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Abstract

In this work, a class of field theories with self-interactions described by
a potential of the kind V (φ(x) − φ(x0)) is studied. φ is a massive scalar
field and x, x0 are points in a d-dimensional space. Under the condition
that the potential admits the Fourier representation, it is shown that
such theories may be mapped into a standard field theory, in which the
interaction of the new fields is a polynomial of fourth degree. With some
restrictions, this mapping allows the perturbative treatment of models
that are otherwise intractable with standard field theoretical methods.

A nonperturbative approach to these theories is attempted. The orig-
inal scalar field φ is integrated out exactly at the price of introducing
auxiliary vector fields. The latter are treated in a mean field theory
approximation. The singularities that arise after the elimination of the
auxiliary fields are cured using the dimensional regularization. The expres-
sion of the counterterms to be subtracted is computed.
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1 Introduction

In this paper, we study a wide class of d-dimensional field theories in which
the interactions are described by a general potential V (φ(x) − φ(x0)). Here
φ(x), x ∈ R

d denotes a massive scalar field. x0 is a fixed point in R
d. The

only requirement on the potential V is that its Fourier representation exists,
i.e., it is possible to write V (φ) =

∫ +∞
−∞ dbṼ (b)e−ibφ. It is shown that all the-

ories of this kind can be mapped into a (d+ 2)-dimensional field theory,
in which the interactions between the fields are polynomial. As a conse-
quence, models which are highly nonlinear and nonlocal may be treated
after the mapping using perturbative methods. This is the main result of
this work. The mapping is obtained extending a technique known in statisti-
cal mechanics as Gaussian integration [1–5], which allows to identify certain
field theories with a gas of interacting particles. In the present case, a field
theory is identified with another field theory. Yet, Gaussian integration is
used at some step in order to simplify the interaction term of the original
massive scalar fields. More precisely, the term e−V is rewritten in the form
of the “equilibrium limit” of the partition function of a system of quantum
particles interacting with the field φ. A similar strategy has been recently
applied in [6] to reformulate the Liouville field theory as a theory with poly-
nomial interactions, which is very similar to scalar electrodynamics. A brief
introduction to the method and a discussion of its advantages can be found
in [7]. As a result of the whole procedure, we obtain a theory of complex
scalar fields ψ∗, ψ describing the fluctuations of particles immersed in the
purely longitudinal vector potential A = ∇φ.

In the second part of this paper, a nonperturbative approach is attempted.
First of all, the field φ is integrated out using a technique similar to that
exploited in the case of Chern–Simons fields in [8]. In this way a set of
new vector fields ξ∗, ξ is introduced, which are treated using a mean field
theory approximation. The singularities arising after the integration over φ
are computed with the help of the dimensional regularization. This does not
exhaust all possible divergences that may arise in the theory. A discussion
of renormalization issues is presented in the Conclusions.

2 The mapping

We consider here the class of d-dimensional field theories with partition
function

Z =
∫

Dφe−S (2.1)
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and action

S =
∫
ddx

[
1
2
(∇φ)2 +

m2

2
φ2 + V (φ(x) − φ(x0))

]

. (2.2)

The potential V (φ(x) − φ(x0)) is given in the Fourier representation:

V (φ(x) − φ(x0)) =
∫ +∞

−∞
dbṼ (b)e−ib(φ(x)−φ(x0)). (2.3)

One can obtain in this way a wide class of potentials. For example, the
potential

V1(φ(x) − φ(x0)) =
k1

a2 + (φ(x) − φ(x0))2
(2.4)

corresponds to the choice Ṽ (b) = k1
2ae

−a|b| with a > 0.

