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Abstract

In this paper, we continue our program, started in [2], of building
up explicit generalized Euler angle parameterizations for all exceptional
compact Lie groups. Here we solve the problem for E7, by first providing
explicit matrix realizations of the Tits construction of a Magic Square
product between the exceptional octonionic algebra J and the quater-
nionic algebra H, both in the adjoint and the 56-dimensional representa-
tions. Then, we provide the Euler parametrization of E7 starting from its
maximal subgroup U = (E6 × U(1))/Z3. Next, we give the constructions
for all the other maximal compact subgroups.
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1 Introduction

Simple Lie groups are well understood, and find application in a huge number
of mathematical and physical fields. In particular, the role of compact excep-
tional Lie groups in grand unification gauge theories and in string theories,
and that of the noncompact forms in supergravity theories is well known.
Many properties of these groups can be already inferred from abstract the-
oretical considerations; however, it can be useful to have available explicit
concrete realizations of such groups in term of matrices, for testing conjec-
tures related to confinement in non abelian gauge theories, doing explicit
nonperturbative computations in exceptional lattice GUT theories and in
random matrix theories. Beyond these, there are other useful applications
in physics or mathematical physics of an explicit matrix realization of the
E6, E7 and E8 exceptional Lie groups. For example: sigma models based
on exceptional Lie group quotients are of interest for string theory and con-
formal field theory applications; the study of the properties of the magnetic
material Cobalt Niobate is also based on exceptional Lie groups of type
E [1]. The connection to explicit realizations and special function theory
would permit to perform calculations of matrix elements. These applica-
tions are also directly interesting in integrable models. In particular there is
a specific motivations from physics to be interested to E7 among all excep-
tional groups: recently a strict relation between cryptography and black hole
physics based on E7 exceptional supergravity has been discovered. However,
actual computation of entangled expectation values require again explicit
determination of the Haar measure and range of parameters. Moreover, the
most general structure of the attractor mechanism of black holes in N = 2,
four-dimensional supergravity arises in E7 exceptional supergravity. The
orbit of the U-duality group are only partially known just because a suit-
able explicit realization of the group E7 is lacking.

In this paper, we will focus on the compact form of E7. In this case, the
main difficulty consists in finding a realization admitting a simple charac-
terization of the range of parameters. A way, mainly inspired by [4, 5], to
solve this problem has been introduced in [2] for the exceptional Lie group
G2 (see also [3]), then applied to the SU(N) groups in [6] and to the excep-
tional Lie groups F4 and E6 in [7,8], respectively. In this paper, we continue
our program of building up the generalized Euler parametrization for all the
exceptional Lie groups. There are many possible realizations of the Euler
parametrization on a given group (see [9] for a review), depending on the
choice of the maximal subgroup one starts with. In any case, the simplest
one is that based on the higher dimensional compact subgroup. For E7, this
is the group U = (E6 × U(1))/Z3, where Z3 is the center of E6, which is
indeed the first case we consider here. The other possible maximal compact
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subgroups of E7 are SU(8)/Z2 and (Spin(12) × SU(2))/Z2 associated to the
real forms E7(7) and E7(−5), respectively. We will provide a construction of
the compact real form for each choice of the maximal compact subgroup.
Indeed, in practical applications it can be necessary to select a specific sub-
group among the others. Moreover, in other applications, as for example in
extended supergravities, it becomes important to determine the various real
forms and the corresponding symmetric spaces. In our constructions, these
can be easily realized by applying the unitary Weyl trick.

The plan of the paper is as follows. In Section 2, we present the main
features of the Lie group E7. In Section 3, we review the Tits construction for
the Lie algebra of E7. In particular, we derive from it the main properties we
will need to apply the generalized Euler angles method. We will present both
the adjoint representation 133 and the smallest fundamental representation
56. We build up the group, presenting a very careful exposition of details
in the appendices. In Section 4, we give a second construction associated
to the split form E7(7), and in Section 5, a third construction based on the
subgroup (Spin(12) × SU(2))/Z2. In these two cases, we will not present all
necessary checks, as, for example, the explicit computation of the volumes
and the related integrals, but we limit ourselves to indicate the main steps.
Indeed, the lacking details can be included in a more general framework,
which deserves to be presented apart [20].

Remark. In www.dfm.uninsubria.it/E7/, one can find the Mathematica
programs providing the constructions of the matrix realizations of the 133
and 56 algebra representations for the first construction, and the 56 for the
other ones.

2 The exceptional Lie group E7

As a complex Lie algebra, E7 is the unique exceptional Lie algebra of rank 7.
It is characterized by the Dynkin diagram drawn in figure 1. Recall that to
each dot corresponds a simple root αi. These are free generators of the root
lattice ΛR =

∑
i Zαi. The space H∗ = ΛR ⊗ R is endowed with a positive

definite inner product (|). The weight lattice ΛW is the dual of ΛR w.r.t.
the hooked product, which means that it is freely generated over Z by the
fundamental weights λi ∈ H∗, i = 1, . . . , 7 defined by 〈αi, λ

j〉 = δj
i , with

〈α, λ〉 := 2
(α|λ)
(α|α)

. (2.1)
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Figure 1: Dynkin diagram for E7.

To each fundamental weight corresponds univocally a fundamental repre-
sentation, and all irreducible finite-dimensional representations can be gen-
erated from the fundamental ones. In figure 1, the fundamental represen-
tations are indicated in parenthesis. Here, we will deal with the two lower
dimensional ones.

We are interested in constructing the compact form of the group E7. For
this reason it is worth to mention some further facts about both the E7

algebras and groups. As we said, the complex algebra E7 is completely
characterized by the Dynkin diagram, from which one can reconstruct the
adjoint representation that, being faithful, is isomorphic to the algebra itself.
This is a 133-dimensional algebra that, indeed, correspond to the fundamen-
tal representation 133. This algebra contains four distinct real forms. This
means that there are four inequivalent ways to select a 133-dimensional real
subspace of the 266-dimensional real space underlying the complex algebra
E7, in such a way that the selected subspace inherited with the Lie prod-
uct is itself a (real) Lie algebra. For each simple Lie algebra A there is a
unique simply connected Lie group G (up to isomorphisms) such that A is
the corresponding Lie algebra. The complex Lie group E7 contains a maxi-
mal compact subgroup which is a 133-dimensional real Lie group whose Lie
algebra is then called the compact form and usually indicated1 E7(−133),
where in parenthesis the signature of the Killing form (number of positive
eigenvalues minus number of the negative ones) is indicated. We will use the
same notation to indicate both the group and the algebra. When referring
to the group we will mean the unique simply connected group.

The compact forms are in correspondence with the maximal compact sub-
groups of E7(−133), the compact subgroups that are not properly contained
in a proper subgroup. There are four of such subgroups and then four real
forms, which we collect in table 1. For a given real form we can write the

1The Killing form K on a complex Lie algebra is defined by K(X, Y ) := tr(ad(X)ad(Y ))
and is non degenerate for a simple algebra and on the corresponding real forms. In
particular, for a compact form it is negative definite on the maximal compact subalgebra,
the maximal Lie subalgebra that exponentiated generates a compact group.
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Table 1: The real forms of E7

Symbol Real Form Maximal compact subgroup
E7(−133) Compact E7(−133)

E7(7) Split SU(8)/Z2

E7(−5) EVI (Spin(12) × Sp(1))/Z2

E7(−25) EVII (E6(−78) × U(1))/Z3

corresponding Lie algebra as A = T + P , where T is the maximal compact
subalgebra and P its complement. From this, one obtains the compact form
by using the Weyl unitary trick P �→ iP . Here we are interested in the com-
pact form only. Nevertheless we will construct it in three different ways,
each one evidencing a different proper maximal subalgebra. In this way
the interested reader can reobtain the corresponding noncompact real form
directly by applying the Weyl unitary trick.

Finally, we stress that for the group E7(−133) we mean the simply con-
nected group, which is the universal covering group. In general, all Lie
groups having the same (finite-dimensional real) Lie algebra are obtained
from the universal covering by quotienting with a discrete subgroup of the
center. For E7 the center is Z2. Note that the adjoint representation of
the Lie algebra is faithful, however, the same is not true for the Adjoint
representation of the universal cover group G, since the center C is just the
kernel of the Adjoint map. Then, in general, the Adjoint representation of
the group realizes the group G/C in place of G. Instead, a faithful repre-
sentation is obtained by exponentiating the lowest dimensional fundamental
representation.2 In our case, this means that we need to exponentiate the
56. Nevertheless, to get more information in some case we will work out the
adjoint representation also.

3 E7(−25) construction

3.1 The Tits construction and 133

We start with the construction of the adjoint representation of the alge-
bra. In order to catch the idea, recall first that the exceptional Lie group
F4(−52) can be realized as the group of automorphisms of the exceptional
Jordan algebra J3O. Its Lie algebra is the Lie algebra of derivations over

2The unique simple Lie group whose lowest dimensional representation coincides with
the adjoint one is the exceptional group E8. Since in this case the center is trivial, our
statement remains true.
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J := J3(O). Thanks to a result due to Chevalley and Schafer, this algebra
can be extended to an E6 type algebra (more precisely the E6(6) split form)
by adding the action of the traceless part J′ over J itself, naturally given by
Jordan multiplication:

E6(6) = D(J) ⊕ J′, (3.1)

where the symbol D() means “the linear derivations of”. To obtain the
compact form from the split form one has to apply the Weyl trick to J′ that
is to say that we have to “complexify” the Jordan algebra by adding the
imaginary part i⊗ J′.

This way to construct the algebra can be summarized by saying that
E6 is the Magic Square product between J and C. This can be extended
to the realization of the E7 compact form as the Magic Square product
between the exceptional octonionic algebra J and the quaternionic algebra
H, [10–12]. We will refer to it as the Tits construction. In our language,
this means that we need to “quaternionize” the Jordan algebra so that the
vector space underlying the resulting algebra will be

g = D(H) ⊕D(J)+̇(H′ ⊗ J′), (3.2)

where J′ is the set of traceless octonionic Jordan matrices and H
′ are the

imaginary quaternions. Here we use the symbol ⊕ to mean direct sum of
algebras whereas +̇ is a direct sum of vector spaces but not of algebras. This
is in order to stress that we have not yet extended the Lie product to the
last summand. Thus, D(H) ⊕D(J) is a subalgebra of g. Moreover, there
is a natural action of D(H) ⊕D(J) over H

′ ⊗ J′ which defines the mixed
product

[(H, J), h⊗ j] = H(h) ⊗ j + h⊗ J(j) ∀(H, J) ∈ D(H) ⊕D(J),

h⊗ j ∈ H
′ ⊗ J′. (3.3)

To extend (3.2) to a Lie algebra one must define a product between elements
of H

′ ⊗ J′. This requires the introduction of some notations and properties.

Geometry of quaternions

On H an inner product is defined 〈h1, h2〉 = Re(h̄1h2), where complex con-
jugation changes the sign of the imaginary units: if h = A0 + iA1 + jA2 +
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kA3, Ai ∈ R, then h̄ = A0 − iA1 − jA2 − kA3. From h1 and h2 one defines
the derivation Dh1,h2 ∈ D(H) by

Dh1,h2 = [Lh1 , Lh2 ] + [Rh1 , Rh2 ], (3.4)

where L and R are the usual left and right translations. It is convenient to
fix the orthonormal basis h0 = 1, hi, i = 1, 2, 3, where h1 = i, h2 = j, h3 = k
are the imaginary units of H. A basis for D(H) is thus given by Hi = adhi ,
i = 1, 2, 3.

