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Abstract

We show that certain superpotential and Kähler potential couplings
of N = 1 supersymmetric compactifications with branes or bundles can
be computed from Hodge theory and mirror symmetry. This applies to
F-theory on a Calabi–Yau four-fold and three-fold compactifications of
type II and heterotic strings with branes. The heterotic case includes a
class of bundles on elliptic manifolds constructed by Friedmann, Morgan
and Witten. Mirror symmetry of the four-fold computes non-perturbative
corrections to mirror symmetry on the three-folds, including D-instanton
corrections. We also propose a physical interpretation for the observation
by Warner that relates the deformation spaces of certain matrix factoriza-
tions and the periods of non-compact four-folds that are ALE fibrations.
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1 Introduction

Let ZB be a Calabi–Yau (CY) three-fold and E a holomorphic bundle or
sheaf on it. In a certain decoupling limit, where one neglects the backre-
action of the full string theory to the degrees of freedom of the bundle, E
can describe either a (sub-)bundle of a heterotic string compactification on
ZB, a heterotic five-brane or a B-type brane in a type II compactification
on ZB. In the latter case we will also be interested in the geometry (ZA, L)
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associated to (ZB, E) by open string mirror symmetry, which consists of an
A-type brane L on the mirror three-fold ZA of ZB. The contribution of
the bundle to the space–time superpotential of a string compactification on
ZB is, in a certain approximation, given by the holomorphic Chern–Simons
functional for both the heterotic bundle [1] and the B-type brane [2]

WCS =
∫

ZB

Ω ∧ tr
(

1
2A ∧ ∂̄A + 1

3A ∧A ∧A
)
. (1.1)

Here Ω is the holomorphic (3,0) form on ZB and A is the (0, 1) part of
the connection on E. There is another superpotential proportional to the
periods of Ω, which, again in a certain approximation, is of the form

WG =
∫

ZB

Ω ∧G = (NΣ + SN̂Σ)
∫

γΣ

Ω, γΣ ∈ H3(ZB,Z). (1.2)

In the type II compactification on ZB, WG is the superpotential induced by
NS and RR three-form fluxes [3], and S the complex dilaton. In heterotic
compactifications, WG will be related below to the superpotential of a com-
pactification on non-Kähler manifolds with H-flux [4]. Depending on the
type of string theory and its compactification, the combined superpotential

W = WCS + WG (1.3)

may be exact or subject to various quantum corrections.

The purpose of this note is to show how the methods of mirror symmetry
of [5–7] when combined with Hodge theory can be used to compute effective
couplings of these heterotic/type II compactifications, including the super-
potential and the Kähler potential. Hodge theory enters in two steps: A
“classical” theory on the CY three-fold, which computes the integrals on
the three-fold in (1.1), (1.2), and a “quantum” deformation of these three-
fold data defined by the (classical) Hodge variation on a “dual” CY four-fold.
Physicswise, the four-fold geometry represents the compactification mani-
fold of a dual F-theory or type IIA compactification. We will argue that
the four-fold result agrees with the three-fold result when it should, but
gives more general results, including the case when the heterotic three-fold
is not CY.

The first step on the three-fold can be realized by computing the Hodge
variation on a relative cohomology group H3(ZB, D), which captures the
brane/bundle data in addition to the geometry of ZB. This was shown pre-
viously in the context of B-type branes in [8–11] and we generalize this rela-
tion here to heterotic five-branes and general bundles, including the bundles
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on elliptically fibered three-fold ZB constructed by Friedman et al. [12] (see
also [13]). The “classical” Hodge theory on the three-fold gives an explicit
evaluation of the three-fold integrals in (1.1), (1.2) and a preferred choice
of physical coordinates, which leads to the prediction of world-sheet correc-
tions from sphere and disc instantons of the appropriately defined mirror
theories.

The second step involves Hodge theory and mirror symmetry on a mirror
pair of dual CY four-folds. Four-folds enter the stage in two seemingly
different ways, in remarkable parallel with the two appearances of (1.1) in
heterotic and type II compactifications on ZB. Firstly, through the duality
of heterotic strings on elliptically fibered CY three-fold ZB to F-theory on a
CY four-fold XB [14,15]. This duality motivated the systematic construction
of “heterotic” bundles on elliptically fibered ZB in [12, 13]. Secondly, four-
folds appear in the computation of brane superpotentials of type II strings
via an “open–closed string duality”, which associates a non-compact four-
fold geometry Xnc

B to a B-type brane on a three-fold ZB [10, 16, 17]. In
this approach, the superpotential (1.1) of the brane compactification on
(ZB, E) is computed from the periods of the holomorphic (4, 0) form on
the dual four-fold Xnc

B . Moreover, mirror symmetry of four-folds relates the
sphere instanton corrected periods on the mirror four-fold Xnc

A of Xnc
B to the

disc instanton corrected superpotential of the compactification with A-type
brane L on the mirror manifold ZA of ZB. This surprising relation between
mirror symmetry of the four-folds Xnc

A and Xnc
B and open string mirror

symmetry of the brane geometries (ZB, E) and (ZA, L) has been tested in
various different contexts, see, e.g., [11, 18–20].

As we will argue below, these two four-fold strands are in fact connected
by a certain physical and geometrical limit, that relates open–closed duality
to heterotic/F-theory duality.1 In this limit part of the bundle degrees of
freedoms decouple (in a physical sense) from the remaining compactification
and the type II brane and the heterotic bundle are equalized. Geometrically,
this can be viewed as a local mirror limit in the open string sector of type II
strings or a local mirror limit for bundles considered in [22,23], respectively.
In this limit, the F-theory/type IIA superpotential on the dual four-fold
XB reduces to the “classical” type II/heterotic superpotential (1.3) on the
three-fold ZB, as has been observed previously in [11].

The result obtained from an F-theory/type IIA compactification on the
dual four-fold differs from the three-fold result away from the decoupling
limit. We assert that these deviations represent physical corrections to

1A related explanation of type II open–closed duality based on T-duality of five-branes
[21] has been recently given in [17].
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the dual type II/heterotic compactification from perturbative and instan-
ton effects and describe how Hodge theory and mirror symmetry on the
four-fold provides a powerful computational tool to determine these per-
turbative and non-perturbative contributions. Depending on the point of
view, the corrections computed by mirror symmetry of four-folds describe
world-sheet, D-brane, or space–time instanton effects in the dual type II and
heterotic compactifications.

Finally, we discuss the type II/heterotic duality in the context of non-
compact four-folds that arise as two-dimensional ALE fibrations. For a
particular choice of background fluxes these models admit a description in
terms of certain Kazama–Suzuki coset models [24, 25], whose deformation
spaces coincide with the deformation spaces of matrix factorizations of N =
2 minimal models [26]. We give a physical interpretation of this relation
via type II/heterotic duality and we propose that this correspondence holds
even more generally.

The organization of this note is as follows. In Section 2 we discuss the
application of Hogde theory to the evaluation of the Chern–Simons func-
tional (1.1) with a focus on bundles on elliptic CY three-fold constructed by
Friedman et al. [12]. For a perturbative bundle with structure group SU(N)
the superpotential captures obstructions to the deformation of the spectral
cover Σ imposed by a certain choice of line bundle. We discuss also the case
of a general structure group G and heterotic five-branes. In Section 3 we
describe the decoupling limit in the type II and heterotic compactifications
and use it to relate open–closed string duality to F-theory/heterotic dual-
ity, giving an explicit map between type II and heterotic compactifications.
We discuss the relevant string dualities and the meaning of the quantum
corrections in the dual theories. In Section 4, we argue, that the F-theory
superpotential on the four-fold captures more generally the heterotic super-
potential for a bundle compactification on a generalized CY manifold and
describe the map from the F-theory superpotential to the superpotential
for heterotic bundles and heterotic five-branes. In Section 5 we extend the
previous discussion to the Kähler potential and the twisted superpotential
by studying the effective supergravity for the two-dimensional compacti-
fication of type IIA on the four-fold and heterotic strings on T 2 × ZB. In
Section 6 we start to demonstrate our techniques for an example of anN = 1
supersymmetric bundle compactification on the quintic. We discuss the per-
turbative heterotic theory, the general structure of the quantum corrections
and give explicit results for the example. In Section 7 we consider other
interesting examples, including heterotic five-branes wrapping a curve in
the base of the heterotic CY manifold and bundles with non-trivial Jaco-
bians. In Section 8 we connect via heterotic/type II duality the deformation
spaces of certain matrix factorizations to the deformation spaces of type II on
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non-compact four-folds that are ALE fibrations with fluxes. Section 9 con-
tains our conclusions. In the appendix we present further technical details
on the computations for the toric hypersurface examples analyzed in the
main text.

