-
ton sector is classified into three cases (8.23). Each partition function is
computed in the same way as local Hirzebruch surface.

Z
open (1)
BPS 1 (X, Qb, Qe, QfL, QfR; q)

= (−Qb)
q1/2

q − 1

∞∑
m′=0

(1 − QfRQ−1
e )X−1(Xq1/2)m

′

(1 − QfR)
∏m′

k=1(1 − qk)(1 − QfLqk−1)
, (8.43)

Z
open (2)
BPS 1 (X, Qb, Qe, QfL, QfR; q)

= (QbQfQ−1
e )

(
q1/2

q − 1

)2

×
∞∑

m=0

(1 − Qe)(Xq1/2)m

(1 − QfR)(1 − QfLq−1)(1 − QfLqm)
∏m

k=1(1 − qk)
∏m−1

k=1 (1 − QfLqk−1)
,

(8.44)

Z
open (3)
BPS 1 (X, Qb, Qe, QfL, QfR; q)

= (−Qb)

(
q1/2

q − 1

)2

×
∞∑

m=0

(1 − QfRQ−1
e )(Xq1/2)m

(1 − QfR)(1 − QfLq−1)(1 − QfLqm)
∏m

k=1(1 − qk)
∏m−1

k=1 (1 − QfLqk−1)
.

(8.45)
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Summing all these contributions, one finds

Zopen
BPS 1(X, Qb, Qe, QfL, QfR; q)

= Qb
q1/2

q − 1

∞∑
m′=0

(QfRQ−1
e − 1)X−1(Xq1/2)

(1 − QfR)
∏m′

k=1(1 − qk)(1 − QfLqk−1)

+ Qb

(
q1/2

q − 1

)2 ∞∑
m=0

(2QfRQ−1
e −QfR − 1)(Xq1/2)m

(1−QfR)(1−QfLq−1)(1−QfLqm)
∏m

k=1(1− qk)
∏m−1

k=1 (1−QfLqk−1)
.

(8.46)

In the four-dimensional limit (β → 0), this partition function yields

Z
open(4D)
BPS 1 (w, Λ, aL, aR, M ; �)

= 2Λ3
∞∑

m′=0

(Λ2w)m′−1 aR + m

(2aR)�m′+1m′!
∏m′

k=1(2aL + (k − 1)�)

+ 2Λ3
∞∑

m=1

(Λ2w)m −2m

(2aR)(2aL − �)(2aL + m�)�m+2m!
∏m−1

k=1 (2aL + (k − 1)�)
. (8.47)

In the self-dual case ε1 = −ε2 = �, the one instanton partition function
(8.15) for the gauge theory is reduced to

Z
(4D)
1-inst(a, �,−�,M1; Λ2w, 2Λ3w−1)

= 2Λ3
∞∑

m=−1

(Λ2w)m a+ 2M1 − �

(2a− �)(2a+ m�)�m+2(m + 1)!
∏m

k=1(2a+ k�)

+ 2Λ3
∞∑

m=0

(Λ2w)m −(4M1 − �)
(2a− �)2(2a+ m�)�m+2m!

∏m−1
k=1 (2a+ (k − 1)�)

.

(8.48)

This result coincides with the topological vertex computation (8.47) under
the following shifts of parameters:

aL = a, aR = a− �/2, m = 2M1 − �/2. (8.49)
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Note added

After this paper was submitted to arXiv, there appeared a new article [61],
where the results in [7] are extended to affine sl(N) case.

Appendix A Equivariant character of the affine Laumon
space

The fixed points of the toric action on the affine U(2) Laumon space are
isolated and labeled by a pair of partitions �λ := (λ1, λ2). We denote by λk,i

the ith component of the partition λk = (λk,1, λk,2, . . . , λk,N ). The equivari-
ant character ch�λ,�μ

(�a,�b) := Tr
Ext(�λ,�μ)

[diag.(ε1, ε2;�a,�b)] in [11] computes the
contribution of a bifundamental multiplet, from which those of an adjoint
and an (anti-)fundamental multiplet are derived. Hence the relevant gauge
group is U(2) × U(2) in the following. We need a second pair of partitions
�μ := (μ1, μ2) and the Coulomb moduli parameters �a := (a1, a2),�b := (b1, b2)
to write down the formula of the equivariant character. With the convention
ak ≡ ak+2 and λk,i ≡ λk+2,i, the equivariant character at a fixed point of the
toric action is10

ch�λ,�μ
(�a,�b)

:=
∑

k,�≥1

eak−b�+1 eε1+ε2(� �
2
− 1

2
	−� k

2
−1	) (eε1μ�+1,� − 1)(e−ε1λk,k − 1)

eε1 − 1

+
∑

k,�≥1

eak+1−b� eε1+ε2(� �
2
−1	−� k

2
− 3

2
	) (eε1μ�,� − 1)(e−ε1λk+1,k − 1)

eε1 − 1

10In the SU(2) case, ak := (−1)k−1a and bk := (−1)k−1b.
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+
∑
�≥1

ea1−b�+1 eε1+ε2(� �
2
− 1

2
	+1) e

ε1μ�+1,� − 1
eε1 − 1

+
∑
�≥1

ea2−b� eε1+ε2(� �
2
−1	+1) e

ε1μ�,� − 1
eε1 − 1

−
∑

k,�≥1

eak−b� eε1+ε2(� �
2
−1	−� k

2
−1	) (eε1μ�,� − 1)(e−ε1λk,k − 1)

eε1 − 1

−
∑

k,�≥1

eak+1−b�+1 eε1+ε2(� �
2
− 3

2
	−� k

2
− 3

2
	) (eε1μ�+1,� − 1)(e−ε1λk+1,k − 1)

eε1 − 1

−
∑
k≥1

eak−b1eε1+ε2(−1−� k
2
−1	) e−ε1λk,k − 1

eε1 − 1

−
∑
k≥1

eak+1−b2 eε1+ε2(−1−� k
2
− 3

2
	) e−ε1λk+1,k − 1

eε1 − 1
. (A.1)