Geometry of the Jordan algebra

On J we can define the inner product 〈j1, j2〉 = Tr(j1 ◦ j2), where ◦ is the
Jordan product j1 ◦ j2 = (j1j2 + j2j1)/2. The subspace of matrices
orthogonal to the 3 × 3 identity I3 is thus J′. On it we can define the
product � : J′ × J′ → J′ defined by

� : (j1, j2) �→ j1 � j2 = j1 ◦ j2 − 1
3
〈j1, j2〉I3. (3.5)

With these simple tools in mind one can complete the Lie product on
(3.2) by defining

[h1 ⊗ j1, h2 ⊗ j2] :=
σ2

12
〈j1, j2〉Dh1,h2 − σ2〈h1, h2〉[Lj1 , Lj2 ]

+
σ

2
[h1, h2] ⊗ (j1 � j2) (3.6)

in order to obtain a Lie algebra. For simplicity, we will use the notation

E7(−133) = D(H) ⊕D(J) ⊕ (H′ ⊗ J′), (3.7)

to indicate the resulting Lie algebra, and choose σ = 1.

A sketch of the proof of the validity of (3.6) can be found in Appendix A.
From these rules one easily reconstruct explicitly a matrix realization of the
adjoint representation. This is done in Appendix B.

Before going to the construction of the smallest representation 56 it is
worth to include some comments on the subalgebras.
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The F4 and E6 subalgebras and some useful relations

The F4 Lie subalgebra is manifestly included as the algebra of derivation
over the exceptional real octonionic Jordan algebra J. If we choose a basis
{ja}26

a=1 of J′ normalized by 〈ja, jb〉 = τδab, with a suitable real τ , then it can

be completed to a basis for J by adding j27 =
√

i
2I3. After fixing this, we

can determine a basis {DI}52
I=1 for D(J) as in [7]. A 27-dimensional matrix

representation is then obtained as

(CI)μ
ν = ĵμ(DI(jν)), (3.8)

where {ĵμ}27
μ=1 is the dual basis ĵμ(jν) = δμ

ν . Since DI(j27) = 0, the last row
and column of all matrices vanish, so that, this is a 26 ⊕ 1 representation. Its
extension to the 27 fundamental representation of the E6 algebra is obtained
by adding the operators corresponding to the right multiplication by J′. This
adds 26 27 × 27 matrices (C̃a)

μ
ν defined by

(C̃a)μ
ν = −i ĵμ(Rja(jν)), a = 1, . . . , 26, μ, ν = 1, . . . , 27. (3.9)

The factor −i has been introduced in order to implement the Weyl trick.
Note that this factor consists in making a choice among all possible imagi-
nary quaternions. Passing from one to another choice is done by the acting
with the SU(2) group symmetry. With our choice we break this symmetry
down to the U(1) subgroup that lives the imaginary unit invariant. Its Lie
algebra is generated by the derivation Di over the quaternions, which indeed
commutes with the whole E6 = D(J) ⊕ J′. In this way we have recognized
the maximal compact subalgebra E6 × R = Lie((E6 × U(1))/Z3).

It is interesting to note that, J being Abelian, we have Rja(jb) = Rjb
(ja)

which implies

(C̃a)
μ
b = (C̃b)μ

a. (3.10)

We will see in the next subsection that this symmetry relation is a partic-
ular case of a more general symmetry relation that has a deep geometrical
meaning.

Other interesting relations are obtained from the Leibnitz property
DI(ja ◦ jb) = DI(ja) ◦ jb + ja ◦DI(jb): it becomes

(C̃a)c
b(CI)d

cjd = [(CI)c
a(C̃c)

μ
b + (CI)c

b(C̃a)μ
c]jμ. (3.11)
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Applying the dual basis ĵν we obtain

[CI , C̃a]db = (CI)c
a(C̃c)d

b, (3.12)

(CI)c
a(C̃b)27c + (CI)c

b(C̃a)27c = 0. (3.13)

The first identity gives the very interesting relations

α c
Ia = (CI)c

a, (3.14)

where α c
Ia are some of the structure constants of E6, the ones defined by

[CI , C̃a]db = α c
Ia (C̃c)d

b. Note that (3.14) relates the structure constants of
E6 (directly computable from the adjoint representation) to the matrices of
the smallest fundamental representation of F4.

Another interesting information comes from identity (3.13). With our
normalization, Tr(ja � jb) = 0 implies

(C̃a)27b = −i
√
τ

3
δab. (3.15)

Inserted in (3.13) it gives

(CI)c
aδcb + (CI)c

bδca = 0. (3.16)

Then, the matrices (CI)c
a are antisymmetric!

3.2 The Yokota construction and 56

We can obtain the representation 56 by applying the method explained by
Yokota in [13]. We will first consider the general complex realization and
then we will specialize to the compact form. From our previous analysis we
know that the Lie algebra can be written as

E7 = E6 ⊕ i⊗ R ⊕ j ⊗ J ⊕ k ⊗ J, (3.17)

where we have included the remaining derivative generators Dj and Dk in
the last two addends. As supporting space we take the 56-dimensional space

V56 = (J ⊕ C)2. (3.18)

One has to define an action of E7 on this space. To this end it is convenient
to introduce some further geometry.
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The determinant form

The Jordan algebra is endowed with a trilinear form, the determinant form

Det : J × J × J −→ C, (3.19)

defined by

Det(j1, j2, j3) =
1
3
tr(j1 ◦ j2 ◦ j3) − 1

6
(tr(j1)tr(j2 ◦ j3) + tr(j2)tr(j1 ◦ j3)

+ tr(j3)tr(j1 ◦ j2)) +
1
6
tr(j1)tr(j2)tr(j3). (3.20)

This is a fundamental ingredient in realizing exceptional Lie algebras. For
example, it is left invariant by the action of E6 on J. Indeed, the group
E6 can be defined as the group of endomorphisms of J that leave the deter-
minant form invariant. The form Det is a completely symmetric tensor D,
also called the cubic invariant of E6, with componentDαβγ = Det(jα, jβ , jγ).
Det is nondegenerate. This means that it induces an action � of J on itself

� : J × J −→ J, (3.21)

(j1, j2) �−→ j1 � j2, (3.22)

defined by the relation Det(j1, j2, j3) =: 1
3tr((j1 � j2) ◦ j3). This is called

the Freudenthal product. More explicitly:

j1 � j2 = j1 ◦ j2 − 1
2
tr(j1)j2 − 1

2
tr(j2)j1 +

1
2
tr(j1)tr(j2)I3 − 1

2
tr(j1 ◦ j2)I3.

(3.23)

With this richer structure at hand we can define the action of E7 on
V56. Given X ∈ E6, let φX its image under the fundamental representation
27 (for example, constructed in [8]). Then, the image of X under 27′ (the
second 27-dimensional representation of E6) is −φt

X . For g = (X, ν, j1, j2) ≡
X + i⊗ ν + j ⊗ j1 + k ⊗ j2 ∈ E7 and v := (j̃1, μ1, j̃2, μ2)t ∈ V56, we
define [13]

gv :=

⎛

⎜
⎜
⎜
⎜
⎝

φX j̃1 + i
2

√
τ
3νj̃1 + (j2 + i⊗ j1) � j̃2 + 1

2μ2(−j2 + i⊗ j1)
1
2〈(−j2 + i⊗ j1), j̃2〉 − i

2

√
3τνμ1

−φt
X j̃2 − i

2

√
τ
3νj̃2 + (−j2 + i⊗ j1) � j̃1 + 1

2μ1(−j1 + i⊗ j1)
1
2〈(j2 + i⊗ j1), j̃1〉 + i

2

√
3τνμ2

⎞

⎟
⎟
⎟
⎟
⎠
.

(3.24)
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Note that w.r.t. [13] we have fixed a prescription 2B = j2 + i⊗ j1, 2A =

−j2 + i⊗ j1 and ν �→ − i
2

√
3
2ν in order to get a compact real form. τ is the

normalization in the trace product of the Jordan basis: tr(jα ◦ jβ) = τδαβ .
The remaining coefficient are chosen so that the corresponding matrices have
all the same normalization w.r.t. the trace product. An explicit realization
with τ = 2 is given in Appendix C.

It is worth to look at the general form of the resulting matrices in the 56.
Let us choose the normalization τ = 2:

Y =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

φ + i ν√
6

�027 −∑27
α=1 z̄αAα

1√
2

∑27
α=1 zα�eα

�0t
27 −iν

√
3
2

1√
2

∑27
α=1 zα�et

α 0

∑27
α=1 zαAα − 1√

2

∑27
α=1 z̄α�eα −φt − i ν√

6
�027

− 1√
2

∑27
α=1 z̄α�et

α 0 �0t
27 iν

√
3
2

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

, (3.25)

where φ is in the 27 of E6, ν ∈ R and zα ∈ C. The matrices Aα have
components

(Aα)βγ =
1
2
tr((jα � jγ) ◦ jβ) =

3
2
Dαγβ . (3.26)

Thus, the matrices Aα, α = 1, . . . , 27 are determined by the invariant cubic
tensor D and are then symmetric and totally symmetric by including the
index α. Actually we can say more. Assume a, b, c = 1, . . . , 26. Then trja =
trjb = trjc = 0 and

Dabc = (Ac)ab =
1
2
tr(jc ◦ jb ◦ ja) ≡ i(C̃c)a

b. (3.27)

Then, also the matrices C̃a, when we drop the 27th row and column, are
totally symmetric. This implies (3.10) as a particular case.

By applying (3.23) to compute the remaining components, we get

0 =
3
2
Da,27,27 = (Aa)27,27 = (A27)a,27 = (C̃a)2727 = (C̃27)a

27; (3.28)

− 1
2

√
2
3
δab =

3
2
Da,b,27 = (Aa)b,27 = (A27)ab = − i

2
(C̃a)b

27 = − i

2
(C̃27)b

a;

(3.29)
√

2
3

=
3
2
D27,27,27 = (A27)27,27 = i(C̃27)2727. (3.30)

These interesting relations provide a simple way to construct the matrices
C̃a which extend the F4 algebra to the E6 algebra.
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3.3 Construction of the group

From the Tits construction we can easily get the main features required
to perform the Euler construction with respect to the maximal subgroup
(E6 × U(1))/Z3. If 
n is any normalized three vector, we see that setting

h = (h1, h2, h3) and 
H = (H1, H2, H3),

u := 
n · 
H ⊕ J+̇((
n · 
h) ⊗ J′) (3.31)

is a subalgebra of g which generates a maximal compact subgroup U(1) × E6.
Indeed, note that 
n · 
H has vanishing Lie product with the whole u. The
linear complement of 
n · 
H in u reproduces the same rules we used in [8] to
extend F4 to E6. In particular, restricted to (
n · 
h) ⊗ J′, the product (3.6)
is [(
n · 
h) ⊗ j, 
n · 
h⊗ j′] := −[Lj , Lj′ ]. The minus sign is exactly what we
needed in [8] to go from the split form E6(−26) to the compact form. This
is not surprising since we are starting from a compact group, but it can
be considered as a consistency check. Note that we thus have a family of
E6 × U(1) subgroups parameterized by the choice of the vector 
n. On this
family there is the action of an SU(2) subgroup changing 
n, underlying the
presence of a quaternionic structure. However, note also that in order to
realize the quotient space E7/((E6 × U(1))/Z3) one has to fix the 
n thus
breaking the SU(2) structure and consequently the quaternionic structure.