2 Hodge theoretic data and N = 1 superpotentials

2.1 Hodge variations in open–closed duality

In the approach of [8, 9, 11], the superpotential of B-type brane compacti-
fications with five-brane charge on a CY ZB is computed from the mixed
Hodge variation on a certain relative cohomology group H3(ZB, D). The
superpotential is a linear combination of the period integrals of the relative
(3,0) form Ω ∈ H3,0(ZB, D)

WII(ZB, D) =
∑

γΣ∈H3(ZB)

NΣ

∫
γΣ

Ω(3,0) +
∑

γΣ∈H3(ZB,D)
D⊃ ∂γΣ �=0

N̂Σ

∫
γΣ

Ω(3,0). (2.1)

The first term is the RR “flux” superpotential [3, 24] on three-cycles γΣ ∈
H3(ZB) and the second term an off-shell version of the brane superpotential
[7, 27, 28] defined on three-chains γΣ with non-empty boundary. Note that
the superpotential WII(ZB, D) associated with the Hodge bundle does not
include the NS part of the type II flux potential.

The boundary ∂γΣ is required to lie in a hypersurface D ⊂ ZB, ∂γΣ ∈
H2(D). The moduli of the hypersurface D parametrize certain deformations
of the brane configuration (ZB, E). Infinitesimally, the accessible deforma-
tions are described by elements in H2,1(ZB, D) and come in two varieties,

φa ∈ H2,1(ZB), φ̂α ∈ H2,0(D). (2.2)

Here H2,1(ZB) captures the deformations of the complex structure of the
three-fold ZB and H2,0(D) the deformations of the holomorphic hypersurface
i : D ↪→ ZB.

Mirror symmetry maps the B-type brane configuration (ZB, E) to an
A-type brane configuration (ZA, L) on the mirror three-fold ZA. The flat
Gauss–Manin connection on H3(ZB, D) determines the mirror map z(t)
between the complex structure moduli z of (ZB, E) and the Kähler moduli t
of (ZA, L). Inserting the mirror map into (2.1) then gives the disc instanton
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corrected superpotential of the A-type geometry near a suitable large volume
point of (ZA, L) [11].

The relative cohomology problem and open string mirror symmetry is
related to absolute cohomology and mirror symmetry of CY four-folds by
a certain open–closed string duality [10, 16, 17]. The constructions of these
papers associate to a B-type brane compactification (ZB, E) and its mirror
(ZA, L) a pair of non-compact mirror four-folds (Xnc

A , Xnc
B ), such that the

“flux” superpotential of [24] agrees with the combined “flux” and brane
superpotential (2.1) of the three-fold compactification,

W (Xnc
B ) =

∑
γΣ∈H4(Xnc

B )

NΣ

∫
γΣ

Ω(4,0) = WII(ZB, D), (2.3)

for appropriate choice of coefficients NΣ, N̂Σ, NΣ. Open-closed string duality
thus links the pure Hodge variation on H4

hor(X
nc
B ) to the mixed Hodge vari-

ation on the relative cohomology space H3(ZB, D) � H3(ZB)⊕H2
var(D).

The relation between the pure Hodge spaces appearing in this relation is
schematically

H3,0(ZB) δ �� H2,1(ZB) δ �� H1,2(ZB) δ �� H0,3(ZB)

H4,0(Xnc
B ) δ ��

α

��

H3,1(Xnc
B ) δ ��

α

��

β

��

H2,2
hor(X

nc
B )

δ ��

α

��

β

��

H1,3(Xnc
B ) δ ��

α

��

β

��

H0,4(Xnc
B )

H2,0(D) δ �� H1,1
var(D)

δ �� H0,2(D)
(2.4)

Here δ denotes universally a variation in the complex structure of the respec-
tive geometries, represented by the Gauss–Manin derivative and projecting
onto pure pieces.

The two maps α, β : H4
hor(X

nc
B )→ H3(ZB, D) identify an element of

H4
hor(X

nc
B ) either with an element in H3(ZB) of the closed string state space

or an element in H2(D) associated with the brane geometry i : D ↪→ ZB.
These maps can be explicitly realized on the level of four-fold period integrals
by integrating out certain directions of the four-cycles ΓΣ ∈ H4(Xnc

B ) [16,17].
The map α : H4

hor(X
nc
B )→ H3(ZB) can be represented as an integration

over a particular S1 in Xnc
B and shifts the Hodge degree by (−1, 0). The

other class of contours produces a delta function on the hypersurface D as
in [5], and leads to the map β : H4

hor(X
nc
B )→ H2(D) that shifts by (−1,−1).
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Specifically, the infinitesimal deformations of the complex structure of Xnc
B

split into the closed and open string deformations (2.2) as

H3,1(Xnc
B ) � H2,1(ZB)⊕H2,0(D).

The above deformation problem is a priori unobstructed, but becomes
obstructed by the superpotential (2.3) upon adding the appropriate “flux.”
In the brane geometry (ZB, E) this can be realized by a brane flux, adding
a D5-charge γ̃ ∈ H2(D) [11, 17, 19]. A non-trivial obstruction in the open
string direction arises for the choice

γ̃ ∈ H2
var(D) = coker

(
H2(ZB) i∗→ H2(D)

)
. (2.5)

Restricting the open string moduli to the subspace where the class γ̃ remains
of type (1,1) leads to a superpotential for the closed string moduli as in
[29,30]. Note also that a class γ̃ in the image of i∗ is always of type (1,1) and
thus does not impose a restriction on the moduli of D, as the variation δWII

of equation (2.1) is automatically zero for a holomorphic boundary ∂ΓΣ.

2.2 Hodge variations for heterotic superpotentials

In the following we consider a similar Hodge theoretic approach to super-
potentials of “heterotic” bundles on elliptically fibered CY manifolds con-
structed in [12,13].

In the framework Friedmann, Morgan and Witten, an SU(n) bundle E on
an elliptically fibered CY three-fold πZB

: ZB → B with section σ : B → ZB

is described in terms of a spectral cover Σ, which is an n-fold cover πΣ :
Σ→ B, and certain twisting data specifying a line bundle on Σ. Fixing the
projection of the second Chern class of E to the base B, the latter comprise
a continuous part related to the Jacobian of Σ and a discrete part from
elements

γ ∈ ker
(
H1,1(Σ)

πΣ∗−→ H1,1(B)
)
. (2.6)

In the duality to F-theory on a four-fold XB, the elements of the Hodge
spaces of the spectral cover are related to those on XB schematically as
[12, 13,31]:

Σ XB

H2,0 H 3,1

H1,1 H2,2

H1,0 H2,1
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The first line identifies the infinitesimal deformations of Σ with infinites-
imal deformations of the four-fold. The second relation relates the discrete
data described by the class γ with four-form flux in the F-theory compact-
ification on XB. The last relation reflects the isomorphism of the Jacobian
of Σ and the corresponding Jacobian in XB related to it by duality (see
also [32]). Note that the heterotic/F-theory relation between H4(XB) and
H2(Σ) is formally given by the same (−1,−1) shift in Hodge degree as in
the map β in the open–closed duality relation (2.4). As argued below, this
similarity is not accidental, but a reflection of the fact, that the heterotic
and type II data can be related by the afore mentioned decoupling limit.

Again the deformations of the spectral cover Σ in H2,0(Σ) are unob-
structed if γ is the “generic” (1, 1) class discussed in [12].2 Consider instead
a class γ that is of type (1, 1) only on a subspace ẑ = 0 of the deformation
space. Twisting by γ then should obstruct the deformations of Σ in the
direction ẑ 	= 0, which destroy the property γ ∈ H1,1(Σ).