Putting instead Ṽ2(b) = k2√
4aπ

sin
(
b2

4a + π
4

)
, we have

V2(φ(x) − φ(x0)) = k2 sin
(
a(φ(x) − φ(x0))2

)
. (2.5)

Potentials of this kind, which contain in general infinite powers of the fields
as (2.4) and (2.5) show, can be simplified with the help of the following
identity:

exp
[∫ +∞

−∞
dbṼ (b)e−ib(φ(x)−φ(x0))

]

= lim
T→+∞

ΞT [φ], (2.6)

where

ΞT [φ] =
∫

Dψ∗Dψ exp
{

−i
∫
dbdtddx

×
[

iψ∗∂ψ
∂t

− g|(∇ + ib∇φ)ψ|2 − J∗ψ − Jψ∗
]}

, (2.7)

while ψ = ψ(t, x, b) and ψ∗ = ψ∗(t, x, b). In (2.7) the currents J∗, J have
been chosen as follows:

J∗(t) = (4πigT )
d
2 δ(t) J(t, x, b) = −δ(x− x0)Ṽ (b)δ(t− T ). (2.8)

Let us prove the above identity. The complex field ψ∗ in (2.7) is a Lagrange
multiplier that imposes the condition:

i
∂ψ

∂t
+ g(∇ + ib∇φ)2ψ = J. (2.9)
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The solution of this equation is

ψ(t, x, b) =
∫
db′dt′ddx′G(t− t′, x− x′, b− b′)J(t′, x′, b′), (2.10)

where

G(t− t′, x− x′, b− b′) = − iθ(t− t′)

|4πig(t− t′)| d
2

exp
[

i
(x− x′)2

4g(t− t′)

]

e−ibφ(x)

× eib′φ(x′)δ(b− b′) (2.11)

and θ(t− t′) is the Heaviside function. As a consequence, it is not difficult
after integrating out the fields ψ∗ and ψ to show that

ΞT [φ] = exp
{

+
∫
dbdtddxdt′dx′J∗(t, x)G0(t− t′, x− x′)

×e−ibφ(x)eibφ(x′)J(t, x, b)
}

. (2.12)

In the above equation, we have put for convenience

G0(t− t′, x− x′) = − iθ(t− t′)

|4πig(t− t′)| d
2

exp
[

i
(x− x′)2

4g(t− t′)

]

. (2.13)

Let us note that in principle the right-hand side of (2.12) should be multi-
plied by the determinant of the operator A−1, where

A = i
∂

∂t
+ g(∇ + ib∇φ)2. (2.14)

However, it will be proved in the Appendix that det(A−1) = 1. The reason,
as explained in [5], is that in nonrelativistic theories like those treated here,
there are no antiparticles and therefore charged loops vanish identically.
An explicit verification that indeed det(A−1) is trivial in theories in which
the propagator is proportional to θ(t− t′) can be performed following the
procedure of [6].

Substituting in (2.12) the expressions of the currents J∗, J given in (2.8),
we obtain

ΞT [φ] = exp
{

−
∫
dbddxṼ (b)e−ib(φ(x)−φ(x0))ei

(x−x0)2

4gT

}

. (2.15)

In the limit T −→ +∞ the generating functional ΞT [φ] of the fields ψ∗, ψ
together with the special choice of currents (2.8) coincides exactly with the
left-hand side of (2.6).
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In conclusion, it has been shown that the partition function of the nonlin-
ear and nonlocal scalar field theory given in (2.1) and (2.2) can be rewritten
in the form of the equilibrium limit of a local field theory:

Z = lim
T−→+∞

∫
Dφe−

∫
ddx

(
1
2
(∇φ)2+ m2

2
φ2

)

ΞT [φ]. (2.16)

3 Nonperturbative approach

Let us write (2.16) explicitly

Z = lim
T→+∞

∫
DφDψ∗Dψ exp

{

−
∫
ddx

(
1
2
(∇φ)2 +

m2

2
φ2

)}

× exp
{

−i
∫
dbdtddx

[

iψ∗∂ψ
∂t

− g|(∇ + ib∇φ)ψ|2 − J∗ψ − Jψ∗
]}

.

(3.1)

In order to eliminate the field φ, we introduce following [8] the complex
vector fields ξ∗, ξ and express Z as follows:

Z = lim
T−→+∞

∫
DφDψ∗DψDξ∗Dξ exp

{

−
∫
ddx

[
1
2
(∇φ)2 +

m2

2
φ2

]}

× exp
{

−i
∫
dbdtddx

[

iψ∗∂ψ
∂t

+ gξ∗ · ξ − gξ∗ · (∇ + ib∇φ)ψ

− g(∇− ib∇φ)ψ∗ · ξ − J∗ψ − Jψ∗]} . (3.2)