For definiteness, we will choose 
n = e1, where ei, i = 1, 2, 3 is the canonical
basis for R

3. Thus

u = Lie(U(1) × E6) = H1 ⊕D(J)+̇(h1 ⊗ J′). (3.32)

Having selected the maximal subgroup U = exp u, we look at the construc-
tion of the Euler parametrization [7]

E7 = BeV U. (3.33)

Here V is a maximal subspace of the linear complement p of u in g such that
AdU (V ) = p, whereas B = U/Uo, where Uo is the kernel of the map:

Ado : U → Aut(Lie(U)), u �→ Ado(U) := Adu|V ,

the apex o means restriction to V . Let us begin with the selection of V . We
take H2 as a first generator of V . Acting on it with adu we generate H3 and
h3 ⊗ J′. To generate h2 ⊗ J′ we need to add at least an element of the form
h2 ⊗ ja. Now, J′ contains a particular two dimensional subspace W which
corresponds to the vector space of diagonal traceless Jordan matrices. Let
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{j1, j18} be a basis for this subspace. Up to now, the indices we have chosen
are arbitrary labels. However, we are now referring to [8] where we have
chosen a well defined basis for J′. In that basis the diagonal generators are
just j1 and j18 which correspond to the matrices c53 and c70 of E6. Note
that the elements of h2 ⊗W commute w.r.t. the product (3.6). If we fix,
for example, the element h2 ⊗ j1, acting on it with adD(J) we will generate
all the basis elements h2 ⊗ ja but h2 ⊗ j18. We conclude that

V = RH2 ⊕W = RH2 ⊕ R(h2 ⊗ j1) ⊕ R(h2 ⊗ j18). (3.34)

At this point we have that dimUo = 2dimu + dimV − dimg = 28. On the
other hand, we already know what Uo is, it has, in fact, been studied in [8].
Indeed, if uo = Lie(Uo), then uo is the subset of u of elements which commute
with H2, h2 ⊗ j1 and h2 ⊗ j18. But this is the subset of D(J), commuting
with h2 ⊗ j1 and h2 ⊗ j18, which determine exactly the subgroup SO(8) of
F4 commuting with W , studied in [8] (in that case W was generated by c53
and c70).

This allows us to provide the final expression for the general element of
the group. Indeed, if ΨA, A = 1, . . . , 133 is the basis of g defined above, and
cs, s = 1, . . . , 78 is the matrix representation of Lie(E6) given in [8], then
the map

ψ : Lie(E6) ↪→ g, cs �→ Ψs+3 (3.35)

gives an embedding of E6 in E7. This provides the generic element

U(x1, . . . , x79) = exp(x1Ψ1)ψ∗(E6[x2, . . . , x79]),

where E6 is the parametrization given in [8] and ψ∗ is the push forward of ψ
under the exponential map. Next, B is easily obtained from E6 by dropping
the last 28 factors on the right, obtaining

B[x1, . . . , x51] = U(x1, . . . , x51, 0, . . . , 0).

The basis of V being given by {Ψ2,Ψ82,Ψ99}, we finally get

E7[x1, . . . , x133] = ex1Ψ1ψ∗(E6[x2, . . . , x51, 0, . . . , 0])ex52Ψ2+x53Ψ82+x54Ψ99

× ex55Ψ1ψ∗(E6[x56, . . . , x133]). (3.36)

Thus we are left with the problem of determining the range of the parameters.
This can be done by means of the topological method developed in [7].
Concretely, this consist in choosing the range of parameters in order to
define a 133-dimensional closed cycle. This will eventually cover the group
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an integer number N of times, so that one must finally reduce the range to
have N = 1. The explicit deduction of the range of parameters is done in
Appendix D. We conclude this section with some further comments.

3.3.1 Remarks

To realize concretely the group we could use either the adjoint representation
or the 56. However, the kernel of the Adjoint representation of the group
is its center, which is Z2 for E7, so that using it in (3.36) will provide the
group E7/Z2 in place of E7. Indeed, kerAd is, by construction, the subset
of G which commute with all G. On the contrary, the representation 56G

of the group (we add a suffix G to distinguish the group from the algebra)
is faithful so that we can use 56 to construct E7. This is a well known fact,
but we can check it directly from our construction. Let MA be the basis of
the algebra E7 in the adjoint representation, and YA the corresponding basis
in the 56. They have exactly the same structure constants, so that they can
be thought of as representing the same elements of the algebra. However,
56 contains the nontrivial generator of the center

−I56 = exp(
√

6πY1). (3.37)

Obviously the Adjoint representation cannot contain −I133 and, indeed,
exp

√
6πM1 = +I133. Thus, the correspondence

ξ : 56 −→ 133, YA �−→MA, A = 1, . . . , 133, (3.38)

defines a surjective homomorphism

Ξ : 56G −→ 133G, exp
133∑

A=1

λAYA �−→ exp
133∑

A=1

λAMA, (3.39)

which has kernel ker Ξ = Z2 = {I56,−I56}. Then, 56G is a double covering
of 133G.

In particular, let us consider the corresponding one parameter subgroups:

hA(t) = exp(tMA), A = 1, . . . 133, t ∈ R, (3.40)

gA(t) = exp(tYA), A = 1, . . . 133, t ∈ R. (3.41)

We then note that forA > 3 all of them have period 4π, apart fromA = 73, 99
and 125, which have period 4π

√
3, whereas for A = 1, 2, 3, hA has period

Th =
√

6π and gA has period Tg =
√

6 2π = 2Th as a consequence of the
double covering.
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Finally, we remark that the maximal subgroup of E7 is (E6 × U(1))/Z3.
Indeed, the generator

ω := exp
(

4
π√
3
Y73

)

= exp

(

2

√
2
3
πY1

)

∈ E6 ∩ U(1) (3.42)

satisfy ω3 = I56 so that it is a generator of Z3 common to both E6 and U(1).

4 The E7(7) construction

We want to construct the E7 compact form related to the split form by means
of the Weyl unitary trick. In this case the maximal compact subgroup that
is privileged is SU(8)/Z2. To this aim we will follow the paper [15], chapter
12; see also [16].

Let V be an eight dimensional real vector space and V ∗ be its dual. Let
∧iV be the ith external power of V . We can fix an isomorphism ∧8V �
R. SL(V ) is the group of automorphisms preserving such isomorphism.
Let L := sl(V ) be its Lie algebra. We will construct the representation
56 of E7 by extending the representation of L on W := ∧2V ⊕ ∧2V ∗ to a
representation of E7. Set A := L⊗ ∧4V . We wish to see A acting as a Lie
algebra of linear maps W →W . The action of L on W is as usual:

L(W ) = L(V ) ∧ V ⊕ L(V ∗) ∧ V ∗ + V ∧ L(V ) ⊕ V ∗ ∧ L(V ∗), (4.1)

where L(V ∗) is the adjoint action. If i+ j = 8 the pairing ∧iV ⊗ ∧jV →
∧8V � R, given by the wedge product, defines an isomorphism ∧iV � ∧jV ∗.
This isomorphism can be used to define the second component of the action
of A. Actually, an action of λ4 ≡ ∧4V on W can be obtained as follows:

λ4 ⊗ ∧2V
∧−→ ∧6V � ∧2V ∗,

λ4 ⊗ ∧2V ∗ � ∧4V ∗ ⊗ ∧2V ∗ ∧−→ ∧6V ∗ � ∧2V, (4.2)

where ∧ is the usual multiplication in the exterior algebra ∧V . Thus, A is
a 133-dimensional real vector space of operators acting on W , that indeed
realizes an E7 Lie algebra representation, more precisely the E7(7) split form.
In order to see this and realize the compact form, let us look more carefully
at the explicit matrix realization.
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4.1 Matrix realization

We identify V with R
8. The action of L on V is generated by the action

of all traceless matrices in M(8,R). Fix a basis {ei}8
i=1 of V and define

a basis {Akl, Skl, Dα} for M(8,R), where 1 ≤ k < l ≤ 8, α = 1, . . . , 7 and
Aklei = δliek − δkiel, Sklei = δliek + δkiel, and Dα form a basis of diago-
nal traceless matrices Dα = diag(D1

α, . . . , D
8
α). We can normalize them as

Tr(DαDβ) = 2δαβ , so that all matrices are orthogonal, the symmetric matri-
ces are normalized to 2 and the antisymmetric ones to −2 w.r.t. the trace
product.

In order to write the action of this basis on W let us introduce the fol-
lowing notations:

• we select a basis eij := ei ∧ ej , i < j of V ∧ V and the canonical dual
basis εij . As usual we will extend the range of the indices i, j as running
independently from 1 to 8, by assuming antisymmetry (so eij = −eji

and so on).
• A vector v ∈ V ∧ V can be then written as

v =
1
2

∑

i,j

vijeij =
∑

i<j

vijeij ,

and a vector w ∈ V ∗ ∧ V ∗ as

w =
1
2

∑

i,j

wijε
ij =

∑

i<j

wijε
ij .

• A linear operator M : V ∧ V → V ∧ V acts on the components as

(Mv)ij =
∑

i<j

M ij
klv

kl,

and similar notations for the other possibilities [V ∗ ∧ V ∗ → V ∗ ∧ V ∗],
[V ∗ ∧ V ∗ → V ∧ V ] and [V ∧ V → V ∗ ∧ V ∗].

We can then easily write down the explicit matrix action of L over R
56 �

V ∧ V ⊕ V ∗ ∧ V ∗:

Akl =

(
(Au

kl)
ij

i′j′ 0
0 (Ad

kl)
i′j′

ij

)
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=
(

(δki′δli − δkiδli′)δjj′ + (δkj′δlj − δkjδlj′)δii′
0

0
(δki′δli − δkiδli′)δjj′ + (δkj′δlj − δkjδlj′)δii′

)

, (4.3)

Skl =

(
(Su

kl)
ij

i′j′ 0
0 (Sd

kl)
i′j′

ij

)

=
(
i(δki′δli + δkiδli′)δjj′ + i(δkj′δlj + δkjδlj′)δii′

0

0
−i(δki′δli + δkiδli′)δjj′ − i(δkj′δlj + δkjδlj′)δii′

)

, (4.4)

Dα =

(
(Du

α)ij
i′j′ 0

0 (Dd
α) i′j′

ij

)

=

(
i(Di

α +Dj
α)δij

i′j′ 0
0 −i(Di

α +Dj
α)δi′j′

ij

)

,

(4.5)

where δij
i′j′ is the identity over V ∧ V . Note that, in order to obtain the

compact form, we have multiplied by i the symmetric matrices.

For the remaining 70 generators we have to consider the action of {λi1i2i3i4

= ei1 ∧ ei2 ∧ ei3 ∧ ei4}i1<i2<i3<i4 on W . This is easily realized by implement-
ing the identifications (4.2):

(λi1i2i3i4) ⊗ (ej1j2) �→
1
2
εi1i2i3i4j1j2k1k2ε

k1k2 ,

(λi1i2i3i4) ⊗ (εj1j2) �→
1
2
δj1j2k1k2
i1i2i3i4

ek1k2 , (4.6)

where ε is the standard eight-dimensional Levi–Civita tensor and

δj1j2j3j4
i1i2i3i4

=
∑

σ∈P
εσδ

j1
iσ(1)

δj2
iσ(2)

δj3
iσ(3)

δj4
iσ(4)

(4.7)

with P the set of permutations and εσ is the parity of σ. The action of
λi1i2i3i4 in the block matrix form, with respect to the decomposition W =
∧2V ⊕ ∧2V ∗, is then

λi1i2i3i4 =
(

0 (λu
i1i2i3i4

)ij,kl

(λd
i1i2i3i4

)ij,kl 0

)

=
(

0 εi1i2i3i4ijkl

δijkl
i1i2i3i4

0

)

. (4.8)

Note that the matrices λu and λd are both symmetric. Let us introduce
the ordered tetra-indices I ≡ {i1i2i3i4} with the rule i1 < i2 < i3 < i4. Its
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complementary is the unique ordered tetra-index Ĩ such that εIĨ �= 0. Then

tλI = εIĨλĨ . (4.9)

Thus, we can change basis for λ4 introducing symmetric matrices

SI :=
i√
2
(λI + εIĨλĨ) (4.10)

and antisymmetric matrices

AI :=
1√
2
(λI − εIĨλĨ). (4.11)

Again, we have included the imaginary unit for the symmetric matrices. The
cardinality of the set of tetra indices is 70 so that only half of the SI (and of
the AI) can be linearly independent. Indeed, we have SI = SĨ (AI = −AĨ).
To avoid this double over-counting we can restrict ourselves to the subset
I0 of tetra-indices defined in Appendix H. Thus, a basis for ∧4V (as linear
operators over W ) is

{SI ,AI}I∈I0 . (4.12)

A basis for A ≡ E7 is then

{Akl,AI , Dα, Skl,SI}1≤k<l≤8; 1≤α≤8; I∈I0 . (4.13)

All matrices are orthogonal. The antisymmetric matrices Aμ ≡ {Akl,AI}
are normalized by Tr(AμAν) = −2δμν and have cardinality 28 + 35 = 63 so
that generate the maximal compact subgroup SU(8)/Z2. The remaining
70 symmetric generators SΛ ≡ {Dα, Skl, SI} are normalized by TrSλSM =
2δΛM , so that are the noncompact part of the algebra. In particular, the 7
diagonal matrices Dα generate a Cartan subalgebra.