We propose that the heterotic superpotential describing this obstruction
is captured by the chain integral

Whet(ZB, Σ, γ) =
∫

Γ
Ω3,0, (2.7)

for Γ ∈ H3(ZB, Σ) a three-chain with non-zero boundary on Σ. The dual
space H3(ZB, Σ) � H3(ZB)⊕H2

var(Σ) is the relative cohomology group
defined by the spectral cover Σ with H2

var(Σ) the mid-dimensional horizon-
tal Hodge cohomology of Σ. Moreover, the boundary two-cycle C = ∂Γ ⊂ Σ
is the cycle Poincaré dual to γ. The chain integral can then be computed
from the Hodge variation on the relative cohomology group, as has been
used in [8, 9, 11] to compute brane superpotentials in type II strings. As
a first check on the relevance of the mixed Hodge variation on H3(ZB, Σ)
for the heterotic theory, note that the deformation space H2,0(Σ) is indeed
captured by the Hodge space H2,1(ZB, Σ), as in the type II case.

In the type II context, the mixed Hodge variation gives more physical
information than just the superpotential, specifically appropriate coordi-
nates on the deformation space, which lead to the interpretation of the
superpotential as a disc instanton sum in the mirror A model. The physical
interpretation of the corrections in the heterotic theory will be discussed
below.

2However, the existence of this class is a consequence of insisting on a section for
πΣ : Σ → B.
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Expression (2.7) of the heterotic string can be argued for by relating it to
the holomorphic Chern–Simons functional (1.1), which is the holomorphic
superpotential for the bundle moduli in the heterotic string [1]. Before
turning to the derivation for a genuine CY three-fold of holonomy SU(3),
it is instructive to reflect on the argument at the hand of the simpler N =
2 supersymmetric case of dual compactifications of F-theory on K3×K3
and heterotic string on T 2 ×K3. The perturbative F -term superpotential
associated with a heterotic flux on K3 in the ith U(1) factor is [33, 34]

WN=2
het = Ai

∫
C

ω2,0, (2.8)

where Ai is the Wilson line on T 2, C the cycle Poincaré dual to the flux and
ω2,0 the holomorphic (2, 0) form on the heterotic K3. In this simple case,
the spectral cover is just points on the dual T 2 times K3, and the chain
integral (2.7) over the holomorphic (3, 0) form dz ∧ ω2,0 becomes

Whet =
∫

Γ
Ω =

∫ pi

0
dz

∫
C

ω2,0 = Ai

∫
C

ω2,0, (2.9)

reproducing (2.8). Here we used that the holomorphic Wilson lines with
periods Ai ∼ Ai + 1 ∼ Ai + τ appearing in (2.8) are defined by the Abel–
Jacobi map on T 2. Furthermore, pi denotes the associated point in the
Jacobian. In the N = 1 case, the points pi vary over the base and the
bounding two-cycles are not of the simple form (0, pi)× C. An important
consequence is that holomorphy of C gets linked to the deformations Ai.3

There is also a simple generalization of this N = 2 superpotential to the
case, where the heterotic vacuum contains heterotic five-branes [36], and
this is also true for the N = 1 supersymmetric case studied below. The
five-brane superpotential is in fact the most straightforward part starting
from the results on type II brane superpotentials of [8, 9, 11], as the brane
deformations of the type II brane map to the brane deformations of the
heterotic five-brane in a simple way. The type II/heterotic map providing
this identification and explicit examples will be discussed later on.

2.3 Holomorphic Chern–Simons functional for heterotic bundles

The holomorphic Chern–Simons functional is (a projection of) the transgres-
sion of the Chern–Weil representation of the algebraic second Chern class

3See [35] for a similar discussion.
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for a supersymmetric vector bundle configuration. Thus, in order to estab-
lish for a supersymmetric heterotic bundle configuration that (1.1) agrees
with equation (2.7) on-shell, we need to show that the boundary two-cycle
C = ∂Γ of the three-chain Γ in equation (2.7) is given by a curve repre-
senting the algebraic second Chern class of the holomorphic heterotic vector
bundle. The latter is encoded in the zero and pole structure of a global
meromorphic section sE : Z → E of the supersymmetric holomorphic het-
erotic bundle E [37]. This is described in [38] for a general SU(2) bundle
and in [30] for a bundle associated with a matrix factorization.

To apply this reasoning to the SU(N) bundles of [12], we need to construct
an explicit representative for the algebraic Chern class.4 As explained
in [12], the spectral cover Σ together with the class γ of equation (2.6) defines
the SU(n) bundle E over the elliptically fibered three-fold πZ : Z → B by

E = π2∗R, R = PB ⊗ S, R → Σ×B Z.

Here π2 is the projection to the second factor of the fiberwise product
Σ×B Z of the three-fold Z and of the spectral cover Σ over the common
base B. PB is the restriction of the Poincaré bundle of the product Z ×B Z
to Σ×B Z, while S → Σ denotes the line bundle over the spectral cover Σ,
which is given by5

S = N ⊗Lγ .

The bundle N ensures that the first Chern class c1(E) of the SU(n) bundle
vanishes and its explicit form is thoroughly analyzed in [12]. The holomor-
phic line bundle Lγ with c1(Lγ) = γ governs the twisting associated to the
class γ in (2.6), and it is responsible for the discussed obstructions to the
deformations of the spectral cover Σ. Note that, due to the property (2.6),
the line bundle Lγ does not further modify the first Chern class c1(E) [12].

In order to construct a section sE of the SU(n)-bundle, we need to push-
forward a global (meromorphic) section sR = sP · sS of the line bundle R,
which in turn is the product of a section of the Poincaré bundle PB and the
line bundle S. The Poincaré bundle is given by PB = O(Δ− Σ× σ)⊗KB,
where Δ is (the restriction of) the diagonal divisor in Z ×B Z, KB is the
canonical bundle of the base (pulled back to Σ×B Z) and σ : B → Z the
section of the elliptic fibration Z. Therefore the section sP = sK · sF can
be chosen to be the product of the section sK of the canonical bundle of the

4To avoid cluttering of notation, the heterotic manifold ZB is denoted simply by Z in
the following argument.

5For ease of notation its pull-back to Σ ×B Z is also denoted by the same symbol S.
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base B and the section sF , which has a (simple) zero set along the diagonal
divisor Δ and a (simple) pole set along the divisor Σ×B σ. Finally, the zero
set/pole set of the section sS is induced from the (algebraic) first Chern
class c1(S) of the line bundle S over the spectral cover Σ. Here we are
in particular interested in the contribution from the line bundle Lγ , whose
global (meromorphic) section extended to the fiber-product space Σ×B Z
is denoted by sγ .

For an SU(n)-bundle the projection map π2 is an n-fold branched cover
of the three-fold Z, and therefore in a open neighborhood U ⊂ B of the base
the push-forward of the section sR yields

sE = π2∗sR = sK · (s1
F · s1

S , s2
F · s2

S , . . . , sn
F · sn

S). (2.10)

As the section sK originates from the canonical bundle over the base, it
appears as an overall pre-factor of the bundle section sE , while the entries si

F

and si
S arise from the n sheets of the n-fold branched cover. The entries si

F

restrict on the elliptic fiber to a section of ⊕n
i=1(O(pi)⊗O(0)−1) that have

a simple zero at pi and a simple pole at 0. Here 0 denotes the distinguished
point corresponding to the section σ : B → Z and

∑
i pi = 0 for SU(n).6

The n entries si
S arise again from the section sS on the n different sheets.

Since the section sS is induced from a line bundle over the spectral cover,
the zeros/poles of the sections si

S correspond to co-dimension one sub-spaces
on the base.

Now we are ready to determine the algebraic Chern classes of the SU(n)-
bundle E from the global section (2.10). By construction the first topological
Chern class is trivial, which implies that also the first algebraic Chern class
vanishes since the Abel–Jacobi map is trivial for the simply-connected CY
three-folds discussed here. The second algebraic Chern class is determined
by the “transverse zero/pole sets” of the section sE , which correspond to
the co-dimension two cycles of the mutual zero/pole sets of distinct entries
si
E and sj

E , i 	= j.