Here the floor function �k� denotes the largest integer not greater than k.
We have rewritten the original formula by Feigin et al. ([11]. Prop. 4.15) to
arrive at (A.1).

We can rewrite this character as a Laurent polynomial in eai , ebi and eεi

with non-negative integer coefficients as follows:

Proposition.

ch�λ,�μ
(�a,�b) =

∑
k≥1
�≥0

eak−b�+1 eε2(� �+1
2

	−� k
2
	)

min(0,μ�+1,�−λk,k)∑
i=min(1,1+μ�+1,�+1−λk,k)

eiε1

+
∑
k≥1
�≥0

eak−1−b� eε2(� �
2
	−� k−1

2
	)

min(0,μ�,�−λk−1,k)∑
i=min(1,1+μ�,�+1−λk−1,k)

eiε1

+
∑
k≥0
�≥1

eak−b� eε2(� �
2
	−� k

2
	)

max(0,μ�,�−λk,k+1)∑
i=max(1,1+μ�,�−λk,k)

eiε1

+
∑
k≥0
�≥1

eak+1−b�+1 eε2(� �+1
2

	−� k+1
2

	)
max(0,μ�+1,�−λk+1,k+1)∑

i=max(1,1+μ�+1,�−λk+1,k)

eiε1

(A.2)

with λk,0 = μk,0 := ∞.
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Proof. Since

q
(qN − 1)(q−M − 1)

q − 1
=

⎡
⎣

min(0,N−M)∑
i=1−M

−
N∑

i=max(1,1+N−M)

⎤
⎦ qi (A.3)

for any M,N = 0, 1, 2, 3, . . ., the character ch�λ,�μ
(�a,�b) reduces to

×
∑

k,�≥1

eak−b�+1 eε2(� �+1
2

	−� k
2
	)

⎡
⎣

min(0,μ�+1,�−λk,k)∑
i=1−λk,k

−
μ�+1,�∑

i=max(1,1+μ�+1,�−λk,k)

⎤
⎦ eiε1

(A.4)

+
∑

k,�≥1

eak−1−b� eε2(� �
2
	−� k−1

2
	)

⎡
⎣

min(0,μ�,�−λk−1,k)∑
i=1−λk−1,k

−
μ�,�∑

i=max(1,1+μ�,�−λk−1,k)

⎤
⎦ eiε1

(A.5)

+
∑
�≥1

ea1−b�+1 eε2� �+1
2

	
μ�+1,�∑
i=1

eiε1 +
∑
�≥1

ea0−b� eε2� �
2
	

μ�,�∑
i=1

eiε1 (A.6)

+
∑

k,�≥1

eak−b� eε2(� �
2
	−� k

2
	)

⎡
⎣

μ�,�∑
i=max(1,1+μ�,�−λk,k)

−
min(0,μ�,�−λk,k)∑

i=1−λk,k

⎤
⎦ eiε1 (A.7)

+
∑

k,�≥1

eak+1−b�+1 eε2(� �+1
2

	−� k+1
2

	)

×
⎡
⎣

μ�+1,�∑
i=max(1,1+μ�+1,�−λk+1,k)

−
min(0,μ�+1,�−λk+1,k)∑

i=1−λk+1,k

⎤
⎦ eiε1 (A.8)

+
∑
k≥1

eak−b1 e−ε2� k
2
	

0∑
i=1−λk,k

eiε1 +
∑
k≥1

eak+1−b2 eε2(1−� k+1
2

	)
0∑

i=1−λk+1,k

eiε1 .

(A.9)

Adding the second term of (A.7) with � ≥ 2 and the first term of (A.4) yields

∑
k,�≥1

eak−b�+1 eε2(� �+1
2

	−� k
2
	)

min(0,μ�+1,�−λk,k)∑
i=min(1,1+μ�+1,�+1−λk,k)

eiε1 . (A.10)
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Figure 7: Example of sgnλ(i, j) for λ = (9, 9, 8, 6, 5, 5, 4, 3, 3, 3, 2), which
equals that for λ = (8, 6, 4, 3, 2). The black and white boxes denote
sgnλ(i, j) = 1 and −1, respectively.