Summarizing

The above construction furnishes the Lie algebra of E7(−133), but the split
form can be recovered simply by dropping the imaginary unit i from the
symmetric matrices.
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Let us summarize the structure of the matrices. 63 of them are block
diagonal

Mi =
(

sl(8) 0
0 sl(8)

)

, i = 1, . . . , 63, (4.14)

where the two diagonal block are the 28-dimensional representation of sl(8)
on ∧2V and ∧2V ∗ respectively. A basis for sl(8) is composed by 35 symmet-
ric matrices and 28 antisymmetric matrices. SL(8) contains the maximal
compact subgroup SO(8). The 28 antisymmetric matrices generate its Lie
algebra in the compact form. Of the other 35 symmetric matrices 7 are diag-
onal with vanishing trace and 28 are symmetric with all diagonal elements
equal to zero. The 7 diagonal elements generate a Cartan subalgebra of sl(8)
and, obviously, also of E7. The remaining 70 matrices have the structure

Mi =
(

0 ∧4V
∧4V 0

)

, i = 70, . . . , 133. (4.15)

Among these matrices 35 are symmetric and 35 antisymmetric. The group
SU(8)/Z2 is a maximal compact subgroup of E7 and its Lie algebra is gen-
erated by the 63 antisymmetric matrices. Thus we can write e7 = su(8) ⊕ p,
where p is the complement of su(8) in e7.

4.2 Construction of the group

The strategy for constructing the generalized Euler parametrization of the
group is the same as for the previous construction so that we will only sketch
the main steps. In this case the reference subgroup is the smallest maxi-
mal compact subgroup SU(8)/Z2. Let u = Lie(SU(8)) and, as before, g =
Lie(E7) ≡ e7 and p the complement of u in g. Having selected the maximal
subgroup U = exp u we look at the construction of the Euler parametriza-
tion [7]:

E7 = BeV U. (4.16)

Here V is a maximal subspace of the linear complement p of u in g such that
AdU (V ) = p, whereas B = U/U0, where U0 is the kernel of the map

Ad0 : U → Aut(Lie(U)), u �→ Ad0(U) := Adu |V , (4.17)

the apex 0 means restriction to V . As V we can choose the 7 diagonal
matrices of a Cartan subalgebra of e7: they form an Abelian subalgebra that
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can be used to generate p by means of the adjoint action of U (a general
proof of these statements will appear in [20]). For dimension reasons it
follows that U0, the kernel of Ad0, is at most a discrete subgroup. Indeed,
it can be shown that U0 = Z

7
2, [20].

Thus, we can introduce coordinates x = (x1, . . . , x63), z = (z1, . . . , z63)
and 
y = (y1, . . . , y7) so that3 E7 = U [x]eV [�y]U [z], where U [z] is a parametri-
zation of SU(8)/Z2, the range of the parameters x is reduced by the action
of U0, and

V [
y] =
7∑

α=1

yαDα.

We will now focus on the determination of the range for 
y. The ranges for
the coordinates x and z, can be easily determined, for example, as in [6].

Let t be the complement of V in p. The general strategy developed in [7]
shows that the invariant measure over E7 is

dμE7 = dμU [x] dμU [z] |f(
y)| d
y7, (4.18)

f(
y) := det[Π ◦ Ade−V : u → t], (4.19)

where Π is the orthogonal projection on t. We assume that one always works
with orthonormal bases, so that the determinant function is well defined
up to an irrelevant sign (we need only the modulus). The function f is
determined in Appendix H, the final expression is

|f(
y)| =
∏

β∈Rad+

sin

(∣
∣
∣
∣
∣

7∑

a=1

yaβ(Da)

∣
∣
∣
∣
∣

)

, (4.20)

where Rad+ is the set of positive roots w.r.t. V . Thus, the equations for
the range of 
y are

0 <

∣
∣
∣
∣
∣

7∑

a=1

yaβ(Da)

∣
∣
∣
∣
∣
< π, β ∈ Rad+. (4.21)

This is a set of 63 double inequalities, which, however, can be quickly reduced
to a set of eight equations as follows. Indeed, all positive roots can be

3Concretely, B[x] = U [x] and the difference is only in the range.
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obtained as nonnegative integer linear combinations of the simple roots. In
particular, there exists a unique longest root

βmax = 2α1 + 2α2 + 3α3 + 4α4 + 3α5 + 2α6 + α7,

whose coefficients are the highest ones. From this it follows that all inequal-
ities are a consequence of the ones corresponding to the simple roots plus
the one associated to the longest one. These are

0 <
1
2
(y1 − y2 − y3 − y4 − y5 − y6 +

√
2y7) < π, (4.22)

0 < y1 + y2 < π, (4.23)

0 < −y1 + y2 < π, (4.24)

0 < −y2 + y3 < π, (4.25)

0 < −y3 + y4 < π, (4.26)

0 < −y4 + y5 < π, (4.27)

0 < −y5 + y6 < π, (4.28)

0 <
√

2y7 < π, (4.29)

and characterize completely the range for 
y.

5 The E7(−5) construction

The E7(−5) construction can be easily obtained from the E7(−25) one by
following the analysis of Yokota in [13]. The maximal compact subgroup of
E7(−5) is U5 = (Spin(12) × SU(2))/Z2. Let us consider the map

σ : J −→ J,

⎛

⎝
a o1 o2
ō1 b o3
ō2 ō3 c

⎞

⎠ �−→
⎛

⎝
a −o1 −o2

−ō1 b o3
−ō2 ō3 c

⎞

⎠ . (5.1)

Thus σ lies in the group F4 ⊂ E6 ⊂ E7. In [13], it is shown that U5 is the
subgroup of elements g ∈ E7 such that σg = gσ.

Let us go back to the Lie algebra. In Section 3.1, we have realized the
Lie algebra E7 as E6 + iR + JC, where R is generated by the derivation
Di associated to the imaginary unit i, and JC � J ⊕ iJ � (RDj ⊕ j ⊗ J′) ⊕
(RDk ⊕ k ⊗ J′) is the complexification of the exceptional Jordan algebra J.
Then, it follows that the Lie algebra of U5 is generated by the subgroup Eσ

6 =
{h ∈ E6|σh = hσ} � spin(10) × iR plus the elements Jσ

C
which are invariant
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under σ. Eσ
6 is the subset of elements of the Lie algebra E6 that leave the

element

J1 :=

⎛

⎝
1 0 0
0 0 0
0 0 0

⎞

⎠

invariant. It is composed by the A ∈ E6 such that AJ1 = 0, which generate
a spin(10) subalgebra, plus the B ∈ E6 with BJ1 = ibJ1 for some real b,
generating the U(1) factor iR. With respect to the basis we have chosen for
J, the element J1 is

J1 =
1
6

(
3j1 +

√
3j18 +

√
6j27

)
. (5.2)

Thus, the matrices of E6 generating spin(10) are the ones having


v =
1
6

(
3
e1 +

√
3
e18 +

√
6
e27

)
(5.3)

in the kernel (ei are the canonical vectors of R
27). These are4

Lb = Ya, L45 =
1
2

(√
3Y73 − Y56

)
, a = 4, . . . , 24, 33, . . . , 39,

48, . . . , 55, 74, . . . , 81, b = 1, . . . , 44. (5.4)

For the U(1) factor in Eσ
6 from the above condition one finds the generator

(
√

3Y56 + Y73)/2. However, we can obtain a U(1) factor also by adding any
multiple of Y1. In order to get an orthogonal basis (in particular orthogonal
to the next generators) it is convenient to take the generator

L46 =
1
6
(3Y56 +

√
3Y73 + 2

√
6Y1). (5.5)

In order to construct the SU(2) factor, note that J1 is embedded in JC and
generates the real spaces Rj ⊗ J1 and Rk ⊗ J1, which algebraically generate
the SU(2) factor in U5 [13]. As J1 correspond to the vector 
v above in our

4We reorder the numbering of the matrices by calling them Lb following the natural
order. So, for example, L1 = Y4, L2 = Y5, L22 = Y33 and so on. Moreover, when needed
we will add multiplicative factors chosen so that the La have the same normalization as
the Yi.
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basis it follows that the corresponding generators of su(2) are

L67 =
1

3
√

2
(3Y82 +

√
3Y99 +

√
6Y2), L68 =

1
3
√

2
(3Y108 +

√
3Y125 +

√
6Y3),

L69 =
1

3
√

2
(3Y56 +

√
3Y73 −

√
6Y1). (5.6)

Finally, we are left with the 20 generators in Jσ
C

which are complementary
to J1. These are

L47 =
1

3
√

2
(−3Y82 +

√
3Y99 +

√
6Y2),

L48 =
1

3
√

2
(−3Y108 +

√
3Y125 +

√
6Y3),

L49 =
√

2
3

(

−
√

3Y99 +

√
3
2
Y2

)

, L50 =
√

2
3

(

−
√

3Y125 +

√
3
2
Y3

)

,

Ld = Yb, b = 100, . . . , 107, 126, . . . , 133, d = 51, . . . , 66. (5.7)

In this way, we have selected the Spin(12) × SU(2) subalgebra and we can
obtain the E7(−5) real form by applying the unitary Weyl trick to the com-
plementary generators

Le = Yc, c = 25, . . . , 32, 40, . . . , 47, 57, . . . , 72, 83, . . . , 98, 109, . . . , 124,

e = 70, . . . , 133. (5.8)

5.1 Construction of the group

The symmetric manifold E7(−5)/U5 has rank 4, which means that we can
find a Cartan subalgebra of E7 with four generators in the complement of
Lie(U5). A possible choice for such a complement is

H4 := 〈L70, L86, L103, L120〉. (5.9)

Let us indicate with k the maximal Lie subalgebra of u5 := Lie(U5) that
commute with H4. It results that the corresponding Lie group is K �
Spin(4) × SU(2) × Z

2
2 ⊂ U5, se appendix I. This means that we can write
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the group elements in the form

E7[x1, . . . , x60; y1, . . . , y4; z1, . . . , z69]

= (U5/K)[x1, . . . , x60]eH4[y1,...,y4]U5[z1, . . . , z69], (5.10)

where

H4[y1, . . . , y4] := y1L70 + y2L86 + y3L103 + y4L104, (5.11)

and U5[z1, . . . , z69] and (U5/K)[x1, . . . , x60] are parameterizations of U5 and
U5/K respectively. Again we will now determine the range for the parame-
ters yi, the ranges for xa and zb being determinable as usual.

Let p the orthogonal complement of u5 in LieE7, t the orthogonal comple-
ment of H4 in p, and s the orthogonal complement of k in u5. The invariant
measure over E7 in this construction is

dμE7 = dμU5/K [x] dμU5 [z] |h(
y)| d
y4, (5.12)

h(
y) := det[Π ◦ Ade−H4 : s → t], (5.13)

where Π is the orthogonal projection on t. Again, we assume to work with
orthonormal bases, so that the determinant function is well defined. Using
a method similar to the one used in appendix H, one gets

|h(
y)| =
∏

β∈Rad′+
sinmβ (|β(H4(y1, . . . , y4))|), (5.14)

where Rad′+ is the set of positive restricted roots of E7/U5 w.r.t. H4, and
mβ is the multiplicity of β. The restricted root lattice of E7/U5 is an F4

lattice whose short roots have multiplicity 4. Thus, the equations for the
range of 
y are

0 < |β(H4(y1, . . . , y4))| < π, β ∈ Rad+. (5.15)

This is a set of 24 double inequalities, which, however, can be quickly reduced
to a set of five equations as follows. Indeed, all positive roots can be obtained
as non negative integer linear combinations of the simple roots. The simple
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roots are

α1 =
1
2
(1,−1,−1, 1), α2 = (0, 0, 1,−1), α3 = (−1, 0, 0, 0),

α4 = (0, 1,−1, 0). (5.16)

In particular, there exists a unique longest root

βmax = 4α1 + 3α2 + 2α3 + 2α4

whose coefficients are the highest ones. From this it follows that all inequal-
ities are a consequence of the ones corresponding to the simple roots plus
the one associated to the longest one. These are

0 <
1
2
(y1 − y2 − y3 + y4) < π, (5.17)

0 < y3 − y4 < π, (5.18)

0 < y1 < π, (5.19)

0 < y2 − y3 < π, (5.20)

0 < y3 + y4 < π, (5.21)

and characterize completely the range for 
y.