Since si
E = si

F · si
S , this computation exhibits c2(E) as a sum of three con-

tributions: The joint vanishing of si
F and sj

F is empty since pi 	= pj gener-
ically. The joint vanishing of si

S and sj
S is a sum of fibers, which we may

6At branch points of the spectral cover (at least) two points pi and pj , i �= j, coincide,
and the restriction of the bundle E to the elliptic fiber becomes a sum of n − 2 line
bundles plus a rank two bundle, which is a non-trivial extension of two line bundles [12].
However, due to the splitting principle the second algebraic Chern class is insensitive to
these non-trivial extension, and we can simply work with the direct sum of n line bundles.
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neglect since, moving in a rational family, they do not contribute to the
superpotential.7

Equivalently, we may use the relation ch2(E) = 1
2c1(E)2 − c2(E) between

the second Chern class and the second Chern character ch2(E), which thanks
to the vanishing of c1 reduces to ch2(E) = −c2(E), to compute c2(E) from
the transverse zero/pole sets of the local sections sk

F and sk
S of the same

entry k. This will more directly lead to the desired boundary two-cycle
C = ∂Γ. (Again, we may neglect the self-intersections of sk

F and sk
S .)

We focus now on the contribution c2(Eγ) to the second algebraic Chern
class, which is associated to the intersection of the zero/pole sets of the
local sections sk

γ and the local sections sk
F for k = 1, . . . , n. As argued the

obtained divisor is rational equivalent to the (negative) boundary two-cycle
C arising form the Poincaré dual of the two-form γ on the spectral cover Σ,
and we obtain for the second algebraic Chern class

c2(E) = c2(Eγ) + c2(V ), c2(Eγ) = −[C], (2.11)

where we denote by [C] the cycle class, which arises from embedding the
two-cycle C of the spectral cover Σ into the CY three-fold Z. Due to the
property (2.6) the curve associated to c2(Eγ) is (up to a minus sign) rational
equivalent to the boundary of the same three-chain Γ appearing in equa-
tion (2.7). The other piece c2(V ), which is (locally) independent of the
analyzed deformations of the spectral cover, is discussed in detail in [12].
In general, it gives rise to a non-trivial second topological Chern class. In
a globally consistent heterotic string compactification this contribution is
compensated by the second topological Chern class of the tangent bundle
as dictated by the anomaly equations of the heterotic string.8

Thus, by reproducing the three-chain Γ from the second algebraic Chern
class of the holomorphic SU(n) bundles, the holomorphic Chern–Simons
functional is demonstrated to be agreement with the holomorphic superpo-
tential (2.7). Analogously to the non-supersymmetric off-shell deformations
of branes in type II compactifications [11, 17], we propose that the corre-
spondence between the superpotential (2.7) and the Chern–Simons func-
tional even persists along deformations of the spectral cover, which yield
non-supersymmetric SU(n) bundle configurations.

7An equivalent way to see this is to note that five-branes wrapped on the fiber on the
elliptic threefold map under heterotic/F-theory duality to mobile D3-branes which clearly
have no superpotential.

8In generalized CY compactifications of the heterotic string additional contributions
enter into the anomaly equation due to non-trivial background fluxes and the modified
generalized geometry [4].
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To illustrate the presented construction, we briefly return to the N = 2
compactification of the heterotic string on T 2 ×K3. For this example
the spectral cover of an SU(n) bundle is a disjoint union of n K3 sur-
faces

∐n
i=1{pi} ×K3 embedded into T 2 ×K3. A class γ fulfilling the prop-

erty (2.6) can be thought of as a non-trivial (1,1)-form ωγ , which appears
in the component pi ×K3 and pj ×K3, i 	= j, with opposite signs. Then
the Poincaré dual curve C of γ embedded into T 2 ×K3 is the boundary of
the three-chain Γ = (pi, pj)× C, where (pi, pj) denotes the one-chain on the
torus bounded by the points pi and pj . The resulting chain integral over
dz ∧ ω2,0 exhibits the same structure as the naive equation (2.8).

2.4 Chern–Simons versus F-theory/heterotic duality

In the next section we will consider a dual F-theory compactification on a
four-fold and argue that mirror symmetry of the four-fold computes inter-
esting quantum corrections to the Chern–Simons functional. Here we want
to motivate the following “classical” relation between the four-fold periods
and the Chern–Simons functional (1.1)

∫
XB

Ω4,0 ∧GA =
∫

Z
Ω3,0 ∧ tr

(
1
2
A ∧ ∂̄A +

1
3
A ∧A ∧A

)
+O(S−1, e2πiS).

(2.12)

In the above, XB is a CY four-fold which will support the F-theory com-
pactification dual to the heterotic compactification on the three-fold Z and
GA is a four-form “flux” related to the connection A of a bundle E → Z as
described below. Moreover S is a distinguished complex structure modulus
of the four-fold XB such that Im S →∞ imposes a so-called stable degener-
ation (s.d.) limit in the complex structure of XB. In this limit the four-fold
X degenerates into two components

X
Im S→∞−→ X� = X1 ∪Z X2,

intersecting over the elliptically fibered heterotic three-fold Z → B2 [12,13,
15, 39]. The two four-fold components Xi are also fibered over the same
base B2 and capture (part of) the bundle data of the two E8 factors of the
heterotic string, respectively.

The idea is now to view Z as a complex boundary within one of the
components Xi and to apply a theorem of [38], which relates the holomorphic
Chern–Simons functional on a three-fold Z to an integral of the Pontryagin
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class of a connection A on an extension E→ X ′ of the bundle E → Z defined
over a Fano four-fold X ′:

∫
X′

tr(F 0,2
A ∧ F 0,2

A ) ∧ s−1
1 = CS(Z, A). (2.13)

Here CS(Z, A) is short for the Chern–Simons functional on the r.h.s. of
(2.12) without the finite S corrections. Moreover s ∈ H0(K−1

X′ ) is a section
of the anti-canonical bundle of X ′ whose zero set defines the three-fold Z as
a ‘boundary’ of X ′.

Now it is straightforward to show, that the components Xi of the degen-
erate F-theory four-fold X� are Fano in the sense required by the theorem
and moreover that the heterotic CY three-fold Z can be defined as the
zero set of appropriate sections si of the anti-canonical bundles K−1

Xi
, as

required by the theorem. This will be discussed in more detail in Section 4.2,
where we explicitly discuss hypersurface representations for X� to match the
F-theory/heterotic deformation spaces.

The above line of argument then leads to a relation of the form (2.12),
provided one identifies the four-form flux GA with the Pontryagin class of
a gauge connection A on an extension E of the bundle over the component
X1. Up to terms of lower Hodge type, we shall have

GA|X1 ∼ tr(F 0,2
A ∧ F 0,2

A ). (2.14)

Note that this identification of the four-form flux is a non-trivial prediction
of the outlined duality.

The real challenge posed by relations (2.14), (2.12) is not the on-shell
relation, which has been argued for in a special case in the previous section,
but a proper off-shell extension of both sides. On the four-fold side, the
standard lore of string compactifications is to not fix the Hodge type of G,
but rather to view the flux superpotential as a potential on the moduli space
of the four-fold X, which fixes the moduli to the critical locus. The idea is,
that the periods

∫
X Ω4,0 on the l.h.s. of (2.12) have a well-defined meaning

as the section of a bundle over the unobstructed complex structure moduli
space MCS(X) of the four-fold before turning on a the flux; in particular
they define the Kähler metric on MCS(XB). In this way, viewing non-
zero G as a “perturbation” on top of an unobstructed moduli space, the
section W (XB) is considered as an off-shell potential for fields parametrizing
MCS(X). Although it is not clear, in general, under which conditions it is
valid to restrict the effective field theory to the fields parametrizingMCS(X)
and to interprete W (XB) as the relevant low-energy potential for the light
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fields, this working definition for an off-shell deformation space seems to
make sense in many situations.9

Relation (2.12) suggests that it should be possible to give a sensible
notion of a distinguished, finite-dimensional “off-shell moduli space” for
non-holomorphic bundles and to treat the obstruction induced by the Chern–
Simons superpotential as some sort of “perturbation” to an unobstructed
problem. This is also suggested by the recent success to compute off-shell
superpotentials for brane compactifications from open string mirror symme-
try. We plan to circle around these questions in the future.