It is easy to check that (3.1) is recovered after eliminating the fields ξ∗, ξ
from (3.2). At this point we isolate in the expression of Z the contribution
due to the field φ:

Z = lim
T→+∞

∫
Dψ∗DψDξ∗Dξ exp

{

−i
∫
dbdtddx

[

iψ∗∂ψ
∂t

+ gξ∗ · ξ − gξ∗ · ∇ψ − gξ · ∇ψ∗ − ψJ∗ − ψ∗J
]}

Zφ, (3.3)

where

Zφ =
∫

Dφe−
∫
ddx

[
1
2
(∇φ)2+ m2

2
φ2−gφ∇·∫ dbdtb(ξ∗ψ−ξψ∗)

]
. (3.4)
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Zφ is the partition function of a free scalar field theory in the presence of
the external current:

K(x) = ∇ ·
∫
dbdtb (ξ∗ψ − ξψ∗) . (3.5)

Let us note that this current is purely imaginary. After performing the
simple Gaussian integration over φ, we obtain

Zφ = exp
{
g2

2

∫
ddxddx′G(x, x′)K(x)K(x′)

}

. (3.6)

G(x, x′) denotes the scalar field propagator

G(x, x′) =
∫

ddp

(2π)d
e−ip·(x−x′)

p2 +m2
. (3.7)

The total sign of the exponent appearing in the right-hand side of (3.6)
is negative. To show that, we put G(x, x′) =

∑+∞
n=0

φn(x)φn(x′)
λn

, where the
φn(x)’s are the eigenfunctions of the d-dimensional differential operator
Δ −m2 and the λn’s are their respective eigenvalues. Thus (3.6) may be
rewritten as follows:

Zφ = exp

{
g2

2

+∞∑

n=0

1
λn

[∫
ddxφn(x)K(x)

]2
}

. (3.8)

Due to the fact that the eigenvalues λn are positive and K(x) is purely
imaginary, the total sign of the exponent in the above equation is negative
as desired.

At this point it will be convenient to introduce the following shorthand
notation: η = x, b, t and dd+2η = ddxdbdt, so that

Zφ = e

{
g2

2

∫
dd+2ηdd+2η′

[
bb′Gμν(x,x′)

(
ξ∗μ(η)ψ(η)−ξμ(η)ψ∗(η)

)(
ξ∗ν(η′)ψ(η′)−ξν(η′)ψ∗(η′)

)]}

,
(3.9)

where

Gμν(x, x′) = −
∫

ddp

(2π)d
e−ip·(x−x′) pμpν

p2 +m2
, μ, ν = 1, . . . , d. (3.10)

In writing (3.6) we have used the explicit form of the current K(x) given in
(3.5) and some integrations by parts. Substituting the expression of Zφ of
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(3.9) back in the original (3.3), the total partition function Z becomes

Z = lim
T→+∞

∫
Dψ∗DψDξ∗Dξe−iS0+Sint , (3.11)

where

S0 =
∫
dd+2η

[

iψ∗∂ψ
∂t

+ gξ∗ · ξ − gξ∗ · ∇ψ − gξ · ∇ψ∗ − ψJ∗ − ψ∗J
]

(3.12)

is the free part of the action, while the interaction term is

Sint =
g2

2

∫
dd+2ηdd+2η′

[
bb′Gμν(x, x′)

(
ξ∗μ(η)ψ(η) − ξμ(η)ψ∗(η)

)

× (
ξ∗ν(η′)ψ(η′) − ξν(η′)ψ∗(η′)

)]
. (3.13)

This is the effective interaction resulting from the integration over the fields
φ. Indeed, it is easy to realize that Sint coincides with the exponent of Zφ in
(3.9). The fact that this exponent is always negative assures the convergence
of the further integrations over the remaining fields.

In the free action S0 of (3.12) the fields ξ∗, ξ and ψ∗, ψ are coupled
together. To disentangle this unwanted coupling, we perform the follow-
ing shift of variables:

ξ∗ = ∇ψ∗ + δξ∗, ξ = ∇ψ + δξ. (3.14)

The new fields δξ∗, δξ may be interpreted as the fluctuations of the fields
ξ∗, ξ around their classical configurations that are respectively given by ∇ψ∗
and ∇ψ.