6 Conclusions

In this paper, we have solved the problem of giving an explicit construction
of the exceptional E7 simple Lie group and in particular of its compact
form. We have solved the problem in three different ways. In the first
one we have realized the generalized Euler construction w.r.t. the maximal
compact subgroup U = (E6 × U(1))/Z3 of highest dimension. To this end
we have first obtained the adjoint representation of the E7 Lie algebra by
using the Tits realization of the Magic Squares. This has allowed us to easily
understand the structure of the commutators and then the main properties of
the algebra in relation to the subalgebra Lie(U). However, since the Adjoint
representation of the group has a nontrivial kernel given by the center Z2 of
E7, we have built also the fundamental representation 56, which provides a
faithful representation of the group. For this case we have reported a very
careful analysis. Note that we can obtain a realization of E7/Z2, simply
by replacing the matrices in the representation 56 with those in the 133.
In this case, the center is mapped into I133, so that we need to restrict the

range of the U(1) parameter x55 to the interval [0,
√

2
3 π].
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Since there exists a generalized Euler parametrization for each maximal
compact subgroup, we have worked out all such parametrization. Indeed,
the other two correspond to the maximal compact subgroups Ũ := SU(8)/Z2

and U5 = (Spin(12) × SU(2))/Z2. This is not merely an exercise. Indeed,
it can be relevant to be able to recognize a specific subgroup for a given
application. Moreover, from each Euler construction one can obtain the
corresponding real form simply by means of the unitary Weyl trick. For these
constructions we have omitted several details, in part to avoid annoying
repetitions and in part because certain specific steps revealed to have a
deeper meaning which can be understood in a more general context, which
will be presented in a devoted paper [20].
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Appendix A The tits product

We will follow ( [10]), and, for generality, we will allow for H to be the non
associative octonionic algebra.

Let k ⊗ j, k′ ⊗ j′, k′′ ⊗ j′′ ∈ H
′ ⊗ J′ and define

[h⊗ j, h′ ⊗ j′] :=
α

3
〈j, j′〉Dh,h′ − β〈h, h′〉[Lj , Lj′ ] + γ[h, h′] ⊗ (j � j′) (A.1)

for some constants α, β, γ. Then, the only nontrivial Jacobi identities to be
checked are

0 = [[h⊗ j, h′ ⊗ j′], h′′ ⊗ j′′] + [[h′′ ⊗ j′′, h⊗ j], h′ ⊗ j′]

+ [[h′ ⊗ j′, h′′ ⊗ j′′], h⊗ j]

=: cyc{[[h⊗ j, h′ ⊗ j′], h′′ ⊗ j′′]}. (A.2)

Now

[[h⊗ j, h′ ⊗ j′], h′′ ⊗ j′′] =
α

3
〈j, j′〉Dk,k′(k′′) ⊗ j′′ − β〈k, k′〉k′′ ⊗ [Lj , Lj′ ]j′′

+
αγ

3
〈j � j′, j′′〉D[k,k′],k′′ − γβ〈[k, k′], k′′〉

⊗ [Lj
j′ , Lj′′ ] + γ2[[k, k′], k′′] ⊗ (j � j′) � j′′.
(A.3)
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After cyclic summation the terms with coefficients αγ and βγ disappear.
Defining the associator [k, k′, k′′] = (kk′)k′′ − k(k′k′′) (which is totally anti-
symmetric) we have the identities, which can be easily obtained adapting
the relations in [10] to our notation,

Dk,k′(k′′) = [[k, k′], k′′] − 3[k, k′, k′′], (A.4)

〈c, a〉b− 〈c, b〉a = −1
4
[[b, a], c] +

1
2
[c, b, a], (A.5)

X � (X ◦X) =
1
2
〈X,X〉X, X ∈ J′. (A.6)

From the last one we also get

j � (j′ ◦ j′′) − 1
2
〈j, j′〉j′′ + cyclic = 0. (A.7)

Using all this identities we finally obtain

cyc{[[h⊗ j, h′ ⊗ j′], h′′ ⊗ j′′]}

=
{

[[k, k′], k′′] ⊗
[
α− γ2

3
〈j, j′〉j′′ + 4γ2 − β

4
(j ◦ j′) � j′′

]}

+
β − 4α

4
[k, k′, k′′] ⊗ cyc[〈j, j′〉j′′], (A.8)

which vanishes for all choices of k, k′, k′′ and j, j′, j′′ if and only if α = γ2 = β
4 ,

which gives equation (3.6).

Appendix B The adjoint representation of E7 in the E7(−25)

construction

We can now realize the adjoint representation of E7. To this end, let us
consider the basis {ΨA}133

A=1 of g, with

ΨA =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

HL if A = 1, 2, 3, L = 1, 2, 3
JI if A = I + 3, I = 1, . . . , 52,
h1 ⊗ ja if A = a+ 55, a = 1, . . . , 26,
h2 ⊗ ja if A = a+ 81, a = 1, . . . , 26,
h3 ⊗ ja if A = a+ 107, a = 1, . . . , 26.

(B.1)
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The dual basis is Ψ̂B, with Ψ̂B(ΨA) = δB
A . Thus, the generic matrix of

Lie(E7) is (MA)C
B = Ψ̂C(adΨA

ΨB) where adΨA
ΨB = [ΨA,ΨB] is the adjoint

action of ΨA on ΨB. As usual, in (MA)C
B, the upper index denote the row,

the lower the column and the index A labels the matrix we are considering.
We will use the first capital Latin letters A,B,C, running from 1 to 133,
to label the basis elements of Lie(E7), small Latin letters i, j, k, running
from 1 to 3, to label the imaginary units of H, capital Latin letters L,M,N ,
running from 1 to 3, for the derivations D(H), capital Latin letters I, J,K,
running from 1 to 52, for the derivation D(J), first small Latin letters a, b, c,
running from 1 to 26, for the elements of J′ and finally the Greek letters
μ, ν, λ, running from 1 to 27, for the elements of J.

Let us proceed with the construction step by step.

B.1 The matrices MA with A = 1, 2, 3

These matrices are determined by the adjoint action of the elements ΨA =
HL, with L = 1, 2, 3 on ΨB, B = 1, . . . , 133. We have to consider five cases
for the index B.

• B = 1, 2, 3, i.e., M = 1, 2, 3: [HL, HM ] = 2ε N
LM HN .

• B = 4, . . . , 55, i.e., J = 1, . . . , 52: [HL, JJ ] = 0.

• B = 56, . . . , 81, i.e., b = 1, . . . , 26: [HL, h1 ⊗ jb] = adhih1 ⊗ jb =
2ε k

i1 hk ⊗ jb, with the value of L equal to that of i.

• B = 82, . . . , 107, i.e., b = 1, . . . , 26: [HL, h2 ⊗ jb] = adhih2 ⊗ jb =
2ε k

i2 hk ⊗ jb, with the value of L equal to that of i.

• B = 108, . . . , 133, i.e., b = 1, . . . , 26: [HL, h3 ⊗ jb] = adhih3 ⊗ jb =
2ε k

i3 hk ⊗ jb, with the value of L equal to that of i.

Applying the dual basis Ψ̂C , and organizing the result in block matrices
(with block structure C = {N,K, a, b, c}) we obtain the first three
matrices:

(M1)C
B =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

0 0 0
0 0 −2
0 2 0

0 0 0 0

0 0 0 0 0
0 0 0 0 0
0 0 0 0 −2I26
0 0 0 2I26 0

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

,
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(M2)C
B =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

0 0 2
0 0 0
−2 0 0

0 0 0 0

0 0 0 0 0
0 0 0 0 2I26
0 0 0 0 0
0 0 −2I26 0 0

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

,

(M3)C
B =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

0 −2 0
2 0 0
0 0 0

0 0 0 0

0 0 0 0 0
0 0 0 −2I26 0
0 0 2I26 0 0
0 0 0 0 0

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

, (B.2)

where the five diagonal blocks have dimensions 3 × 3, 52 × 52, 26 × 26, 26 ×
26 and 26 × 26 respectively.

B.2 The matrices MA with A = 4, . . . , 55

These matrices are given by the adjoint action of the elements ΨI+3 = JI ,
with I = 1, . . . , 52 on ΨB, B = 1, . . . , 133.

• B = 1, 2, 3, i.e., M = 1, 2, 3: [JI , HM ] = 0.

• B = 4, . . . , 55, i.e., J = 1, . . . , 52: [JI , JJ ] = f K
IJ JK , where f K

IJ are
the structure constants of Lie(F4).

• B = 56, . . . , 81, i.e., b = 1, . . . , 26: [JI , h1 ⊗ jb] = h1 ⊗ JIjb = h1 ⊗
(CI)c

bjc. The (CI)c
b are the matrices of Lie(F4), the algebra of the

derivation of the octonionic Jordan matrices. Note that jb are traceless,
actually we choose as basis for J 26 traceless matrices and the identity.
As derivations vanish on the identity, Lie(F4) can be obtained as the
derivations on J′.

• B = 82, . . . , 107, i.e., b = 1, . . . , 26: [JI , h2 ⊗ jb] = h2 ⊗ JIjb = h2 ⊗
(CI)c

bjc.

• B = 108, . . . , 133, i.e., b = 1, . . . , 26: [JI , h3 ⊗ jb] = h3 ⊗ JIjb = h3 ⊗
(CI)c

bjc.
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We obtain:

(MI+3)C
B =

⎛

⎜
⎜
⎜
⎜
⎝

0 0 0 0 0
0 f K

IJ 0 0 0
0 0 (CI)c

b 0 0
0 0 0 (CI)c

b 0
0 0 0 0 (CI)c

b

⎞

⎟
⎟
⎟
⎟
⎠
, (B.3)

I = 1, . . . , 52.

B.3 The matrices MA with A = 56, . . . , 81

These matrices are given by the adjoint action of the elements ΨA = h1 ⊗ ja,
with a = 1, . . . , 26 on ΨB, B = 1, . . . , 133.

• B = 1, 2, 3, i.e., M = 1, 2, 3: [h1 ⊗ ja, HM ] = −[HM , h1 ⊗ ja] = −adhj

h1 ⊗ ja = −2ε k
j1 hk ⊗ ja, with the value of M equal to that of j.

• B = 4, . . . , 55, i.e., J = 1, . . . , 52: [h1 ⊗ ja, JJ ] = −[JJ , h1 ⊗ ja] = −h1

⊗ JJja = −h1 ⊗ (CJ)c
ajc.

• B = 56, . . . , 81, i.e., b = 1, . . . , 26: [h1 ⊗ ja, h1 ⊗ jb] = 1
12H[h1,h1] < ja,

jb > − <h1, h1 > [Lja , Ljb
] + 1

2 [h1, h1] ⊗ (ja � jb) = − < h1, h1 > [Lja ,

Ljb
] = −[Lja , Ljb

] = −α K
ab JK . The last equality follows from [Lja ,

Ljb
]jμ = Lja(Ljb

(jμ)) − Ljb
(Lja(jμ)). The Jordan algebra is commu-

tative so that the left action and the right action on jμ coincide. On
the other hand, the right action of J′ on J gives the 26 new elements
of the extension the Lie algebra of F4 to Lie(E6), so that [Lja , Ljb

] can
be expressed in terms of the 26 Lie(E6) matrices that do not belong
to Lie(F4): [Lja , Ljb

]jμ = jλ[C̃ λ
a νC̃

ν
b μ − C̃ λ

b νC̃
ν

a μ] = jλ[C̃a, C̃b]λμ =
jλα

K
ab CK

λ
μ = α K

ab JKjμ = α K
ab JKjc + α K

ab JKj27 = α K
ab JKjc, be-

cause a derivation on the identity vanishes. The third equality follows
from the fact that the commutator between two of the 26 matrices of
Lie(E6)/Lie(F4), lies in Lie(F4).