On the other hand, adding the second term of (A.7) with � = 1 and the first
term of (A.9) yields

∑
k≥1

eak−b1 e−ε2� k
2
	

0∑
i=min(1,1+μ1,1−λk,k)

eiε1 . (A.11)

Combining (A.10) with (A.11) gives the first term of (A.2). In the same
manner we can get other terms. �

Let us introduce the following signature (figure 7):

sgnλ(i, j) :=

⎧⎨
⎩

−1

+1

if
{
λ2n+1 < j ≤ λ2n and i = 2m− 1 or
λ2n+2 < j ≤ λ2n+1 and i = 2m,

if
{
λ2n+1 < j ≤ λ2n and i = 2m or
λ2n+2 < j ≤ λ2n+1 and i = 2m− 1

(A.12)
with n = 0, 1, 2, . . . , and m = 1, 2, 3, . . .. Here λ0 := ∞. Note that if λk+1 =
λk+2 then sgnλ(i, j) = sgnλred(i, j) with λred := (λ1, . . . , λk, λk+3, . . .).

Then we can represent the character as a summation over some squares
in the Young diagrams as follows:
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Proposition.

ch�λ,�μ
(�a,�b) =

2∑
I,J=1

chI,J
λI ,μJ

(aI , bJ),

chI,J
λ,μ(a, b) := exp

{
a− b+

1
2
ε1 +

(
1
2

+ J − I

)
ε2
2

}

×

⎧⎪⎪⎨
⎪⎪⎩

∑
(i,j)∈λ

sgnμ(i,j)=(−1)I+J+1

exp
{
−
(
λi − j +

1
2

)
ε1

+
(
μ′j − i+

1
2

)
ε2
2

}

+
∑

(i,j)∈μ

sgnλ(i,j)=(−1)I+J

exp
{(

μi − j +
1
2

)
ε1 −

(
λ′j − i+

1
2

)
ε2
2

}
⎫⎪⎪⎬
⎪⎪⎭
.

(A.13)

Moreover ch�λ,�μ
(�a,�b) is symmetric under the replacement (a1 + ε2

4 , b1 + ε2
4 ) ↔

(a2 − ε2
4 , b2 − ε2

4 ) and (λ1, μ1) ↔ (λ2, μ2).

Proof. Let chI,J
λI ,μJ

(aI , bJ) be a part of ch�λ,�μ
(�a,�b), which contains eaI−bJ , i.e.,

ch1,1
λ,μ(a, b) :=

∑
k≥1
�≥0

ea−b eε2(�−k+1)

min(0,μ2�−λ2k−1)∑
i=min(1,1+μ2�+1−λ2k−1)

eiε1

+
∑

k,�≥1

ea−b eε2(�−k)

min(0,μ2�−1−λ2k)∑
i=min(1,1+μ2�−λ2k)

eiε1

+
∑

k,�≥1

ea−b eε2(�−k)

max(0,μ2�−1−λ2k)∑
i=max(1,1+μ2�−1−λ2k−1)

eiε1

+
∑
k≥0
�≥1

ea−b eε2(�−k)

max(0,μ2�−λ2k+1)∑
i=max(1,1+μ2�−λ2k)

eiε1 , (A.14)

ch2,1
λ,μ(a, b) :=

∑
k≥1
�≥0

ea−b eε2(�−k)

min(0,μ2�−λ2k)∑
i=min(1,1+μ2�+1−λ2k)

eiε1
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+
∑

k,�≥1

ea−b eε2(�−k)

min(0,μ2�−1−λ2k−1)∑
i=min(1,1+μ2�−λ2k−1)

eiε1

+
∑
k≥0
�≥1

ea−b eε2(�−k−1)

max(0,μ2�−1−λ2k+1)∑
i=max(1,1+μ2�−1−λ2k)

eiε1

+
∑

k,�≥1

ea−b eε2(�−k)

max(0,μ2�−λ2k)∑
i=max(1,1+μ2�−λ2k−1)

eiε1 , (A.15)

and ch2,2
λ,μ(a, b) := ch1,1

λ,μ(a, b) and ch1,2
λ,μ(a, b) := ch2,1

λ,μ(a, b)eε2 . Then we obtain

ch1,1
λ,μ(a, b) =

∑
(i,j)∈λ

sgnμ(i,j)=−1

exp
{
a− b− (λi − j) ε1 +

(
μ′j − i+ 1

) ε2
2

}

+
∑

(i,j)∈μ
sgnλ(i,j)=1

exp
{
a− b+ (μi − j + 1) ε1 −

(
λ′j − i

) ε2
2

}
,

ch2,1
λ,μ(a, b) =

∑
(i,j)∈λ

sgnμ(i,j)=1

exp
{
a− b− (λi − j) ε1 +

(
μ′j − i

) ε2
2

}

+
∑

(i,j)∈μ
sgnλ(i,j)=−1

exp
{
a− b+ (μi − j + 1) ε1 −

(
λ′j − i+ 1

) ε2
2

}
,

(A.16)

which proves (A.13). Since

ch2,2
λ2,μ2

(
a2 +

ε2
4
, b2 +

ε2
4

]
)

= ch1,1
λ2,μ2

(
a2 − ε2

4
, b2 − ε2

4

)
,

ch1,2
λ1,μ2

(
a1 − ε2

4
, b2 +

ε2
4

)
= ch2,1

λ1,μ2

(
a1 +

ε2
4
, b2 − ε2

4

)
, (A.17)

the proposition follows. �

Especially when �μ = �λ, �μ = �∅ or �λ = �∅, we can also represent the character
as a summation over all squares in the Young diagrams:

Corollary.