Applying the shift (3.14) to (3.11), we obtain

Z = lim
T→+∞

∫
Dψ∗

∫
Dψ

∫
D(δξ∗)

∫
D(δξ)e−iS0,δ+Sint,δ . (3.15)

Now the free action S0,δ does not contain unwanted interactions between
the fields ψ∗, ψ and the new fields δξ∗, δξ:

S0,δ =
∫
dd+2η

[

iψ∗∂ψ
∂t

− g∇ψ∗ · ∇ψ + gδξ∗ · δξ − ψJ∗ − ψ∗J
]

. (3.16)
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The nonlinear part Sint,δ is given by

Sint,δ =
g2

2

∫
dd+2ηdd+2η′

[
bb′Gμν(x, x′)

(
∂μψ∗(η)∂νψ∗(η′)ψ(η)ψ(η′)

+ ∂μψ(η)∂νψ(η′)ψ∗(η)ψ∗(η′) − 2∂μψ∗(η)∂νψ(η′)ψ(η)ψ∗(η′)

+ 2∂μψ∗(η)δξ∗ν(η′)ψ(η)ψ(η′) − 2∂μψ∗(η)δξν(η′)ψ(η)ψ∗(η′)

− δξ∗μ(η′)∂νψ(η)ψ(η)ψ∗(η′) + 2∂μψ(η)δξν(η′)ψ∗(η)ψ∗(η′)

+ δξ∗μ(η)δξν(η′)ψ(η)ψ(η′) + δξμ(η)δξν(η′)ψ∗(η)ψ∗(η′)

− 2δξ∗μ(η)δξν(η′)ψ(η)ψ∗(η′)
)]
, (3.17)

where ∂μ = ∂
∂xμ

. At this point we can expand the partition function Z in
powers of the currents J and J∗:

Z = lim
T→+∞

∞∑

n=1

∞∑

m=1

∫
dd+2η1 · · ·

∫
dd+2ηn

∫
dd+2η′1 · · ·

∫
dd+2ηm

× Z(nm)(η1, . . . , ηn; η′1, . . . , η
′
m)J(η1) · · ·J(ηn)J∗(η1) · · ·J∗(ηn). (3.18)

It is easy to check that in the above series many terms disappear in the limit
T −→ +∞. The reason is that, due to the special form of the currents J∗, J
defined in Eq. (2.8), it turns out that the propagators (2.13), appearing
in Eq. (3.18) after contracting the fields ψ∗, ψ, have to be evaluated in the
special case t− t′ = T . As a consequence, each contraction of the fields ψ∗, ψ
generates a factor T− d

2 and, for this reason, many Feynman diagrams are
suppressed in the limit T −→ +∞. Only those terms in which the factors
T− d

2 are exactly compensated by the positive powers of T contained in the
currents J∗ survive.

It is also possible to show that the partition function (3.15) is independent
of the value of the coupling constant g appearing in the actions S0,δ and
Sint,d of (3.16)–(3.17), respectively. This could be expected from the fact
that the parameter g does not appear in the original model of (2.1)–(2.2). To
prove that, we consider the path integral Zg(T ) in the left-hand side of (3.15)
before taking the limit T −→ +∞. Clearly Z = limT→+∞ Zg(T ) = Zg(+∞).
Analogously, we will use the symbols S0,δ(g, T ) and Sint,δ(g) for the actions
S0,δ and Sint,δ in order to emphasize their dependence on the parameters g
and T . It will be shown in the following that

Zg(+∞) = Zg′(+∞), (3.19)
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even if g and g′ do not coincide. To begin with, we perform in the free action
S0,δ(g, T ) and in the interaction part Sint,δ(g) the time rescaling

t =
g′

g
t′. (3.20)

After the above rescaling, S0,δ(g, T ) and Sint,δ(g) read as follows:

S0,δ(g′,
g

g′
T ) =

∫
dt′dbddx

[

iψ∗∂ψ
∂t

− g′∇ψ∗ · ∇ψ

+g′δξ∗ · δξ − g′

g
ψJ∗ − g′

g
ψ∗J

]

(3.21)

and

Sint,δ(g′) =
g′2

2

∫
ddxdbdtddx′db′dt′

[
bb′Gμν(x, x′)