• B = 82, . . . , 107, i.e., b = 1, . . . , 26: [h1 ⊗ ja, h2 ⊗ jb] = [h1 ⊗ ja, h1 ⊗
jb] = 1

12H[h1,h2] < ja, jb >−< h1, h2 > [Lja , Ljb
] + 1

2 [h1, h2] ⊗ (ja � jb)
= 1

12H[h1,h2]τδab + 1
2 [h1, h2] ⊗ (ja � jb) = 1

6τδabH3 + h3 ⊗ jc(C̃a)c
b. The

last equality follows from (ja � jb) = ja ◦ jb − 1
3 < ja, jb > I3 =

Rja(jb) − 1
3 < ja, jb > I=(C̃a)

μ
b jμ − 1

3τδabI3 = (C̃a)c
bjc + (C̃a)27bj27 −

1
3τδabI3 = (C̃a)c

bjc. The last two terms cancel because the � product
gives traceless elements by definition. This fact can also be verified
using the explicit expression of the matrices C̃a.

• B = 108, . . . , 133, i.e., b = 1, l, 26: [h1 ⊗ ja, h3 ⊗ jb] = −1
6τδabH2 − h2

⊗ jc(C̃a)c
b.
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Collecting all these results, we get

(Ma+55)C
B =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

0 0 0 1
6τδ

N
3 δab −1

6τδ
N
2 δab

0 0 −α K
ab 0 0

0 −(CJ)c
a 0 0 0

−2δc
aδ3M 0 0 0 −(C̃a)c

b

2δc
aδ2M 0 0 (C̃a)c

b 0

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

,

(B.4)
a = 1, . . . , 26.

B.4 The matrices MA with A = 82, . . . , 133

With analogous computations as the previous case we get the last 52 matrices:

(Ma+81)C
B =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

0 0 −1
6τδ

N
3 δab 0 1

6τδ
N
1 δab

0 0 0 −α K
ab 0

2δc
aδ3M 0 0 0 (C̃a)c

b

0 −(CJ)c
a 0 0 0

−2δc
aδ1M 0 −(C̃a)c

b 0 0

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

,

(B.5)

(Ma+107)C
B =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

0 0 1
6τδ

N
2 δab −1

6τδ
N
1 δab 0

0 0 0 0 −α K
ab

−2δc
aδ2M 0 0 −(C̃a)c

b 0

2δc
aδ1M 0 (C̃a)c

b 0 0
0 −(CJ)c

a 0 0 0

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

,

(B.6)

a = 1, . . . , 26. This completes the construction of the representation 133.

Appendix C The representation 56 of E7

By applying the Yokota method we obtain the following 133 56 × 56 matrices:

Y1 =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

i√
6
I27 
027 027 
027

t
027 −i
√

3
2


0t
27 0

027 
027 − i√
6
I27 
027

t
027 0 
0t
27 i

√
3
2

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

, (C.1)
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Y2 =
1
2

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

027 
027 −i
√

2
3 Ĩ i

√
2
e27


0t
27 0 i

√
2 
et27 0

−i
√

2
3 Ĩ i

√
2
e27 027 
027

i
√

2 
et27 0 
0t
27 0

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

, (C.2)

Y3 =
1
2

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

027 
027

√
2
3 Ĩ

√
2
e27


0t
27 0

√
2 
et27 0

−
√

2
3 Ĩ −√

2
e27 027 
027

−√
2 
et27 0 
0t

27 0

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

, (C.3)

YI+3 =

⎛

⎜
⎜
⎜
⎜
⎝

φI

027 027 
027


0t
27 0 
0t

27 0

027 
027 −φt
I

027


0t
27 0 
0t

27 0

⎞

⎟
⎟
⎟
⎟
⎠
, I = 1, . . . , 78, (C.4)

Ya+81 =
1
2

⎛

⎜
⎜
⎜
⎜
⎝

027 
027 2iAa i
√

2
ea

0t

27 0 i
√

2
eta 0

2iAa i
√

2
ea 027 
027

i
√

2
eta 0 
0t
27 0

⎞

⎟
⎟
⎟
⎟
⎠
, a = 1, . . . , 26,

(C.5)

[3pt]Ya+107 =
1
2

⎛

⎜
⎜
⎜
⎜
⎝

027 
027 −2Aa

√
2
ea


0t
27 0

√
2
eta 0

2Aa −√
2
ea 027 
027

−√
2
eta 0 
0t

27 0

⎞

⎟
⎟
⎟
⎟
⎠
, a = 1, . . . , 26,

(C.6)

where In is the n× n identity matrix, 027 is the 27 × 27 null matrix, 
0n is
the zero vector in R

n, 
eμ, μ = 1, . . . , 27, is the canonical basis of R
27,

Ĩ =
(

I26 
026
t
026 −2

)

, (C.7)

φI =

{
CI I = 1, . . . , 52
C̃I−52 I = 53, . . . , 78,

(C.8)

where CI and C̃a are defined in (3.8) and (3.9) respectively. Finally, Aa,
a = 1, . . . , 26 are the 27 × 27 symmetric matrices representing, by means of
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the linear isomorphism J � R
27, jμ �→ 
eμ, the action of J′ on J defined by

j′(j) := j′ ◦ j − 1
2
Tr(j)j′ − 1

2
〈j, j′〉I3.

In particular jμ is the basis of J defined in the previous section, and Aa is
the matrix associated to ja, a = 1, . . . , 26.

The matrices YA, A = 1, . . . , 133 are orthonormalized w.r.t. to the product

〈Y, Y ′〉56 = − 1
12

Tr(Y Y ′).

It is easy to check, for example by means of a computer, that the YA satisfy
exactly the same commutation relations of the MA.

Appendix D The range of the parameters for the E7(−25)

To determine the range of the parameters, we can proceed as shown in [9].
In particular, we will be able to make use of the results already obtained
in [7, 8], thus simplifying most of the computations.

Setting U := (E6 × U(1))/Z3, from our previous construction we can write
the generic element of E7 as

E7[x1, . . . , x133] = B[x1, . . . , x51] expV [x52, x53, x54]U [x55, . . . , x133], (D.1)

which is (3.36) realized with the matrices YA. Then, the range of the
parameters x55, . . . , x133 can be chosen in such the way that x55 covers the
whole U(1) and x56, . . . , x133 cover the whole E6. The last ones have been
determined in [8] and will be reported in the conclusions for convenience.
The U(1) is covered if x55 runs over a period Tg. However, because of the

action of Z3, we must reduce its range to Tg/3 = 2
√

2
3π.

For the remaining parameters, we have to construct the invariant measure
over the quotient E7/U . This is given by

dμBE7
= |detJ⊥

p |, (D.2)

where

Jp = e−VB−1d(BeV ) = dV + e−VB−1dB eV



1638 SERGIO L. CACCIATORI ET AL.

and ⊥ means the part orthogonal to Lie(U). Concretely, this means that
we have to project Jp on Y2, Y3, Y82, . . . , Y133. Since

dV = dx52Y2 + dx53Y82 + dx54Y99, (D.3)

we only need to concentrate on the term e−VB−1dB eV , which must be
projected on Y3, Y83, . . . , Y98, Y100, . . . , Y133. The details of the computations
are given in Appendix E. However, to express the result of the computation
we need to look better at the structure of B = U/Uo.

We can write it as B = U(1)/Z3 × E6/SO(8), where SO(8) is the sub-
group SO(8) ⊂ F4 ⊂ E6 which commutes with Y56 := ψ(c53) and Y73 :=
ψ(c70), used in [8] to construct E6. By using the results in [7, 8], we then
see that

B[x1, . . . , x51] = ex1Y1ψ∗(BE6)[x2, . . . , x27]ψ∗(BF4)[x28, . . . , x43]

× ψ∗(BSO(9))[x44, . . . , x51], (D.4)

and BE6 , BF4 and BSO(9) are the basis in the construction of the groups

E6 = BE6F4, F4 = BF4SO(9), SO(9) = BSO(9)SO(8), (D.5)

defined in [7, 8] respectively. Also, ψ indicates the map ψ(cI) = YI+3, I =
1, . . . , 78, cI being the generators of E6. From now on we will omit the map
ψ, for simplicity. Starting from this structure, as shown in Appendix E, we
get

dμBE7
(x1, . . . , x55) = dx1dμBE6

(x2, . . . , x27)dμBF4
(x28, . . . , x43)dμBSO(9)

× (x44, . . . , x51)W (x52, x53, x54)dx52dx53dx54, (D.6)

W (x1, x2, x3) := sin

(√
3x2 +

√
2x1 + x3√
3

)

sin

(√
3x2 −

√
2x1 − x3√
3

)

× sin

(√
6x1 − 2

√
3x3

3

)

:= sin

(√
3x2 +2

√
2x1−x3

2
√

3

)8

sin

(√
3x2−2

√
2x1 +x3

2
√

3

)8
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× sin

(
x2 −

√
3x3

2

)8

:= sin

(
x2 +

√
3x3

2

)8

sin

(√
2x1 + x3√

3

)8

sin(x2)8.

(D.7)

At this point, we have to fix the ranges so that dμ is positive definite.
This fixes only the ranges of the parameters, which explicitly appear in
the measure. The other ones can be chosen over a period. In this way, one
covers the whole space an integer numberN of times. This can be checked by
comparing the volume obtained by integrating dμ over the obtained ranges,
with the volume of E7/U obtained by means of the Macdonald’s formula
(see [14]). Finally, one has to identify the finite symmetry group responsible
of theN -covering to reduce the ranges over the periods to get theN = 1 case.
Fortunately, in our case most of the work has been done in [7,8]. Indeed, the
terms dμBE6

, dμBF4
dμBSO(9)

are the same appearing there and determine the
same corresponding ranges of parameters given in that papers. Moreover,
x1 does not appears in dμ, so that its range is the period of U(1)/Z3 which is

Tg/3 = 2
√

2
3π. Thus, we are left with the problem to determine the ranges

for the parameters x52, x53, x54. To this end, it is convenient to introduce
the change of variables

x =
√

6x52 − 2
√

3x54

3
, y =

√
3x53 +

√
2x52 + x54√
3

,

z =
√

3x53 −
√

2x52 − x54√
3

, (D.8)

with inverse:

x52 =
1√
6
x− 1√

3
z, x53 =

1
2
(y + z), x54 = −1

3
x+

1
2
√

3
(y − z). (D.9)

Then,

W (x52, x53, x54) = sin(x) sin(y) sin(z) sin8

(
x− y

2

)

sin8

(
x+ y

2

)

sin8

(
x− z

2

)

sin8

(
x+ z

2

)

sin8

(
y − z

2

)

sin8

(
y + z

2

)

,

(D.10)
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which is positive for

x ∈ [0, π], y ∈ [0, x], z ∈ [0, y]. (D.11)

To check if the range of parameters is the right one, let us compute the
integral

I =
∫

R
dμBE7

,

with the determined ranges, to be compared with the volume Vol(E7/U)
computed in Appendix F by means of the formula of Macdonald. As

dx52 dx53 dx54 =
1

2
√

2
dx dy dz,

we obtain

I =
Tg

3
Vol(E6)

Vol(SO(8))
1

2
√

2
I, (D.12)

I =
∫ π

0
dx

∫ x

0
dy

∫ y

0
dz sin(x) sin(y) sin(z) sin8

(
x− y

2

)

sin8

(
x+ y

2

)

sin8

(
x− z

2

)

sin8

(
x+ z

2

)

sin8

(
y − z

2

)

sin8

(
y + z

2

)

. (D.13)

Using the change of variables

χ =
1
2
(1 − cosx), ξ =

1
2
(1 − cos y), ζ =

1
2
(1 − cos z), (D.14)

the last integral becomes, see Appendix G:

I = 23

∫ 1

0
dχ

∫ χ

0
dξ

∫ ξ

0
dζ(χ− ξ)8(ξ − ζ)8(ζ − χ)8

=
2

35 × 5 × 11 × 132 × 17
. (D.15)

Since the volumes of E6 and SO(8) can be computed by means of the Mac-
donald formula giving

Vol(E6) =
√

3 217π42

310 × 55 × 73 × 11
, Vol(SO(8)) =

212π16

33 × 5
, (D.16)
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we get

I =
26π27

312 × 55 × 73 × 112 × 132 × 17
, (D.17)

which is just twice the volume of E7/U computed in Appendix F. However,
we can easily see the origin of this double covering: consider the element

τ := −I56ω2 = g1[Tg/2]g1[2Tg/3] = U(1)[Tg/6], τ6 = I56. (D.18)

One can check that τ commutes with E6 and with V . This means that we
can write

BeV U = Bτ−1τeV U = Bτ−1eV τU. (D.19)

Since the right τ can be reabsorbed in the parametrization of U , and, on
the left, it acts as Z2 on the factor U(1)/Z3 in B, we see that it identifies
the points in the range by means of the relation

x1 ∼ x1 + Tg/6.