ch�λ,�λ
(�a,�b) =

2∑
I,J=1

c̃h
I,J

λI ,λJ
(�a,�b), (A.18)
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c̃h
I,J

λ,μ(�a,�b) :=
∑

(i,j)∈λ

exp
{
aI+(1−sgnμ(i,j)I−J )/2 − bJ+(1−sgnμ(i,j)I−J )/2

+
1
2

(
ε1 +

ε2
2

)}
exp

{((
λi − j +

1
2

)
ε1

×−
(
μ′j − i+

1
2

+ J − I

)
ε2
2

)
(−1)I+Jsgnμ(i, j)

}
,

ch�λ,�∅(�a,
�b) =

2∑
I=1

eaI

⎡
⎢⎣e−bI

∑
(i,j)∈λI

i:odd

+e−bI+1+
ε2
2

(−1)I+1
∑

(i,j)∈λI
i:even

⎤
⎥⎦ e(1−j)ε1+(1−i)

ε2
2 ,

(A.19)

ch�∅,�μ(�a,�b) =
2∑

J=1

e−bJ

⎡
⎢⎣eaJ

∑
(i,j)∈μJ

i:even

+eaJ+1+
ε2
2

(−1)J
∑

(i,j)∈μJ
i:odd

⎤
⎥⎦ ejε1+i

ε2
2 . (A.20)

Proof. Let c̃h
I,I

λ,λ(�a,�b) := chI,I
λ,λ(aI , bI). For I = J , let c̃h

I,J

λ,μ(�a,�b) be the com-

bination of the terms of chI,J
λ,μ(aI , bJ) with negative powers in eε1 and those of

chJ,I
μ,λ(aJ , bI) with positive powers. Then we get (A.18). When �μ = �∅, since

sgn∅(i, j) = (−1)i, if i is odd or even number, then I = J or I = J , respec-
tively. Thus ch1,1

λ,∅(a1, b1) + ch1,2
λ,∅(a1, b2) and ch2,2

λ,∅(a2, b2) + ch2,1
λ,∅(a2, b1) give

the I = 1 and 2 part of (A.19), respectively. On the other hand, when �λ = �∅,
if i is even or odd number, then I = J or I = J , respectively, and in the same
manner we obtain (A.20). �

Appendix B Multi points insertion of degenerate operators

B.1 Nf = 0 case

In Nf = 0 case, we put 〈A| = 〈Δ′,Λ| and |B〉 = |Δ,Λ〉 in equation (5.6),
then we have

[
Λ
4
∂Λ +

Δ + Δ′ −Nh1,2

2
+ Λ2

(
z1 +

1
z1

)
+ b2z2

1∂
2
z1

− 3
2
z1∂z1

+
N∑

j=2

{(
z1zj
z1 − zj

− zj
2

)
∂zj +

z2
1h1,2

(z1 − zj)2

}⎤
⎦Ψ = 0.

(B.1)
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We set the dimensions of initial state as Δ = Δ(a0), then the dimensions
of intermediate and final states Δ(ai) are restricted by the fusion rule as

ai+1 = ai ± 1
2b

and Δ′ = Δ(aN ). For each choice of the intermediate chan-

nels (called fusion path), one has a series solution of the form

Ψ =
N∏

i=1

z
Δ(ai)−Δ(ai−1)−h1,2

i

∏
1≤i<j≤N

(
1 − zj

zi

)− 1
2b2

Y (z),

Y (z) =
∞∑

n=0

Yn(z)Λ2n. (B.2)

• The case N = 2: For the simplest fusion path ai = a+ i
2b , we have

Y0 = 1, Y1 =
1

−b2 − 2ab − 1

(
1

z2
+

1

z1

)
+

1

−b2 + 2ab + 1
(z1 + z2),

Y2 = c1 + c2

(
1

z2
2

+
1

z2
1

)
+ c3

(
z1

z2
+

z2

z1

)
+ c4z1z2 +

c5

z1z2
+ c6(z2

1 + z2
2),

c1 =
2(b2 + 1)

(b2 − 2ab − 1)(b2 + 2ab + 1)
, c2 =

1

2(b2 + 2ab + 1)(2b2 + 2ab + 1)
,

c3 = − 1

(−b2 + 2ab + 1)(b2 + 2ab + 1)
, c4 =

2(a − b)

(2a − b)(−2b2 + 2ab + 1)(−b2 + 2ab + 1)
,

c5 =
2(b2 + ab + 1)

(b2 + 2ab + 1)(b2 + 2ab + 2)(2b2 + 2ab + 1)
, c6 =

1

2(−2b2 + 2ab + 1)(−b2 + 2ab + 1)
,

Y3 = c1

(
1

z3
2

+
1

z3
1

)
+ c2

(
1

z2
+

1

z1

)
+ c3(z1 + z2) + c4(z3

1 + z3
2)