3 Quantum corrected superpotentials in F-theory from
mirror symmetry of four-folds

In this section we show, that the various Hodge theoretic computations of
superpotentials in CY three-fold and four-fold compactifications discussed
above are in some cases linked together by a chain of dualities. The unifying
framework is the type IIA compactification on a pair (XA, XB) of compact
mirror CY four-folds and its F-theory limits. As will be argued below, mir-
ror symmetry of the four-folds computes interesting quantum corrections,
most notably D-instanton corrections to type II orientifolds and world-sheet
corrections to heterotic (0,2) compactifications, which are hard to compute
by other means at present. Another interesting connection is that to the het-
erotic superpotential for generalized CY manifold. The purpose of this sec-
tion is to study the general framework, which involves a somewhat involved
chain of dualities, while explicit examples are given in Sections 6 and 7.

3.1 Four-fold superpotentials: a first look at the quantum
corrections

For orientation it is useful to keep in mind the concrete structure of the
superpotential on compact four-folds that we want to study, as it links the
different dual theories discussed below at the level of effective supergrav-
ity. The compact four-fold XB for F-theory compactification is obtained
from the non-compact four-fold Xnc

B of open–closed in equation (2.3) by a
simple compactification [10, 11, 19], discussed in more detail later on. In a

9There is a considerable literature on this subject. We suggest [40] for a justification
in the context of type IIA flux compactifications on three-folds, [41] in the type IIB
context, [42] in non-geometric phases and [43] for a recent general discussion.



1450 HANS JOCKERS, PETER MAYR, AND JOHANNES WALCHER

certain decoupling limit defined in [11], the F-theory superpotential on XB

reproduces the type II superpotential (2.1) plus further terms:

WF(XB) =
∑

γΣ∈H4(XB)

NΣ

∫
γΣ

Ω(4,0)

Im S→∞=
∑

γΣ∈H3(ZB)

(NΣ + S MΣ)
∫

γΣ

Ω(3,0)

+
∑

γΣ∈H3(ZB,D)
∂γΣ �=0

N̂Σ

∫
γΣ

Ω(3,0) + · · · . (3.1)

The essential novelty in the superpotential of the compact four-fold, as com-
pared to the previous result (2.1), is the additional dependence on the new,
distinguished complex structure modulus S of the compactification XB of
Xnc

B . This modulus is identified in [11] with the decoupling limit

Im S ∼ 1/gs →∞. (3.2)

A similar weak coupling expansion of the four-fold Kähler potential leads
to a conjectural Kähler potential for the open–closed deformation space, as
will be discussed in more detail in Section 5.

Note that the flux terms ∼ S MΛ in the four-fold superpotential WF(XB)
correspond to NS fluxes in the type II string on ZB, which were missing in
(2.1).10 In addition there are subleading corrections for finite S, denoted by
the dots in (3.1), which include an infinite sum of exponentials with the char-
acteristic weight e−1/gs of D-instantons. Before studying these corrections
in detail, it is instructive to consider the dualities involved in the picture,
which leads to a somewhat surprising reinterpretation of the open–closed
duality of [10, 16].

3.2 N = 1 duality chain

The relevant duality chain for understanding the quantum corrections in
(3.1), and the relation to open–closed duality, relates the following N = 1

10This has been observed already earlier in a related context in [44], see also the dis-
cussion in Section 5 below.
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supersymmetric compactifications:11

type II OF
T 2 × ZB

∼ F-theory
K3× ZB

∼ heterotic
T 2 × ZB

∼ type IIA
XB/XA

∼ F-theory
XB × T 2

(3.3)

where ZB is a CY three-fold and (XA, XB) a mirror pair of four-folds which
is related to the heterotic compactification on ZB by type IIA/heterotic
duality. Here and in the following it is assumed that the three-fold ZB

and the four-fold XB have suitable elliptic fibrations, in addition to the K3
fibration of XB required by heterotic/type IIA duality [45]. This guarantees
the existence of the F-theory dual in the last step. For an appropriate choice
of bundle one can take the large volume of the T 2 factor to obtain the four-
dimensional duality between heterotic on ZB and F-theory on XB [15].

The remaining section will center around the identification of the limit
(3.2) in the various dual theories. Note that there are two different F-theory
compactifications involved in the duality chain (3.3), namely on the mani-
folds K3× ZB and XB × T 2, respectively. Identification (3.2) is associated
with the F-theory compactification on K3× ZB, or the type II orientifold
on T 2 × ZB, in the orientifold limit [46]. The decoupling limit describes
also a certain limit of the heterotic compactification on the same three-fold
ZB, which will be identified as a large fiber limit of the elliptic fibration ZB

below.

In order to make contact with the brane configuration (ZB, E) discussed
in Section 2.1, we combine the orientifold limit of F-theory with a particular
Fourier–Mukai transformation [47,48]

type II OF
Ť 2 × ŽB

∼ type II OF
T 2 × ZB

∼ F-theory
K3× ZB

.

The relevant Fourier–Mukai transformation is discussed in detail in [48].
Heuristically, it implements T duality in both directions of the torus T 2 to
the dual torus Ť 2 together with a fiberwise T duality in both directions of
the elliptic fibers of the three-fold ZB to the three-fold ŽB with dual elliptic
fibers. This operation does not change the complex structure of the bulk
geometry, but instead it transforms the brane configuration to the open–
closed geometry (ZB, E). These orientifold limits of F-theory, the type II

11In this note, for ease of notation and to emphasize the relation to four-dimensional
theories, N = 1 compactifications to two space–time dimensions also refer to low-energy
effective theories with four supercharges.
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and heterotic compactifications on ZB can be also connected as

type II OF
Ť 2 × ŽB

∼ type I
Ť 2 × ZB

∼ heterotic
T 2 × ZB

� (3.4)
type II OF
T 2 × ZB

.

Here S duality associates the type I to the heterotic string, T duality on
Ť 2 relates the type I compactification to the type II orientifold on T 2 ×
ZB, while the afore mentioned Fourier–Mukai transformation, which realizes
fiberwise T duality, applied to the three-fold ZB of the type I theory maps
to the type II orientifold on Ť 2 × ŽB [46–48].

3.3 The decoupling limit as a stable degeneration

The meaning of the decoupling limit in the mirror pair (XA, XB) of four-folds
and the dual heterotic string on ZB(×T 2) can be understood with the help
of the following two propositions obtained in the study of F-theory/heterotic
duality and mirror symmetry on toric four-folds in [23]. It is shown there
that12

(C1) If F-theory on the four-fold XB is dual to a heterotic compactification
on a three-fold ZB then the mirror four-fold XA is a fibration ZA →
XA → P1, where the generic fiber ZA is the three-fold mirror of ZB.

(C2) In the above situation, the large base limit in the Kähler moduli of the
fibration XA → P1 maps under mirror symmetry to a “stable degen-
eration” limit in the complex structure moduli of the mirror XB.

The first part applies, since the four-fold duals constructed in the context of
open–closed string duality have precisely the fibration structure required by
(C1); indeed the mirror pair (Xnc

A , Xnc
B ) of open–closed dual four-folds, dual

to an A-brane geometry (ZA, L) and its mirror B-brane geometry (ZB, E),
is constructed in [10, 16] as a fibration over the complex plane, where the
generic fiber is the CY three-fold ZA:

ZA
�� Xnc

A

π(L)

��

four−fold

mirror symmetry
�� Xnc

B
��

C

(3.5)

12For concreteness, we quote the result for F-theory on a four-fold, although it applies
more generally to n-folds, as will be also used below.
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The notation π(L) for the fiber projection is a reminder of the fact that the
data of the bundle L are encoded in the singularity of the central fiber as
described in detail in [10, 11, 16, 18]. The manifold Xnc

B may be defined as
the four-fold mirror of the fibration Xnc

A . Since the pair of compact four-
folds (XA, XB) is obtained by a simple compactification of the base to a
P1 [11,19], it follows that the F-theory four-fold XB has a mirror XA, which
is a three-fold fibration π : XA → P1 with generic fiber ZA. The multiple
fibration structures are summarized below:

F-theory
XB

∼ heterotic
ZB

closed
XA

∼ open
(ZA,L)

Elliptic fib.
T 2→XB↓

B3

T 2→ZB↓
B2

–

K3 fib.
K3→XB↓

B2
–

three-fold fib.
ZA→XA↓

P1

ZA→XA↓
P1

(3.6)

Here B3 and B2 denote the corresponding three- and two-dimensional base
spaces, where B2 is common to the F-theory manifold and the heterotic
dual. The crucial link is the three-fold fibration of XA, which is required by
both, F-theory/heterotic and open–closed duality. Claim (C1) then implies
that F-theory on XB has an open–closed dual interpretation as a B-type
brane on a three-fold ZB and an A-type brane on the mirror ZA. The
reverse conclusion, namely that an open–closed dual pair (XA, XB) also has
an F-theory/heterotic interpretation, requires the additional condition, that
XB is elliptic and K3 fibered. This leaves the possibility, that open–closed
duality holds for more general four-fold geometries than F-theory/heterotic
duality. For simplicity we impose in the following, that XB is elliptically
and K3 fibered, which implies that (C1) holds also in the reverse direction.