(
∂μψ∗(η)∂νψ∗(η′)ψ(η)ψ(η′)

+ ∂μψ(η)∂νψ(η′)ψ∗(η)ψ∗(η′) − 2∂μψ∗(η)∂νψ(η′)ψ(η)ψ∗(η′)

+ 2∂μψ∗(η)δξ∗ν(η′)ψ(η)ψ(η′) − 2∂μψ∗(η)δξν(η′)ψ(η)ψ∗(η′)

− δξ∗μ(η′)∂νψ(η)ψ(η)ψ∗(η′) + 2∂μψ(η)δξν(η′)ψ∗(η)ψ∗(η′)

+ δξ∗μ(η)δξν(η′)ψ(η)ψ(η′) + δξμ(η)δξν(η′)ψ∗(η)ψ∗(η′)

− 2δξ∗μ(η)δξν(η′)ψ(η)ψ∗(η′)
)]
. (3.22)

We remark that in the above equation both t and t′ are new time variables
obtained after the rescaling of Eq. (3.20). Moreover, the fields depend on
the new time multiplied by the scaling factor g′

g , i.e., η = g′
g t, x, b and η′ =

g′
g t

′, x, b. Apart from this implicit dependence, the parameter g appears also
explicitly in the current term of the free action of (3.21). There is no other
dependence on g both in the free action and in the interaction term of (3.22).

It turns out that the presence of g in the current term is limited to a factor
g
g′ which rescales the time T . To show that, we write down the expression
of this current term, which, apart from an irrelevant overall constant, is
equal to

Scurr,δ(g′,
g

g′
T ) =

∫
dbdt′ddx

g′

g

[(

4πig′
(
g

g′
T

)) d
2

δ

(
g′

g
t′
)

ψ

(
g′

g
t′, x, b

)

+ δ(d)(x− x0)Ṽ (b)δ
(
g′

g
t′ − T

)

ψ∗
(
g′

g
t, x, b

)]

. (3.23)
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Using the following identities between dirac delta functions

δ

(
g′

g
t′
)

=
g

g′
δ(t′), δ

(
g′

g
t′ − T

)

=
g

g′
δ

(

t′ − g

g′
T

)

, (3.24)

the expression of Scurr(g′, gg′T ) becomes

Scurr,δ

(

g′,
g

g′
T

)

=
∫
dbdt′ddx

[(

4πig′
(
g

g′
T

)) d
2

δ(t′)ψ
(
g′

g
t′, x, b

)

+ δ(d)(x− x0)Ṽ (b)δ
(

t′ − g

g′
T

)

ψ∗
(
g′

g
t, x, b

)]

.

(3.25)

It is clear from the above equation that, as predicted, the old coupling
constant g enters in current term Scurr,δ(g′, gg′T ) only inside the scaling factor
g
g′ of the time T . There is no other explicit dependence on g in the action. In
fact, if we put J = J∗ = 0 it is easy to realize that the old coupling constant
g has been already replaced by g′ in the free action of (3.21) and in the
interaction term of (3.22).

Of course we have to remember that, after the time rescaling of (3.20),
g is still appearing inside the fields, because their dependence on the time
variable is of the form ψ∗ = ψ∗(g

′
g t

′, x, b) and ψ = ψ(g
′
g t

′, x, b). Analogous
equations are valid for δξ∗ and δξ. However, since we have to perform a
path integration over all field configurations, this implicit presence of g may
be easily eliminated inside the path integral by the change of variables:

ψ∗′(t′, x, b) = ψ

(
g′

g
t′, x, b

)

, ψ∗′(t′, x, b) = ψ

(
g′

g
t′, x, b

)

, (3.26)

ξ∗′(t′, x, b) = ξ

(
g′

g
t′, x, b

)

, ξ∗′(t′, x, b) = ξ

(
g′

g
t′, x, b

)

. (3.27)

Summarizing, we are able to write the following identity:

Zg(T ) = Zg′

(
g

g′
T

)

, (3.28)

where

Zg′

(
g

g′
T

)

=
∫

Dψ∗′
∫

Dψ′
∫

D(δξ∗′)
∫

D(δξ′)e−iS0,δ(g′, g
g′ T )+Sint,δ(g′)

.