+ c5

(
1

z2
2z1

+
1

z2z2
1

)
+ c6(z2z2

1 + z2
2z1) + c7

(
z1

z2
2

+
z2

z2
1

)
+ c8

(
z2
1

z2
+

z2
2

z1

)
,

c1 = − 1

6(b2 + 2ab + 1)(2b2 + 2ab + 1)(3b2 + 2ab + 1)
,

c2 =
8b4 + 8ab3 + 13b2 + 6ab + 6

2(−b2 + 2ab + 1)(b2 + 2ab + 1)(b2 + 2ab + 2)(2b2 + 2ab + 1)
,

c3 = − −8b3 + 8ab2 − 5b + 6a

2(2a − b)(−2b2 + 2ab + 1)(−b2 + 2ab + 1)(b2 + 2ab + 1)
,

c4 =
1

6(−3b2 + 2ab + 1)(−2b2 + 2ab + 1)(−b2 + 2ab + 1)
,

c5 = − 3b2 + 2ab + 2

2(b2 + 2ab + 1)(b2 + 2ab + 2)(2b2 + 2ab + 1)(3b2 + 2ab + 1)
,

c6 =
2a − 3b

2(2a − b)(−3b2 + 2ab + 1)(−2b2 + 2ab + 1)(−b2 + 2ab + 1)
,

c7 =
1

2(−b2 + 2ab + 1)(b2 + 2ab + 1)(2b2 + 2ab + 1)
,

c8 = − 1

2(−2b2 + 2ab + 1)(−b2 + 2ab + 1)(b2 + 2ab + 1)
. (B.3)
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Then the free energy is given as

log Y (z1, z2) = g(z1) + g(z2) + g(z1, z2), (B.4)

where

g(z1) = Λ2

(
z1

2ab − b2 + 1
− 1

z1(2ab + b2 + 1)

)

+ Λ4

(
b2z2

1

2(2ab − 2b2 + 1)(2ab − b2 + 1)2
− b2

2z2
1(2ab + b2 + 1)2(2ab + 2b2 + 1)

− b2

(2ab − b2 + 1)(2ab + b2 + 1)

)
+ Λ6

(
2b4z3

1

3(2ab − 3b2 + 1)(2ab − 2b2 + 1)(2ab − b2 + 1)3

− 2b4

z1(2ab − b2 + 1)(2ab + b2 + 1)2(2ab + b2 + 2)(2ab + 2b2 + 1)

− 2b4

3z3
1(2ab + b2 + 1)3(2ab + 2b2 + 1)(2ab + 3b2 + 1)

+
2b3z1

(2a − b)(2ab − 2b2 + 1)(2ab − b2 + 1)2(2ab + b2 + 1)

)
+ O(Λ8), (B.5)

and

g(z1, z2) = Λ4

(
− bz1z2

(−2ab + b2 − 1)2(4a2b − 6ab2 + 2a + 2b3 − b)

− b2

z1z2(2ab + b2 + 1)2(2ab + b2 + 2)(2ab + 2b2 + 1)

)

+ Λ6

(
− 2b4

(2ab + b2 + 1)3(2ab + b2 + 2)(2ab + 2b2 + 1)(2ab + 3b2 + 1)

(
1

z2
1z2

+
1

z1z2
2

)

− 2b3(z1z2
2 + z2

1z2)

(2a − b)(2ab − 3b2 + 1)(2ab − 2b2 + 1)(2ab − b2 + 1)3
+ O(Λ8). (B.6)

Under the limit a→ a
�
, Λ → Λ

�
� → 0, we have

−Λ4(z2
1z

2
2 + 1)

16a4b2z1z2
− Λ6(z1 + z2)(z3

1z
3
2 + 1)

32a6b2z2
1z

2
2

+ O(�). (B.7)

This agrees with the B model results.
• The case N = 3: For the simplest fusion path ai = a+ i

2b , we have

Y0(z) = 1, Y1 =
z1 + z2 + z3

2ab − b2 + 2
− 1

(2ab + b2 + 1)

(
1

z1
+

1

z2
+

1

z3

)
,

Y2 = c1 + c2

(
1

z2
2

+
1

z2
3

+
1

z2
1

)
+ c3(z2

1 + z2
2 + z2

3) + c4

(
z1

z2
+

z1

z3
+

z3

z2
+

z2

z3
+

z2

z1
+

z3

z1

)
,

+ c5(z1z2 + z3z2 + z1z3) + c6

(
1

z1z3
+

1

z1z2
+

1

z3z2

)
,

c1 =
2b2 + 3

(−2ab + b2 − 2)(2ab + b2 + 1)
, c2 =

1

2(2ab + b2 + 1)(2ab + 2b2 + 1)
,

c3 =
1

4(ab − b2 + 1)(2ab − b2 + 2)
, c4 = − 1

(2ab − b2 + 2)(2ab + b2 + 1)
,



“ATMP-16-3-A1-AWA” — 2013/1/31 — 12:14 — page 795 — #71
�

�

�

�

�

�

�

�

LOCALIZATION WITH A SURFACE OPERATOR 795

c5 =
2ab − 2b2 + 1

2(ab − b2 + 1)(2ab − b2 + 1)(2ab − b2 + 2)
,

c6 =
2(ab + b2 + 1)

(2ab + b2 + 1)(2ab + b2 + 2)(2ab + 2b2 + 1)
,

Y3 = c1

(
1

z3
2

+
1

z3
3

+
1

z3
1

)
+ c2

(
1

z2
+

1

z3
+

1

z1

)
+ c3(z1 + z2 + z3)

+ c4
(
z3
1 + z3

2 + z3
3

)
+ c5

(
1

z2
2z3

+
1

z2z2
3

+
1

z2
2z1

+
1

z2
3z1

+
1

z2z2
1

+
1

z3z2
1

)