Part two of the proposition applies, since the decoupling limit Im S →∞
in the complex structure of XB was defined in [11] as the mirror of the large
base volume in the Kähler moduli of the fibration π : XA → P1. The image
of this limit under the mirror map in the complex structure of XB is a local
mirror limit in the sense of [22] and effectively imposes the s.d. limit of
XB studied in [12, 15, 39]. Under F-theory/heterotic duality, the s.d. limit
maps to a large fiber limit of the heterotic string compactification on the
elliptic fibration ZB and this is the sought for identification of limit (3.2) in
the heterotic string. The meaning as a physical decoupling limit of a sector
of the heterotic string can be understood from both, the world-sheet and
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the effective supergravity point of view, as will be discussed in Section 5.
Explicit examples for the relation between the hypersurface geometries XB

and ZB in the s.d. limit will be considered in Sections 6 and 7.

3.4 Open-closed duality as a limit of F-theory/heterotic duality

The relation in (3.3) between the type II orientifold on ZB and type IIA on
the four-folds (XB, XA) is similar as in the open–closed duality of [10,16,17].
These papers claim to compute the type II superpotential for a B-type brane
compactification on ZB with a given five-brane charge from the periods of
a dual (non-compact) four-fold Xnc

B . As explained in [11, 17, 19], this five-
brane charge can be generated by non-trivial fluxes on higher dimensional
branes. The only difference to the type II orientifold on T 2 × ZB appearing
in (3.3) is the extra T 2 compactification and the presence of seven-branes
wrapping ZB, which does not change the superpotential associated with the
five-brane charge.

In the decoupling limit Im S →∞, which sends XB to the non-compact
manifold Xnc

B , the “local” B-type brane with five-brane charge decouples
from the global orientifold compactification and we recover the type II result
WII(ZB) in equation (1.2).13 Note that in this limit there are two different
paths connecting the B-type orientifold to the non-compact open–closed
string dual Xnc

B . The first one goes via the open–closed string duality of
[10,16,17], while the second goes via F-theory/heterotic/type IIA duality of
equation (3.3).

type II OF
T 2×ZB

F/het/IIA

duality
��

gs→0

��

type IIA
XB

Im S→∞
��

local B-brane
(ZB ,E)

open-closed

duality
�� type IIA

Xnc
B

(3.7)

Commutativity of the diagram implies that for this special case, open–closed
duality of [10,16,17] coincides with heterotic/F-theory duality in the decou-
pling limit.

Note that the duality (3.4) maps a D3-brane wrapping a curve C in ZB

in the orientifold to a heterotic five-brane wrapping the same curve C in
the heterotic dual ZB. The heterotic five-brane can be locally viewed as an

13In the type II string without branes/orientifold, N̂Σ = 0 and the subleading correc-
tions to the superpotential would be absent [3].
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M-theory five-brane [49], which is in turn related to the type IIA five-brane
used in [17] to derive open–closed string duality from T-duality.

The original observation of open–closed string duality of [16] is that it
maps the disc instanton generated superpotential of the brane geometry
(ZA, L) (mirror to (ZB, E)) to the sphere instanton generated superpoten-
tial for the dual four-fold Xnc

A (mirror to Xnc
B ). At tree-level, this map is

term by term, that is it maps an individual Ooguri–Vafa invariant for a
given class β ∈ H2(ZA, L) to a Gromov–Witten invariant for a related class
β′ ∈ H2(Xnc

A ). This genus zero correspondence left the important question,
whether there is a full string duality, that extends this relation between the
three-fold and the four-fold data beyond the superpotential. From the above
diagram we see that there is at least one true string duality that reduces to
open–closed string duality of [10, 16, 17] at gs = 0 and extends it to a true
string duality: F-theory/heterotic duality!

3.5 Instanton corrections and mirror symmetry in F-theory

The above discussion has lead to the qualitative identification of the dual
interpretations of the expansion in (3.1) in terms of a weak coupling limit
of the type II orientifold, a large fiber volume of the heterotic string on the
elliptic fibration ZB, a stable degeneration limit of the F-theory four-fold
XB and a large base limit of the three-fold fibration XA → P1. We will now
argue that the quantum corrections computed by four-fold mirror symmetry
can be tentatively assigned to the two four-fold superpotentials in [24,50] as

W (XB) =
∫

XB

Ω ∧ Fhor ↔ D-1,D1/finite-fiber corrections

in type II OF/Het,

W̃ (XB) =
∫

XB

eB+iJ ∧ Fver ↔ D3/space–time instantons

in type II OF/Het. (3.8)

Here W (XB) is the four-fold superpotential of equation (3.1), while W̃ (XB)
is the twisted super-potential associated with the type IIA compactification
on XB.14 The latter computes also world-sheet instanton corrections to the
large volume limit of the type II/heterotic compactification.

The details of the argument are somewhat involved and may be skipped
on a first reading. It is again instructive to first consider the simpler case of

14See the discussion in Section 5 below.
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a closely related duality chain with N = 2 supersymmetry:

type II OF
T 2 × ZH

∼ F-theory
Z̃V × ZH

∼ heterotic
T 2 × ZH

∼ type IIA/IIB
XB/XA

∼ F-theory
XB × T 2

(3.9)

where Z̃V , ZH are two K3 manifolds and (XA, XB) denotes a mirror pair of
CY three-folds; differently then in (3.3), mirror symmetry of the three-folds
exchanges the IIA compactification on XB with a type IIB compactification
on XA. As before, we assume that the three-fold XB is elliptically fibered,
such that one can decompactify the T 2 of the heterotic string to obtain F-
theory in six dimensions. Note that the N = 1 duality chain (3.3) can be
heuristically thought of as a chain of dualities obtained by “fibering” (3.9)
over P1, so that some observations from the N = 2 supersymmetric case
will carry over to N = 1.

The two basic questions that we want to study in this simpler setup are the
meaning of mirror symmetry in F-theory and the identification of quantum
corrections computed by it. It will turn out that, under favorable conditions,
the distinguished modulus S has a mirror partner ρ and mirror symmetry of
the CY manifolds XA and XB exchanges the two weak coupling expansions
in Im S and Im ρ.

The quantum corrections to theN = 2 supersymmetric duality chain (3.9)
have a rich structure studied previously in [36, 51]. The F-theory superpo-
tential for the K3×K3 compactification, which arises in the effective N = 2
supergravity theory from certain gaugings in the hypermultiplet sector, can
be written as a bilinear in the period integrals on the two K3 factors [33,52]

WF,pert =
∑
I,Λ

(∫
ZH

ω2,0 ∧ μI

)
GIΛ

(∫
Z̃V

ω2,0 ∧ μ̃Λ

)
. (3.10)

Here GIΛ labels the four-form flux in F-theory, decomposed on a basis {μ̃Λ}
for H2

prim(Z̃V ) and {μI} for H2
prim(ZH) as G =

∑
I,Λ GIΛμI ∧ μ̃Λ.