Then, to have an injective parametrization, apart from a subset of van-
ishing measure, we must further restrict the range of x1 to the interval

x1 ∈ [0,
√

2
3π].

As a result, we find the following ranges for the E7 Euler parameters:

x1 ∈
[

0,
√

2
3
π

]

x2 ∈ [0, 2π] x3 ∈ [0, 2π] x4 ∈ [0, 2π]

x5 ∈ [0, π] x6 ∈
[
−π

2
,
π

2

]
x7 ∈

[
0,
π

2

]
x8 ∈

[
0,
π

2

]

x9 ∈ [0, π] x10 ∈ [0, 2π] x11 ∈ [0, 2π] x12 ∈ [0, 2π]

x13 ∈ [0, π] x14 ∈
[
−π

2
,
π

2

]
x15 ∈

[
0,
π

2

]
x16 ∈

[
0,
π

2

]

x17 ∈ [0, π] x18 ∈ [0, 2π] x19 ∈ [0, 2π] x20 ∈ [0, 2π]

x21 ∈ [0, π] x22 ∈
[
−π

2
,
π

2

]
x23 ∈

[
0,
π

2

]
x24 ∈

[
0,
π

2

]

x25 ∈ [0, π] x26 ∈ [0, π] −x26√
3
≤ x27 ≤ x26√

3
x28 ∈ [0, 2π]
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x29 ∈ [0, 2π] x30 ∈ [0, 2π] x31 ∈ [0, π] x32 ∈
[
−π

2
,
π

2

]

x33 ∈
[
0,
π

2

]
x34 ∈

[
0,
π

2

]
x35 ∈ [0, π] x36 ∈ [0, 2π]

x37 ∈ [0, 2π] x38 ∈ [0, 2π] x39 ∈ [0, π] x40 ∈
[
−π

2
,
π

2

]

x41 ∈
[
0,
π

2

]
x42 ∈

[
0,
π

2

]
x43 ∈ [0, π] x44 ∈ [0, 2π]

x45 ∈ [0, 2π] x46 ∈ [0, 2π] x47 ∈ [0, π] x48 ∈
[
−π

2
,
π

2

]

x49 ∈
[
0,
π

2

]
x50 ∈

[
0,
π

2

]
x51 ∈ [0, π] x55 ∈

[

0, 2
√

2
3
π

]

x56 ∈ [0, 2π] x57 ∈ [0, 2π] x58 ∈ [0, 2π] x59 ∈ [0, π]

x60 ∈
[
−π

2
,
π

2

]
x61 ∈

[
0,
π

2

]
x62 ∈

[
0,
π

2

]
x63 ∈ [0, π]

x64 ∈ [0, 2π] x65 ∈ [0, 2π] x66 ∈ [0, 2π] x67 ∈ [0, π]

x68 ∈
[
−π

2
,
π

2

]
x69 ∈

[
0,
π

2

]
x70 ∈

[
0,
π

2

]
x71 ∈ [0, π]

x72 ∈ [0, 2π] x73 ∈ [0, 2π] x74 ∈ [0, 2π] x75 ∈ [0, π]

x76 ∈
[
−π

2
,
π

2

]
x77 ∈

[
0,
π

2

]
x78 ∈

[
0,
π

2

]
x79 ∈ [0, π]

x80 ∈ [0, π] −x80√
3
≤ x81 ≤ x80√

3
x82 ∈ [0, 2π] x83 ∈ [0, 2π]

x84 ∈ [0, 2π] x85 ∈ [0, π] x86 ∈
[
−π

2
,
π

2

]
x87 ∈

[
0,
π

2

]

x88 ∈
[
0,
π

2

]
x89 ∈ [0, π] x90 ∈ [0, 2π] x91 ∈ [0, 2π]

x92 ∈ [0, 2π] x93 ∈ [0, π] x94 ∈
[
−π

2
,
π

2

]
x95 ∈

[
0,
π

2

]

x96 ∈
[
0,
π

2

]
x97 ∈ [0, π] x98 ∈ [0, 2π] x99 ∈ [0, 2π]

x100 ∈ [0, 2π] x101 ∈ [0, π] x102 ∈
[
−π

2
,
π

2

]
x103 ∈

[
0,
π

2

]

x104 ∈
[
0,
π

2

]
x105 ∈ [0, π] x106 ∈ [0, 2π] x107 ∈ [0, 2π]

x108 ∈ [0, 2π] x109 ∈ [0, π] x110 ∈
[
−π

2
,
π

2

]
x111 ∈

[
0,
π

2

]

x112 ∈
[
0,
π

2

]
x113 ∈ [0, 2π] x114 ∈ [0, π] x115 ∈

[
−π

2
,
π

2

]
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x116 ∈
[
−π

2
,
π

2

]
x117 ∈

[
−π

2
,
π

2

]
x118 ∈ [0, π] x119 ∈ [0, 2π]

x120 ∈ [0, π] x121 ∈
[
−π

2
,
π

2

]
x122 ∈

[
−π

2
,
π

2

]
x123 ∈ [0, π]

x124 ∈ [0, 2π] x125 ∈ [0, π] x126 ∈
[
−π

2
,
π

2

]
x127 ∈ [0, π]

x128 ∈ [0, 2π] x129 ∈ [0, π] x130 ∈ [0, π] x131 ∈ [0, 2π]

x132 ∈ [0, π] x133 ∈ [0, 4π]

and

x52 =
1√
6
x− 1√

3
z, x53 =

1
2
(y + z), x54 = −1

3
x+

1
2
√

3
(y − z),

with x ∈ [0, π], y ∈ [0, x] and z ∈ [0, y].

Appendix E Deduction of the measure

The invariant measure on E7/U is

dμBE7
= |detJ⊥

p |, (E.1)

where J⊥
p is the projection of

Jp = e−VB−1d(BeV ) = dV + e−VB−1dB eV

on the real linear subspace of Lie(E7) spanned by Y2, Y3, Y82, . . . , Y133. More
specifically we have

Jp = dV + e−V U−1
1 dU1 eV + e−VB−1

SO(9)dBSO(9)e
V

+ e−VB−1
SO(9)B

−1
F4
dBF4BSO(9)e

V

+ e−VB−1
SO(9)B

−1
F4
B−1

E6
dBE6BF4BSO(9)e

V ,

where we used the fact that the U(1) factor commutes with E6. To compute
det J⊥

p we can then proceed by analyzing the summands term by term (here
we will set H := Lie(U)):

• dV = Y2dx2 + Y82dx82 + Y99dx99, which has obviously non zero pro-
jection just on the matrices Y2, Y82 and Y99. Thus, the remaining
terms have to be projected on Y3, Y83, . . . , Y98, Y100, . . . , Y133.
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• The SO(9) current JBSO(9)
:= B−1

SO(9)dBSO(9) can be split in two orthog-
onal pieces JBSO(9)

= JSO(8) ⊕ JSO(9)\SO(8), where JSO(8) is the pro-
jection of JBSO(9)

into Lie(SO(8)). The space V commute with this
SO(8), thus e−V JSO(8)eV = JSO(8) and as SO(8) ⊂ E6 it has vanishing
projection overH⊥. Then e−VB−1

SO(9)dBSO(9)eV |H⊥ = e−V JSO(9)\SO(8)

eV |H⊥ . Thus, this term will contribute to the determinant with the
term

A = det e−V JSO(9)\SO(8)e
V |H⊥ .

To compute it we first note that JSO(9)\SO(8) =
∑8

a=1 J
a
BSO(9)

Ya+47 and
that Ade−V Ya+47|H⊥ , a = 1, . . . , 8 have non vanishing components only
on the subspace generated by Ya+99, a = 1, . . . , 8. This means that if
we define the eight dimensional spaces

W47 :=
8∑

a=1

RYa+47, W99 :=
8∑

a=1

RYa+99, (E.2)

define the linear map

ρ : W47 −→W99, Y �−→ e−V Y eV |H⊥ (E.3)

and define the matrix R associated to ρ by the bases {Ya+n}8
a=1, n =

47, 99 of Wn, respectively, then we can write A=detR detJSO(9)\SO(8).
Now, detR can be easily computed by means of a computer, whereas
detJSO(9)\SO(8) = dμBSO(9)

by construction and has yet been com-
puted in [7]. The result is then

A = sin8

(
x2 −

√
3x3

2

)

dμBSO(9)
. (E.4)

Moreover, the remaining terms have to be projected on H⊥
1 :=

Span{Y3, Y83, . . . , Y98, Y108, . . . , Y133}R.
• Let us now consider the term e−VB−1

SO(9)B
−1
F4
dBF4BSO(9)eV . The F4

current JBF4
:= B−1

F4
dBF4 can be split in two orthogonal parts JBF4

=
JSO(9) ⊕ JF4\SO(9), where JSO(9) is the projection of JBF4

over Lie
(SO(9)). The adjoint action of SO(9) on JSO(9) has value in Lie(SO(9))
which under Ade−V has vanishing projection over H⊥

1 , as seen before.
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On the other hand,

Φ := AdSO(9) : Lie(F4/SO(9)) −→ Lie(F4/SO(9))

acts as an orthogonal map so that we have

B := det(e−VB−1
SO(9)B

−1
F4
dBF4BSO(9)e

V )|H⊥
1

= det(e−V Φ(JF4\SO(9))e
V )|H⊥

1

= detΦ det(e−V JF4\SO(9)e
V )|H⊥

1
= det(e−V JF4\SO(9)e

V )|H⊥
1
.

Now we can proceed as in the previous case: first, one can check that

JF4\SO(9) ∈W24,39 = Span{Y24+a, Y39+a, a = 1, . . . , 8}R. (E.5)

Then, one sees that

Ade−V (W24,39)|H⊥
1
⊆W82 := Span{Y82+a, a = 1, . . . , 16}R,

so that if we define the linear map

ρ′W24,39 −→W82, Y �−→ e−V Y eV |H⊥
1
, (E.6)

and M ′ is the associated matrix, then we get

B = detM ′ det JF4\SO(9) = sin8 x2 sin8

(
x2 +

√
3x3

2

)

dμBF4
, (E.7)

where dμBF4
has been computed in [7]. The remaining terms in Jp

must be projected on H⊥
2 := Span{Y3, Y108, . . . , Y133}R.

• The computation we have to consider is the contribution of the terms

e−V U−1
1 dU1eV + e−VB−1

SO(9)B
−1
F4
B−1

E6
dBE6BF4BSO(9)e

V ,

which we rewrite conveniently in the form

e−VB−1
SO(9)B

−1
F4

(JU(1) ⊕ JBE6
)BF4BSO(9)e

V

:= e−VB−1
SO(9)B

−1
F4

(U−1
1 dU1 +B−1

E6
dBE6)BF4BSO(9)e

V .