+ c6
(
z2z2

1 + z3z2
1 + z2

2z1 + z2
3z1 + z2z2

3 + z2
2z3

)
+ c7

(
z1

z2
2

+
z1

z2
3

+
z3

z2
2

+
z2

z2
3

+
z2

z2
1

+
z3

z2
1

)

+ c8

(
z2
1

z2
+

z2
1

z3
+

z2
3

z2
+

z2
2

z3
+

z2
2

z1
+

z2
3

z1

)
+ c9

(
z1

z2z3
+

z3

z2z1
+

z2

z3z1

)

+ c10

(
z3z2

z1
+

z1z2

z3
+

z1z3

z2

)
+ c11

1

z1z2z3
+ c12z1z2z3, (B.8)

where

c1 = − 1
6(2ab+ b2 + 1)(2ab+ 2b2 + 1)(2ab+ 3b2 + 1)

,

c2 = − 8ab3 + 10ab+ 8b4 + 17b2 + 10
2(−2ab+ b2 − 2)(2ab+ b2 + 1)(2ab+ b2 + 2)(2ab+ 2b2 + 1)

,

c3 = − 8ab3 + 10ab− 8b4 − 5b2 + 5
4(ab− b2 + 1)(2ab− b2 + 1)(2ab− b2 + 2)(2ab+ b2 + 1)

,

c4 =
1

12(2ab− 3b2 + 2)(ab− b2 + 1)(2ab− b2 + 2)
,

c5 = − 2ab+ 3b2 + 2
2(2ab+ b2 + 1)(2ab+ b2 + 2)(2ab+ 2b2 + 1)(2ab+ 3b2 + 1)

,

c6 =
2ab− 3b2 + 1

4(2ab− 3b2 + 2)(ab− b2 + 1)(2ab− b2 + 1)(2ab− b2 + 2)
, (B.9)

c7 = − 1
2(−2ab+ b2 − 2)(2ab+ b2 + 1)(2ab+ 2b2 + 1)

,

c8 = − 1
4(−2ab+ b2 − 2)(−ab+ b2 − 1)(2ab+ b2 + 1)

,

c9 = − 2(ab+ b2 + 1)
(−2ab+ b2 − 2)(2ab+ b2 + 1)(2ab+ b2 + 2)(2ab+ 2b2 + 1)

,

c10 = − 2ab− 2b2 + 1
2(ab− b2 + 1)(2ab− b2 + 1)(2ab− b2 + 2)(2ab+ b2 + 1)

,

c11 = − 2(2a2b2 + 5ab3 + 5ab+ 3b4 + 7b2 + 3)
(2ab+ b2 + 1)(2ab+ b2 + 2)(2ab+ b2 + 3)

(2ab+ 2b2 + 1)(2ab+ 3b2 + 1)

,
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c12 =
4a2b− 10ab2 + 2a+ 6b3 − b

2(2a− b)(2ab− 3b2 + 2)(ab− b2 + 1)
(2ab− b2 + 1)(2ab− b2 + 2)

.

In the free energy F = log Y , the relevant terms at order Λ6 are

4b3

(2a− b) (2ab− 3b2 + 2) (ab− b2 + 1) (2ab− b2 + 1) (2ab− b2 + 2)3
z1z2z3

− 8b4(
2ab+ b2 + 1

)3 (2ab+ b2 + 2
) (

2ab+ b2 + 3
)

(
2ab+ 2b2 + 1

) (
2ab+ 3b2 + 1

)
1

z1z2z3
. (B.10)

Under the limit a→ a
�
, � → 0, this gives

�
7 1
16a7b3

(
z1z2z3 − 1

z1z2z3

)
+ O(�8). (B.11)

This is consistent with the B model results.

B.2 Nf = 1 case

We put 〈A| = 〈Δ−,Λ,m| and |B〉 = |Δ+,Λ〉, then (5.6) takes the form

⎡
⎣(L0)0 +

Λ2

z1
+
(
b2z2

1∂
2
z1

− z1∂z1

)
+

N∑
j=2

(
z1zj
z1 − zj

∂zj +
z2
1

(z1 − zj)2
h1,2

)

+ z1(−2mΛ) + z2
1(−Λ2)

⎤
⎦Ψ = 0, (B.12)

where the action of the first term is given as

(L0)0 =
Λ
3
∂Λ +

Δ− + 2Δ+

3
− 1

3

N∑
i=1

(zi∂zi + h1,2), (B.13)

by using the relations L0|B〉 = (Δ+ + Λ
2 ∂Λ)|B〉 and 〈A|L0 = (Δ− + Λ∂Λ)〈A|.
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The equation has a solution such as Y (z) = 1 + Y1Λ + Y2Λ2 + · · · with
the same pre-factor as Nf = 0 case. The first terms are as follows:

Y0 = 1, Y1 = − 2m(z1 + z2)

−b2 + 2ab + 1
,

Y2 = − (−b2 + 2ab − 4m2 + 1)(z2
1 + z2

2)

2(−2b2 + 2ab + 1)(−b2 + 2ab + 1)
+

(−8m2b2 − b2 + 8am2b + 2ab + 1)z2z1

(2a − b)b(−2b2 + 2ab + 1)(−b2 + 2ab + 1)