The periods on ZH depend on N = 2 hyper multiplets and are mapped
under duality to the type IIA/F-theory compactification on XB to the three-
fold periods, by a similar relation as (3.1):

∫
XB

ω3,0 ∧ γI =
∫

ZH

ω2,0 ∧ μI +O(e2πiS , S−1). (3.11)

This equation describes, how the periods on the F-theory three-fold XB

defined on the basis γI ∈ H3(XB,Z) compute finite S corrections to the peri-
ods on the two-fold ZH of the dual type II compactification. As explained



EFFECTIVE COUPLINGS OF N = 1 1457

in the four-fold case, (C2) says that these are corrections to the s.d. limit
in the complex structure of XB.

Note that (3.10) is apparently symmetric in the periods of the two K3
factors. This is somewhat misleading, as the periods on Z̃V depend on
N = 2 vector multiplets.15 It was argued in [36], that there is also a similar
relation as (3.11) for the second period vector on Z̃V (3.11),

∫
XA

ω3,0 ∧ γ̃Λ =
∫

Z̃V

ω2,0 ∧ μ̃Λ +O(e2πiρ, ρ−1), (3.12)

where ρ is a distinguished vector multiplet related to the heterotic string cou-
pling as discussed below. This relation describes corrections to the result
(3.10) computed by the periods of the mirror manifold XA. Here it is under-
stood, that one uses mirror symmetry to map the periods of the holomorphic
(3,0) form on H3(XA,Z) defined on the basis γ̃Λ ∈ H3(XA,Z) to the periods
of the Kähler form on a dual basis γΛ ∈ ⊕kH

2k(XB,Z),

∫
XA

ω3,0 ∧ γ̃Λ −→
∫

XB

1
k!

Jk ∧ γ̃Λ. (3.13)

Note that these “Kähler periods” of XB are the three-fold equivalent of the
integrals appearing in the twisted superpotential W̃ (XB) in (3.8). However,
replacing the K3 periods in (3.10) by the quantum corrected expressions
(3.11) and (3.12), we obtain a superpotential that is proportional to both,
the periods of the manifold XB and of its mirror XA. It was argued in [36],
that this “quadratic” superpotential in the three-fold periods is in agreement
with the S-duality of topological strings predicted in [53]. Similar expres-
sions have been obtained in [54,55] from the study of type II compactification
on generalized CY manifolds.

The similarity of the two expansions (3.11) and (3.12) is no accident.
By (C2), the s.d. limit Im S →∞ is mirror to the large base limit of the
fibration XA → P1, which is a K3 fibration by (C1) in the three-fold case.
By type IIA/heterotic duality, XB is also a K3 fibration XB → P1 and
equation (3.12) represents the large base limit Im ρ→∞ of XB, where ρ is
the Kähler volume of the base P1. By heterotic/type IIA duality, the Kähler
volume of the base of XB is identified with the four-dimensional heterotic
string coupling [56]. Adding the identification of S provided by (C2), we
obtain the following heterotic interpretation of the volumes VA/B of the base

15See [52] for a discussion of the effective supergravity theory for the orientifold limit
of K3 × K3.
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P1’s of the fibrations XA/B → P1:

VB = λ−2
4,het = Im ρ, VA = VEhet

= Im S. (3.14)

Here VEhet
denotes the volume of the elliptic fiber of ZH in the heterotic com-

pactification in (3.9). Clearly, mirror symmetry exchanges the two expan-
sions (3.11) and (3.12) associated with a compactification on XA or on XB,
respectively

S
(3.11)

mirror
←→

symmetry

ρ
(3.12). (3.15)

In the dual F-theory compactification on K3×K3, mirror symmetry rep-
resents the exchange of the two K3 factors [51, 57], which gives rise to two
dual heterotic T 2 ×K3 compactifications. Starting from the duality relation
between M-theory on K3×K3 and heterotic string on T 2 × S1 ×K3 [58],
it is shown in [51], that the exchange of the two K3 factors in M-theory gen-
erates the following Z2 transformation on the moduli of the two heterotic
duals:

VE′
het

= λ−2
4 , λ

′−2
4 = VEhet

.

Comparing with relation (3.14) between the four-dimensional heterotic cou-
pling and the volumes of the bases of the fibrations (XA, XB), one concludes
that the result of [51] is in accord with the claim (C2) of [23] and its conse-
quence (3.15) in this case. It is reassuring to observe that these conclusions,
reached by rather different arguments in [23,36,51], agree so nicely.

As further argued in [36], expansion (3.12) computed from mirror sym-
metry of the three-folds XB and XA computes D3 instanton corrections to
the orientifold on K3× T 2 (or F-theory on K3×K3). The basic instanton
is a D3-brane wrapping K3, which is mapped under the duality (3.4) to a
five-brane instanton of the heterotic brane wrapping T 2 ×K3. In the type
II orientifold, ρ is the K3 volume.

Compactifying the N = 2 chain on a further P1, the previous arguments
leads to the assignments (3.8). In particular, the identification of D3 instan-
tons in [36] continues to hold with the appropriate replacement of K3 with
four-cycles in ZB. The above argument based on (C2) is, in fact, indepen-
dent of the dimension and can be phrased more generally as the following
statement on mirror symmetry in F-theory. Let XB be an F-theory n-fold
with heterotic dual (ZB, VB), where VB denotes the gauge bundle. If the
mirror XA of XB is also elliptically and K3 fibered, we have the following
relations between the F-theory compactifications on (XA, XB) and heterotic
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compactifications on (ZA, ZB):

F−theory
ZA→XB→P1

mirror

symmetry
��

��

F−theory
ZB→XA→P1

��

��
heterotic
(ZB ,VB)

het/het

map
��

(C1)
�����������������

heterotic
(ZA,VA)

��

�����������������
(3.16)

Under mirror symmetry, the s.d. limit and the large base limit are
exchanged:

ZA → XA → P1 ZB → XB → P1

stable deg

�������������������� stable deg

		������������������

large base



������������������
large base

��������������������

(3.17)

Note that the two theories on the left and on the right are in general not
dual but become dual after further circle compactifications.

The simplest example is F-theory on a K3 XB dual to heterotic on
(ZB = T 2, VG), where VG denotes a flat gauge bundle on T 2 with structure
group G. The eight-dimensional heterotic compactification has an unbroken
gauge group H, where H is the centralizer of G in the 10-dimensional het-
erotic gauge group. In a further compactification on T 2 one has to choose
a flat H bundle on the second T 2. Assuming that the bundles factorize,
one can exchange the two T 2 factors and thus H and G. In F-theory this
exchange corresponds to mirror symmetry of K3 and this was used in [22,23]
to construct local mirrors of bundles on T 2 from local ADE singularities.

The next simple example is the above N = 2 supersymmetric case, where
XB is the three-fold in (3.9), with a heterotic dual compactified on K3× T 2.
Assuming a suitable factorization of the heterotic bundle, the action of three-
fold mirror symmetry maps to the exchange of the two K3 factors (Z̃V , ZH)
in the dual F-theory compactification in 3.16. In the heterotic string this
symmetry relates two different K3 compactifications (ZH , V ) and (Z̃V , V ′)
which become dual after compactification on T 2 × S1 [23, 59].16

16One needs the T 2 compactification to get two type IIA compactifications on the
mirror pair (XA, XB), which become T-dual after a further circle compactification.
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In the four-fold case, the fibrations required by the above arguments are
not granted, since (C1) now implies that the four-fold XA is a three-fold
fibration XA → P1 (as opposed to the K3 fibration in the three-fold case).
If XA is K3 fibered, the N = 1 chain can be viewed as a N = 2 chain fibered
over P1 and the above arguments apply, leading to the assignment (3.8). In
the other case, the large Im S expansion of W (XB) always exists, but there
is no corresponding large ρ expansion of the twisted superpotential W̃ (XB).

4 Heterotic superpotential from F-theory/heterotic duality

Having identified the limit S → i∞ as a large fiber limit in the heterotic
interpretation, the next elementary question is to identify the “flux quanta”
of the four-fold superpotential (3.1) in the context of the heterotic string.
This task can be divided into identifying the origin of the terms ∼ NΣ, MΣ

captured by the bulk periods and the terms ∼ N̂Σ proportional to chain
integrals.