As before, JBE6
can be split in two orthogonal parts as JBE6

= JF4 ⊕
JE6\F4

, where JF4 is the projection of JBE6
over Lie(F4), and by con-

struction

e−VB−1
SO(9)B

−1
F4
JF4BF4BSO(9)e

V |H⊥
2

= 0.
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Moreover, AdF4 (and then AdSO(9)) acts as an orthogonal map on the
space

W1,55 := Span{Y1, Y55+a, a = 1, . . . , 26}R

so that, with the same arguments as before, we can restrict to compute
the term

C := det(e−V (U−1
1 dU1 ⊕ JE6\F4

)eV |H⊥
2

). (E.8)

If we construct the map

ρ′′ : W1,55 −→ H⊥
2 , Y �−→ e−V Y eV |H⊥

2
(E.9)

and the natural associated matrix M ′′, then we get

C = detM ′′dx1 det JE6\F4

=
1
29

(

cos(2x2) − cos
2
√

2x1 + 2x3√
3

)

sin
√

6x1 − 2
√

3x3

3

·
(

cosx2 − cos
2
√

6x1 −
√

3x3

3

)

dx1dμBE6
, (E.10)

where dμBE6
is the measure computed in [8].

Collecting all the terms, we finally get dμBE7
= ABC, which after applica-

tion of the formulas of prosthapheresis give the result (D.6).

Appendix F Macdonald formulas

We can compute the volume of the group by means of the Macdonald for-
mula, see [14]. We are using the invariant measure induced by an invariant
scalar product on the algebra. The Cartan subalgebra C is generated by the
matrices Y1, Y4, Y9, Y18, Y39, Y56, Y73. These matrices are orthonormal, so
that the same holds true for the dual basis. In this normalization the roots
have length

√
2. In particular, by diagonalizing adYi , i = 1, 4, 9, 18, 39, 56, 73

simultaneously, one sees that any choice of simple roots can be written in
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the form

α1 =
1
2
(λ1 − λ2 − λ3 − λ4 − λ5 − λ6 +

√
2λ7),

α2 = λ1 + λ2,

α3 = λ2 − λ1,

α4 = λ3 − λ2,

α5 = λ4 − λ3,

α6 = λ5 − λ4,

α7 = λ6 − λ5,

where λj is an orthonormal basis (w.r.t. the product induced by the one
on C). The coroots α∨

i then coincide with the roots, and the fundamental
region, that is the fundamental torus generated on C by the root lattice, has
then volume

VT = |α1 ∧ · · · ∧ α7| =
√

2.

Moreover, the rational cohomology of E7 is same of the product of seven
spheres [17, 18]:

H(E7; Q) = H(S3 × S11 × S15 × S19 × S23 × S27 × S35; Q).

Applying the formula of Macdonald, we obtain

Vol(E7) = VT

7∏

i=1

Vol(Sdi)
∏

α
=0

|α∨| =
√

2 × 223π70

322 × 510 × 76 × 113 × 132 × 17
,

(F.1)

where Sdi are the spheres appearing in the cohomology, and the second
product is over all non vanishing roots.

In a similar way, we can compute the volume of the subgroups needed in
the computations. In particular:

Vol(E6) =
√

3 217π42

310 × 55 × 73 × 11
, (F.2)

Vol(U) = Vol(E6)Vol(U(1))/3 =
√

2 218π43

310 × 55 × 73 × 11
, (F.3)

and then

Vol(E7/U) =
25π27

312 × 55 × 73 × 112 × 132 × 17
. (F.4)
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Appendix G Computation of the integral

To compute the integral I in (D.15), we here compute the more general
integral

I(a, b, c) =
∫ 1

0
dx

∫ x

0
dy

∫ y

0
dz(x− y)a−1(y − z)b−1(x− z)c−1, (G.1)

and we will get I from the the relation I = 23I(9, 9, 9). To this hand we will
use the following useful representation of the hypergeometric function:

2F1(α, β; γ; z) ≡ F (α, β; γ; z) =
Γ(γ)

Γ(d)Γ(γ − d)

∫ 1

0
dt td−1(1 − t)γ−d−1

× F (α, β; d; zt), (G.2)

which for d = α takes the form

F (α, β; γ; z) =
Γ(γ)

Γ(α)Γ(γ − α)

∫ 1

0
dt tα−1(1 − t)γ−α−1(1 − zt)−β . (G.3)

First, let us change the variables by introducing the new coordinates (x, s, t)
such that (x, y, z) = (x, xs, xst). This gives

I(a, b, c) =
1

a+ b+ c

∫ 1

0
ds

∫ 1

0
dtsb(1 − s)a−1(1 − t)b−1(1 − st)c−1. (G.4)

Next we can first integrate over t. By using (G.3), we obtain

I(a, b, c) =
1
b

1
a+ b+ c

∫ 1

0
ds sb(1 − s)a−1F (1, 1 − c; b+ 1; s)

=
1
b

1
a+ b+ c

Γ(a)Γ(b+ 1)
Γ(a+ b+ 1)

[
Γ(a+ b+ 1)
Γ(a)Γ(b+ 1)

∫ 1

0
ds sb(1 − s)a−1

× F (1, 1 − c; b+ 1; s)
]

. (G.5)

The therm in the square brackets has exactly the form (G.2), with α =
1, β = 1 − c, d = b+ 1, γ = a+ b+ 1, z = 1. Then we can write

I(a, b, c) =
1
b

1
a+ b+ c

Γ(a)Γ(b+ 1)
Γ(a+ b+ 1)

F (1, 1 − c; a+ b+ 1; 1). (G.6)
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Finally, by using

F (α, β; γ; 1) =
Γ(γ)Γ(γ − α− β)
Γ(γ − α)Γ(γ − β)

, (G.7)

and the property zΓ(z) = Γ(z + 1), we find

I(a, b, c) =
1

a+ b+ c

1
a+ b+ c− 1

Γ(a)Γ(b)
Γ(a+ b)

. (G.8)

In particular:

I = 23I(9, 9, 9) =
22

33 × 13
(8!)2

17!
=

2
35 × 5 × 11 × 132 × 17

. (G.9)

Appendix H Roots and range of parameters for the E7(7)

construction

To our aim we need to perform a choice of positive roots w.r.t. the Cartan
subalgebra H = 〈Dα〉R. First, we can write

L = H ⊕ 〈J+〉R ⊕ 〈J−〉R : = H ⊕
〈{

J+
kl =

1√
2
(−iSkl +Akl) | k < l

}〉

R

⊕
〈{

J−
kl =

1√
2
(−iSkl −Akl) | k < l

}〉

R

,

λ4 : = 〈J 〉R := 〈{JI = λI |I ∈ I}〉R.

where I is the set of 4/indices.

Proposition 1. The set J+ ∪ J− ∪ J diagonalizes simultaneously the
adjoint action of H.

Proof. By direct computation of the action of [Dα, J
±
kl ] on eij and on εij we

get:

[Dα, J
±
kl ] = ±i(Dk

α −Dl
α)J±

kl , (H.1)

where for JI = λi1i2i3i4 , using trDα = 0, we obtain

[Dα,JI ] = i(Di1
α +Di2

α +Di3
α +Di4

α )JI . (H.2)

�
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We now fix an explicit choice for a basis of H, suitable for our purposes:

D1 =
1√
2
diag{1,−1,−1, 1, 0, 0, 0, 0},

D2 =
1√
2
diag{1,−1, 1,−1, 0, 0, 0, 0},

D3 =
1√
2
diag{1, 1,−1,−1, 0, 0, 0, 0},

D4 =
1√
2
diag{0, 0, 0, 0, 1,−1,−1, 1},

D5 =
1√
2
diag{0, 0, 0, 0, 1,−1, 1,−1},

D6 =
1√
2
diag{0, 0, 0, 0, 1, 1,−1,−1},

D7 =
1
2
diag{1, 1, 1, 1,−1,−1,−1,−1}.

Before continuing, let us recall the structure of the roots for the E7 type
algebras. Let R+ the set of positive roots and Li an orthonormal basis for
H∗

R
the real space spanned by all roots. Then, the positive roots system for

an E7 Lie algebra is (see [19], chapter 21, p. 333)

R+ = {Lj + Li}i<j≤6 ∪ {Lj + Li}i<j≤6 ∪ {
√

2L7}

∪
{
±L1 ± · · · ± L6 +

√
2L7

2

}

odd number of sign−
(H.3)

and in particular a choice of simple roots is

α1 =
L1 − L2 − L3 − L4 − L5 − L6 +

√
2L7

2
, α2 = L1 + L2,

α3 = L2 − L1, α4 = L3 − L2, α5 = L4 − L3,

α6 = L5 − L4, α7 = L6 − L5. (H.4)

We normalized the basis for H so that Dα ·Dβ = 2δαβ . An orthonormal
basis for H∗

R
is thus provided by Lα(Hβ) =

√
2δαβ . Let us then introduce

the subset I0 ⊂ I such that I = I0 ∪ Ĩ0 defined as follows:

I0 = {I ∈ I : i1, i2, i3 ∈ {1, 2, 3, 4, 5}}. (H.5)
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In other words it is the set of ordered tetra-indices such that or all indices
run from 1 to 5, or i7 ∈ 6, 7, 8. Its cardinality is then

(
5
4

)
+ 3

(
5
3

)
= 35. Set

J = J + ∪ J − := {λI ∈ J : I ∈ I0} ∪ {λI ∈ J : Ĩ ∈ I0, εI,Ĩ = 1}. (H.6)

Proposition 2. The set J+ ∪ J + consists of all eigenvectors associated to
all positive roots of LieE7. The corresponding roots are

{

βkl :=
7∑

α=1

Dk
α −Dl

α√
2

Lα

}

k<l

∪
{

βi1i2i3i4 :=
7∑

α=1

Di1
α +Di2

α +Di3
α +Di4

α√
2

Lα

}

i1i2i3i4∈I0

. (H.7)

In particular the simple roots are

α1 = β45, α2 = β12, α3 = β34, α4 = β23, α5 = β3458,

α6 = β78, α7 = β67. (H.8)

The proof is by direct inspection. Note that the order for the simple
roots in the theorem is the same as in figure 1. This result is very helpful
for computing the function f = det[Π ◦ Ade−V : u → t]. Indeed, from both
Propositions we see that a basis for u is given by the matrices of the form

S = i
J+ + J−

√
2

,

whereas a basis for t is given by the elements of the form

S =
J+ − J−

√
2

.

Using this and

Ade
∑

a yaDaJ
±
β = e±

∑
a yaβ(Da)J±

β

for a given root β, one finally obtains

|f(
y)| =
∏

β∈Rad+

sin

(

|
7∑

a=1

yaβ(Da)|
)

, (H.9)

where Rad+ is the set of positive roots w.r.t. V .
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Appendix I Some details for the E7(−5) construction

Here we will specify the subgroup K of U5 commuting with the torus eH4 .
To this end start we start by looking for the subalgebra k of u5 commuting
with H4. This can be done by means of Mathematica and gives

k = 〈M1, . . . ,M9〉R, (I.1)

with

M1 =
1
2
(L1 − L9 + L21 − L25), (I.2)

M2 =
1
2
(L2 + L8 + L14 − L28), (I.3)

M3 =
1
2
(L3 − L7 + L19 + L27), (I.4)

M4 =
1
2
(L4 − L13 + L20 + L23), (I.5)

M5 =
1
2
(L5 − L15 + L18 − L22), (I.6)

M6 =
1
2
(L10 − L12 + L16 + L24), (I.7)

M7 =
1√
2
(L45 + L46), (I.8)

M8 = L49, (I.9)

M9 = L50. (I.10)

These generate an algebra so(4) ⊕ su(2) whose exponentiation gives the
group K0 = Spin(4) × SU(2). A general analysis, which will be presented
in [20], shows that K contains an extra Z

2
2 factor so that

Spin(4) × SU(2) × Z
2
2. (I.11)
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