− 1

(b2 + 2ab + 1)
(

1

z1
+

1

z2
),

Y3 =
m(−5b2 + 6ab − 4m2 + 3)(z3

1 + z3
2)

3(−3b2 + 2ab + 1)(−2b2 + 2ab + 1)(−b2 + 2ab + 1)

+
m(3b4 − 8ab3 + 4a2b2 + 12m2b2 + b2 − 8am2b − 2ab − 2)(z1z2

2 + z2z2
1)

(2a − b)b(−3b2 + 2ab + 1)(−2b2 + 2ab + 1)(−b2 + 2ab + 1)

+
2mz1

(−b2 + 2ab + 1)(b2 + 2ab + 1)(z1 + z2)
+

4(b2 + 1)m

(−b2 + 2ab + 1)(b2 + 2ab + 1)
,

Y4 =
(9b4 − 24ab3 + 12a2b2 + 56m2b2 − 12b2 − 48am2b + 12ab + 16m4 − 24m2 + 3)(z4

1 + z4
2)

24(−4b2 + 2ab + 1)(−3b2 + 2ab + 1)(−2b2 + 2ab + 1)(−b2 + 2ab + 1)

−
(80m2b4 + 9b4 − 136am2b3 − 24ab3 + 64m4b2 + 12a2b2

+48a2m2b2 − 12m2b2 − 12b2 − 32am4b + 12ab − 12m2 + 3)(z1z3
2 + z2z3

1)

6(2a − b)b(−4b2 + 2ab + 1)(−3b2 + 2ab + 1)(−2b2 + 2ab + 1)(−b2 + 2ab + 1)

+
C1z2

2z2
1

4(a − b)(2a − b)b2(−4b2 + 2ab + 1)(−3b2 + 2ab + 1)(−2b2 + 2ab + 1)(−b2 + 2ab + 1)

+
(−b2 + 2ab − 4m2 + 1)z2

2

2(−2b2 + 2ab + 1)(−b2 + 2ab + 1)(b2 + 2ab + 1)
(

1

z1
+

1

z2
)

+

(32m2b4 + 5b4 − 32am2b3 − 12ab3 + 4a2b2

+20m2b2 − 3b2 − 24am2b − 2ab − 2)(z1 + z2)

2(2a − b)b(−2b2 + 2ab + 1)(−b2 + 2ab + 1)(b2 + 2ab + 1)

+
2(b2 + ab + 1)

(b2 + 2ab + 1)(b2 + 2ab + 2)(2b2 + 2ab + 1)z2z1

+
1

2(b2 + 2ab + 1)(2b2 + 2ab + 1)(z2
1 + z2

2)
, (B.14)

C1 = −8bm2(2a − 3b)((2a2b2 − 5ab3 − ab + 2b4 + b2 − 1)

+ ((2ab − 3b2 + 1)((2ab − b2 + 1)((2a2b2 − 5ab3 + 2b4 + 1)

+ 16b2m4(2a − 3b)(a − 2b).

Then the free energy F = log Y = g(z1) + g(z2) + g(z1, z2) is given by

g(z1) = − 2mz1L

−b2 + 2ab + 1

+

(
− (−b2 + 2ab − 2mb + 1)(−b2 + 2ab + 2mb + 1)z2

1

2(−2b2 + 2ab + 1)(−b2 + 2ab + 1)2
− 1

(b2 + 2ab + 1)z1

)
Λ2

+

(
−4b2m(b2 − 2ab − 2mb − 1)(b2 − 2ab + 2mb − 1)z3

1

3(b2 − 2ab − 1)3(2b2 − 2ab − 1)(3b2 − 2ab − 1)

− 2b2m

(b2 − 2ab − 1)(b2 + 2ab + 1)

)
Λ3
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+

(
b2(−b2 + 2ab − 2mb + 1)(−b2 + 2ab + 2mb + 1)C2z4

1

4(−4b2 + 2ab + 1)(−3b2 + 2ab + 1)(−2b2 + 2ab + 1)2(−b2 + 2ab + 1)4

− 2b(−b2 + 2ab − 2mb + 1)(−b2 + 2ab + 2mb + 1)z1

(2a − b)(−2b2 + 2ab + 1)(−b2 + 2ab + 1)2(b2 + 2ab + 1)

− b2

2(b2 + 2ab + 1)2(2b2 + 2ab + 1)z2
1

)
Λ4 + O(Λ5),

g(z1, z2) = +
(−b2 + 2ab − 2mb + 1)(−b2 + 2ab + 2mb + 1)z1z2Λ2

(2a − b)b(−2b2 + 2ab + 1)(−b2 + 2ab + 1)2

− 4bm(−b2 + 2ab − 2mb + 1)(−b2 + 2ab + 2mb + 1)z1z2(z1 + z2)Λ3

(2a − b)(−3b2 + 2ab + 1)(−2b2 + 2ab + 1)(−b2 + 2ab + 1)3

+

⎛
⎜⎜⎝ − b2

(b2 + 2ab + 1)2(b2 + 2ab + 2)(2b2 + 2ab + 1)z1z2

− (−b2 + 2ab − 2mb + 1)(−b2 + 2ab + 2mb + 1)C2z1z2(z2
1 + z2

2)b

(2a − b)(−4b2 + 2ab + 1)(−3b2 + 2ab + 1)(−2b2 + 2ab + 1)2(−b2 + 2ab + 1)4

− (−b2 + 2ab − 2mb + 1)(−b2 + 2ab + 2mb + 1)C3z2
1z2

2

4(a − b)(2a − b)2(−4b2 + 2ab + 1)(−3b2 + 2ab + 1)
(−2b2 + 2ab + 1)2(−b2 + 2ab + 1)4b