(3.29)
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The actions S0,δ(g′, gg′T ) and Sint,δ(g′) in (3.29) are given by

S0,δ

(

g′,
g

g′
T

)

=
∫
dt′dbddx

[

iψ∗′∂ψ′

∂t′
− g′∇ψ∗′ · ∇ψ′ + g′δξ∗′ · δξ′

−
(

4πig′
(
g

g′
T

)) d
2

δ(t′)ψ′(t′, x, b) + δ(d)(x− x0)Ṽ (b)δ

×
(

t′ − g

g′
T

)

ψ∗′(t′, x, b)
]

(3.30)

and

Sint,δ(g′) =
g′2

2

∫
ddxdbdtddx′db′dt′

×
[
bb′Gμν(x, x′)

(
∂μψ∗′(η)∂νψ∗′(η′)ψ′(η)ψ′(η′)

+ ∂μψ′(η)∂νψ′(η′)ψ∗′(η)ψ∗′(η′) − 2∂μψ∗′(η)∂νψ′(η′)ψ′(η)ψ∗′(η′)

+ 2∂μψ∗′(η)δξ∗′ν(η′)ψ′(η)ψ′(η′) − 2∂μψ∗′(η)δξ′ν(η′)ψ′(η)ψ∗′(η′)

− δξ∗′μ(η′)∂′νψ′(η)ψ′(η)ψ∗′(η′) + 2∂μψ′(η)δξ′ν(η′)ψ∗′(η)ψ∗′(η′)

+ δξ∗′μ(η)δξ′ν(η′)ψ′(η)ψ′(η′) + δξ′μ(η)δξ′ν(η′)ψ∗′(η)ψ∗′(η′)

− 2δξ∗′μ(η)δξ′ν(η′)ψ′(η)ψ∗′(η′)
)]
, (3.31)

where now η = (t, x, b) and η′ = (t′, x, b). As we see from (3.28) and (3.30)–
(3.31), the only left dependence on g is in the rescaled time g

g′T contained
in the current term. In the limit T −→ +∞, of course, g

g′∞ = ∞, i.e.,

Zg(+∞) = Zg′(+∞). (3.32)

Since by definition Zg(+∞) = Z, where Z is the partition function of (3.15),
we have shown that Z does not depend on the value of the parameter g. This
concludes our proof. �

4 Mean field approximation

In order to proceed, we treat the δξ∗, δξ fields in a mean field theory
approximation, i.e., assuming that the density of these fields exhibits only
little deviations from the average value. Exploiting the fact that only
the correlator 〈δξ∗μ(η)δξν(η′)〉 = δμν

g δ(η − η′) is different from zero, where
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δ(η − η′) = δ(x− x′)δ(b− b′)δ(t− t′), it is easy to check that the mean field
effective action is given by

SMF
δ = SMF

0,δ + SMF
int,δ (4.1)

with

SMF
0,δ =

∫
dd+2η

[

iψ∗∂ψ
∂t

− g∇ψ∗ · ∇ψ − ψJ∗ − ψ∗J
]

, (4.2)

and

SMF
int,δ =

g2

2

∫
dd+2ηdd+2η′bb′Gμν(x, x′)

[

(∂μψ∗(η)ψ(η) − ∂μψ(η)ψ∗(η))

× (
∂νψ∗(η′)ψ(η′) − ∂νψ(η′)ψ∗(η′)

) − 2
g
δμνδ(η − η′)ψ∗(η′)ψ(η)

]

.

(4.3)

The presence of the Dirac delta function in the last term requires the com-
putation of the propagator Gμν(x, x′) at coinciding points x = x′. Since
Gμν(x, x) is divergent when d > 1, we regularize this singularity using the
dimensional regularization. After a few computations one finds

Gμν(x, x) =
δμν

(4π)
d
2

mdd

2
Γ

(

−d
2

)

, (4.4)

where Γ(z) is the gamma function. In the casem = 0 in which the scalar field
φ becomes massless, Gμν(x, x) vanishes identically, so that the introduction
of counterterms is not necessary. For m 	= 0 and odd dimensions, the right-
hand side of (4.4) does not vanish, but it is regular and once again no
counterterms are needed. Singularities appear only when the scalar field is
massive and the number of dimensions is odd. For instance, if d = 2, we
obtain from (4.4)