⎞
⎟⎟⎠ Λ4 + O(Λ5), (B.15)

C2 = −3b6 + 14ab5 − 20a2b4 + 44m2b4 + 7b4 + 8a3b3 − 40am2b3

− 20ab3 + 12a2b2 − 20m2b2 − 5b2 + 6ab + 1,

C3 = −3b10 + 26ab9 − 88a2b8 + 172m2b8 − 11b8 + 144a3b7 − 664am2b7

+ 54ab7 − 112a4b6 − 84a2b6 + 784a2m2b6 + 20m2b6 + 40b6 + 32a5b5

+ 40a3b5 − 288a3m2b5 + 24am2b5 − 150ab5 + 168a2b4 − 32a2m2b4

− 52m2b4 − 36b4 − 56a3b3 + 64am2b3 + 82ab3 − 44a2b2 + 4m2b2 + 11b2 − 12ab − 1.

Under the limit a→ a
�
, m→ m

�
, Λ → Λ

�
and � → 0, we have

g(z1, z2) →
z1z2

(
a2 −m2

)
4a4b2

Λ2 − mz1z2(z1 + z2)
(
a2 −m2

)
4a6b2

Λ3

− Λ4

(
1

16a4b2z1z2
+
z2
1z

2
2

(
a2 − 9m2

)(
a2 −m2

)
32a8b2

+
z1
(
z2
1 + z2

2

)
z2
(
a2 − 5m2

)(
a2 −m2

)
16a8b2

)
+ O(Λ5). (B.16)

Again, this recovers the B model results correctly.

Appendix C Schur functions and topological vertex

The Schur function satisfies the following properties [60]:

sμ(cx) = c|μ|sμ(x), sμ(qρ) = qκμ/2sμt(qρ), sμ(qρ) = (−1)|μ|sμt(q−ρ),
(C.1)
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sμ(qρ)sν(qρ+μ) = sν(qρ)sμ(qρ+ν), (C.2)

where |μ| and κμ are

|μ| :=
∑

i

μi, (C.3)

κμ := |μ| +
∑

i

μi(μi − 2i) = 2
∑

(i,j)∈μ

(j − i), κμt = −κμ. (C.4)

The Cauchy formulas for the Schur functions are

∑
μ

sμ(x)sμ(y) =
∏
i,j

1
1 − xiyj

= exp

⎡
⎣∑

n,i,j

1
n
xn

i y
n
j

⎤
⎦ , (C.5)

∑
μ

sμ(x)sμt(y) =
∏
i,j

(1 + xiyj) = exp

⎡
⎣−∑

n,i,j

(−1)n

n
xn

i y
n
j

⎤
⎦ . (C.6)

The topological vertex in the canonical framing is [30]

Cμ1μ2μ3(q) = q(κμ2+κμ3 )/2sμt
2
(qρ)

∑
η

sμ1/η(q
ρ+μt

2)sμt
3/η(q

ρ+μ2), (C.7)

where sμ/ν is the skew Schur function defined by

sμ/ν =
∑

η

cμνηsη. (C.8)

We denote the Littlewood–Richardson coefficient by cμνη. The topological
vertex enjoys the cyclic symmetry

Cμ1μ2μ3(q) = Cμ3μ1μ2(q) = Cμ2μ3μ1(q). (C.9)

If some of μi’s are the trivial representation ∅, the topological vertex sim-
plifies as follows:

Cμ∅∅ = sμ(qρ), (C.10)

Cμν∅ = qκν/2sμ(qρ)sνt(qρ+μ) = sν(qρ)sμ(qρ+νt
). (C.11)

The gluing rule for the topological vertex is
∑

μ

Cμη1η2(−Q)|μ|(−1)n|μ|q−nκμ/2Cμtμ1μ2
, (C.12)
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Figure 8: Gluing rule for topological vertex.

where the integer n is defined by the exterior product of the vectors vμ1

and vη1

n = vμ1 ∧ vη1 = det
(
v1
μ1

v2
μ1

v1
η1

v2
η1

)
. (C.13)

The vectors vμi := (v1
μ1
, v2

μ1
) and vηi := (v1

η1
, v2

η1
) are the directions of the

corresponding legs in the toric diagram (see fig. 8). In particular for inner
branes, the gluing rule is generalized as follows:

∑
μi,αL,αR

Cμjμk(μi⊗αL)(−1)s(i)qf(i) e−L(i)C(μt
i⊗αR)μ′

jμ′
k

TrαLV TrαRV −1,

(C.14)
with

L(i) = |μi|ti + |αL|r + |αR|(ti − r), (C.15)

f(i) = pκμi⊗αL/2 + (n+ p)κμt
i⊗αR/2, (C.16)

s(i) = |μi| + pi|μi ⊗ αL| + (n+ p)|μt
i ⊗ αR|, (C.17)

where |α⊗ β| = |α| + |β| and κα⊗β = κα + κβ .
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