Gμν(x, x) = −m
2

ε

δμν
2π

+ finite, ε = d− 2. (4.5)

This singularity gives rise in the action SMF
int,δ to the term gm2

2πε

∫
dd+2ηb2ψ∗(η)

ψ(η) that can be reabsorbed by adding a suitable mass counterterm for the
fields ψ∗, ψ in the free action SMF

0,δ .
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5 Conclusions

In this paper, we have considered a class of massive scalar field theories with
potentials of the kind given in (2.3). It has been shown that these theories,
which appear to be intractable with the usual techniques, see for instance the
potential in (2.4), can be casted in a form that resembles that of a standard
field theory. Indeed, the partition function defined in (3.15)–(3.17) is that
of an usual complex scalar field theory coupled to the vector fields δξ∗, δξ.
We have treated here only the partition function of the scalar fields φ, but it
is not difficult to extend our result also to their generating functional. The
only difference is that in this case one should add to the current K(x) of
(3.5) also the external current of the fields φ.

Of course, given the complexity of the original field theories discussed
here, one cannot expect that they become exactly solvable after the map-
ping explained in Section 2. However, if the potential V (φ(x) − φ(x0)) is
small, for instance because it is multiplied by an overall small constant k,
then perturbation theory may be attempted. In fact, the Fourier transform
Ṽ (b) of that potential, which is small too, is only present in the current
J(η), see (2.8). For this reason, the terms of nth order in the perturba-
tive expansion in the coupling constant k simply coincides with the power
n of the currents J(η1) · · ·J(ηn) in the series of (3.18). This perturbative
strategy was clearly not possible in the starting partition function of the
scalar fields of (2.1), because in the potential V (φ(x) − φ(x0)) contains in
the most general case an infinite number of powers of φ, see the example of
(2.4). In a similar way, for large values of the coupling constant, one may
use a strong coupling expansion, as explained for instance in [9]. One should
instead resist the temptation of using as a perturbative parameter the ficti-
tious coupling constant g appearing which is present in the action Sint,δ. As
mentioned in the previous section, in fact, this parameter disappears from
the theory after performing the limit T −→ +∞. This is understandable,
because g was not present in the original scalar field theory.

We have also explored a nonperturbative approach, in which the orig-
inal scalar fields are integrated out exactly and a mean field approach is
applied to the resulting vector fields δξ∗, δξ. In doing that, one finds that
the theory is affected by singularities which are cured using the dimensional
regularization. The form of the counterterm which is necessary to absorb
these singularities has been computed. Let us note that this counterterm
does not exhaust all the renormalizability issues of the theory expressed
by the action SMF

δ given by (4.1)–(4.3). First of all, there are still diver-
gences that may come from the interactions of the fields ψ∗, ψ. More-
over, there are also the singularities connected with the presence of the
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potential V (φ(x) − φ(x0)). These divergences are hidden due to the fact
that, thanks to the methods of Section 2, it has been possible to con-
fine to the current J(t, x, b) of (2.8) all the dependencies on the potential.
This does not mean, however, that this interaction has now become harm-
less. To convince oneself that this is not the case, it is sufficient to give a
glance at the expansion of the partition function Z given in (3.18). There,
the convergence of the integrations over the variables b1, . . . , bn strongly
depends on the form of the potential Ṽ (b) that appears inside the currents
J(η1), . . . , J(ηn). It is impossible to formulate a renormalization theory like
that of usual field theories with polynomial interactions in the case of general
d-dimensional models such as those discussed in this work. For this reason,
in the future it will be necessary to identify particular examples of potentials
that are physically relevant and to investigate renormalization issues in those
special cases.

Appendix A Proof of the triviality of the determinant of the
operator A−1 of (2.14)

In this appendix, we show that the inverse determinant

det−1

[

i
∂

∂t
+ (∇ + ib∇φ)2)

]

=
∫

Dψ∗Dψ exp
{

−i
∫
dbdtddx

[

iψ∗∂ψ
∂t

− g|(∇ + ib∇φ)ψ|2
]}

(A.1)

is trivial. To this purpose, let us split the action appearing in the exponent
of the right-hand side of (A.1) into a free and an interaction parts:

S = −i
∫
dbdtddx

[

iψ∗∂ψ
∂t

− g|(∇ + ib∇φ)ψ|2
]

= S0 + SI, (A.2)

where

S0 =
∫
dbdtddx

[

iψ∗∂ψ
∂t

− g∇ψ∗∇ψ
]

(A.3)

and

SI =
∫
dbdtddx

[
igb∇φ(ψ∗∇ψ − ψ∇ψ∗) − gb2(∇φ)2|ψ|2] . (A.4)
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Figure 1: Propagator of the fields ψ∗, ψ.

Figure 2: Vertex diagrams corresponding to the action (A.4).

At the tree level the relevant Feynman diagrams of this theory are shown in
figures 1 and 2(a)–(c). The propagator of figure 1 is given by

〈ψ∗(t′, x′, b′)ψ(t, x, b)〉 = − iθ(t− t′)

|4πig(t− t′)| d
2

exp
[
i(x− x′)2

4g(t− t′)

]

δ(b− b′). (A.5)

We may now expand the right-hand side of (A.1) in powers of g. Apart
from the zeroth order, all Feynman diagrams are closed one loop diagrams
in which the internal legs propagate the fields ψ∗, ψ, while the external legs
propagate the field φ. At order n with respect to g these Feynman diagrams
are generated from the contraction of pairs of the ψ∗, ψ fields inside products
of n vertices which, in their general form, look as follows:

ΓI,n =
∫
db1dt1d

dx1 · · ·
∫
dbndtnd

dxn · · · igbi∂μφ(xi)ψ∗(ti, xi, bi)∂μ

× ψ(ti, xi, bi) · · · · · · (−i)gbj∂νφ(xj)ψ(tj , xj , bj)∂νψ∗(tj , xj , bj)

· · · (−g)b2k(∇φ(xk))2|ψ(tk, xk, bk)|2 · · · (A.6)

Here the indices i, j, k are such that 1 ≤ i < j < k ≤ n. The number I of
external legs depends on the number of vertices of the type of figure 2(c)
which appear in ΓI,n and ranges within the interval

n ≤ I ≤ 2n. (A.7)

A graphical representation of the connected diagrams which are associated
with ΓI,n is given in figure 3. At this point we note that the pairs of fields
ψ∗, ψ in ΓI,n may be contracted in a (n− 1)! number of ways. Thus, ΓI,n
gives rise to a sum of (n− 1)! Feynman diagrams. Let ΓI,n,σ be one of
these diagrams. σ denotes an arbitrary permutation acting on the set of
(n− 1) indices {2, 3, . . . , n}. The expression of ΓI,n,σ may be obtained by
contracting the field ψ∗ with the field ψ of the σ(2)th vertex. Next, the
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Figure 3: Graphical representation of a general connected diagram coming
out from the contraction of the ψ∗, ψ fields inside the product of vertices
ΓI,n of (A.6).

field ψ∗ of the σ(2)th vertex will be contracted with the field ψ of the
σ(3)th vertex and so on. σ(i), i = 1, . . . , n denotes here the result of the
permutation of the ith index. Since there are (n− 1)! permutations σ of
this kind, it is easy to check that in this way it is possible to compute all the
(n− 1)! contributions to ΓI,n. Let us check now more in details the structure
of each diagram ΓI,n,σ. Due to the particular form of the propagator (A.5),
ΓI,n,σ will be proportional to the following product of Heaviside θ-functions:
θ(t1 − tσ(2))θ(tσ(2) − tσ(3)) · · · θ(tσ(n) − t1). The above product of Heaviside
θ-functions enforces the condition

t1 > tσ(2) > tσ(3) > · · · > tσ(n) > t1. (A.8)

Clearly, this sequence of inequalities is impossible. For this reason, the
products of Heaviside θ-functions vanishes identically. As a consequence,
the determinant of (A.1) is trivial, i.e.,

det
[

i
∂

∂t
+ (∇ + ib∇φ)2)

]

= 1, (A.9)

because all its contributions vanish identically apart from the case n = 0.
This result could be expected from the fact that the field theory given in
(A.1) is a particular case of a nonrelativistic complex scalar field theory. It
is indeed well known that these nonrelativistic field theory give rise to trivial
determinants [5]. �
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