4.1 Generalized CY contribution to WF(XB)

The back-reaction of the bulk background fluxes in the heterotic string
requires the compactification space to be a generalized CY space [4, 60–
65]. Using dimensional reduction techniques of the heterotic string on such
generalized CY geometries Z̃B reveals that the flux-induced superpotential
reads [64–68]

Whet =
∫

Z̃B

Ω̃ ∧
(
H − i dJ̃

)
, (4.1)

where H is the non-trivial NS three-form flux and dJ̃ is often called the
geometric flux of the generalized three-fold Z̃B. The three-forms Ω̃ and the
two-form J̃ are the generalized counterparts of the holomorphic three-form
Ω and the (complexified) Kähler form J of the associated CY three-fold
ZB.17 In general, the direct evaluation of the heterotic superpotential (4.1)
of the three-fold Z̃B is rather complicated, therefore we argue here that
under certain circumstances the heterotic fluxes can be computed from the
periods of the original three-fold ZB.

It is instructive to examine first the fluxes of the heterotic string compact-
ified on the N = 2 background T 2 ×K3. For this particular geometry the

17In the context of generalized CY spaces J̃ and Ω̃ are in general not closed with respect
to the de Rahm differential d.
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analyzed fluxes induce a deformation to the non-Kähler geometry K̃, which
is a non-trivial toroidal bundle π : T 2 → K̃ → K3 over the K3 base [69–71].

In order to show the relation to the superpotential (4.1) we first construct
the cohomology classes, which capture the twisting to the toroidal bun-
dle K̃. Choosing a good open covering U = {Uα} of the K3 base together
with a trivialization of the toroidal bundle, the non-trivial bundle struc-
ture is captured by transition funcions ϕ

(k)
αβ : Uαβ → R, k = 1, 2, in the open

sets Uαβ = Uα ∩ Uβ. These transition functions patch together the angular
coordinates of the two circles S1 × S1 in the torodial fibers. Due to the
periodicity of the angular variables the transition functions fulfill on triple
overlaps Uαβγ = Uα ∩ Uβ ∩ Uγ the condition

ε
(k)
αβγ =

1
2π

(
ϕ

(k)
αβ − ϕ(k)

αγ + ϕ
(k)
βγ

)
∈ Z , k = 1, 2.

The constructed functions ε(k) : Uαβγ → Z specify two-cocycles in the Čech
cohomology group Ȟ2(K3,Z). The classes ε(k) correspond to the Euler
classes e(k) of the two circular bundles in the integral de Rham cohomology
H2(K3,Z).18

The non-Kähler manifold K̃ is equipped with the hermitian form J̃ and
the holomorphic three-form Ω̃ [70,71]19

J̃ = π∗JK3 − S i θ(1) ∧ θ(2), Ω̃ = ω2,0 ∧ (θ(1) + iθ(2)).

Here θ(k), k = 1, 2, are the two one-forms of the toroidal fibers, while JK3

is the (complexified) Kähler form and ω2,0 is the holomorphic two-form of
the K3 base. S is the (complexified) Volume modulus of the toroidal fiber.
On-shell the value of the volume modulus S becomes stabilized at S = i [71],
since the equations of motions impose the torsional constraint [4, 60, 61]20

H = (∂ − ∂̄)J̃ . (4.2)

18For details and background material on Čech cohomology and on the construction of
the Euler classes we refer the interested reader, for instance, to [72].

19For simplicity, we ignore a warp factor in front of the Kähler form JK3, as it is not
relevant for the analysis of the superpotential. Also note that in our conventions the
imaginary part of J̃ corresponds to the hermitian volume form.

20The stabilization of volume moduli in the context of heterotic string compactifications
with fluxes is also discussed in [62,67].
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As the two-forms dθ(k) restrict to the Euler classes e(k) on the K3 base,
the non-Kähler three-fold K̃ encodes the background fluxes

dJ̃ = −i S(π∗e(1) ∧ θ(2) − π∗e(2) ∧ θ(1)), H = π∗e(1) ∧ θ(1) + π∗e(2) ∧ θ(2),

where the H-flux is determined by imposing the torsional constraint (4.2)
for the on-shell value S = i of the fiber volume. Then evaluating the super-
potential (4.1) with these fluxes yields

Whet =
∫

K̃
Ω̃ ∧ (H − i dJ̃) =

∫
CH

dz ∧ ω2,0 − iS
∫

CJ

dz ∧ ω2,0. (4.3)

In the last equality the toroidal fibers of the twisted manifold K̃ are inte-
grated out, and in a second step the resulting period integrals of the K3
base are transformed into periods of the holomorphic 3-form dz ∧ ω2,0 on
the original three-fold T 2 ×K3 with respect to the three-cycles CH and CJ ,
which are Poincaré dual to the integral three-forms e(1) ∧ dy − e(2) ∧ dx and
e(1) ∧ dx + e(2) ∧ dy.

Note that the structure of the derived superpotential is in agreement with
the superpotential periods obtained in [36].

The idea is now to generalize the construction by “twisting” the fibers
of the elliptically fibered three-fold π : ZB → B with a section σ : B → ZB,
such that we arrive at the generalized CY three-fold Z̃B. In order to even-
tually relate the periods of the two manifolds ZB and Z̃B, we first translate
the three-form cohomology of the three-fold ZB to appropriate cohomol-
ogy groups on the common base B. This is achieved with the Leray–Serre
spectral sequence, which associates the cohomology of a fiber bundle to
cohomology groups on the base.

Let U = {Uα} be a good open covering of the base B. Then the cohomol-
ogy group Hk(ZB,Z) is iteratively approximated by the Leray–Serre spectral
sequence. The leading order E2 terms of the spectral sequence read [72]

Ep,q
2 = Ȟp(B,Hq) � Hp(B,Hq).

Here the (pre-)sheaf Hq of the base B is defined by assigning to each open
set U the group Hq(U) = Hq(π−1U,Z), and the inclusion of open sets ιVU :
V ↪→ U induces the homomorphism ιVU

∗ : Hq(U)→ Hq(V ) via pullback of
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forms. Then the spectral sequence abuts to H3(ZB,Z), and we obtain21

H3(ZB,Z) �
3⊕

n=0

En,3−n
2 =

3⊕
n=0

Hn(B,H3−n).

Due to the simple connectedness of the examined CY three-fold ZB we arrive
at the simplified relation

H3(ZB,Z) � E2,1
2 = Ȟ2(B,H1) � H2(B,H1). (4.4)

Note that the (pre)sheaf H1 is not locally constant, because the dimension
of the sheaf H1 differs at a singular fiber from the dimension of the sheaf
H1 at a generic regular fiber.

In terms of the open covering U a Čech cohomology element ε in Ȟ2(B,
H1) is a map that assigns to each triple intersection set Uαβγ an element in
H1(Uαβγ) and fulfills the cocycle condition on quartic intersections Uαβγδ

0 = (ρδ ◦ ε)(Uαβγ)− (ργ ◦ ε)(Uαβδ) + (ργ ◦ ε)(Uαβδ)− (ρα ◦ ε)(Uβγδ).

The map ρδ, for instance, is the pull-back induced from the inclusion ιδ :
Uαβγ ↪→ Uαβγδ. Then the cohomology element ε is called a two-cocycle with
coefficients in the (pre-)sheaf H1, and it is non-trivial if it does not arise
form a one-cochain on double intersections Uαβ .

To proceed we assume that the generalized CY manifold Z̃B is also fibered
π̃ : Z̃B → B over the same base B and that it arises from “twisting” the
elliptic fibers of the three-fold ZB. This “twist” is measured by the one-
cochain ϕ, which assigns to each double intersection Uαβ an element in
H1(Uαβ)⊗Z R and which captures the distortion of the angular variable of
the one-cycles in the elliptic fibers of the original three-fold ZB.

In general, the one-chain ϕ does not fulfill the cocycle condition due to
the periodicity of the angular variables of the one-cycles. Instead we find on
triple intersections Uαβγ

ε : Uαβγ �→ 1
2π

[(ργ ◦ ϕ)(Uαβ)− (ρβ ◦ ϕ)(Uαγ) + (ρα ◦ ϕ)(Uβγ)] ∈ H1(Uαβγ),

which defines a two-cocycle in Ȟ2(B,H1) characterizing the “twist” of the
three-fold Z̃B.

21Strictly speaking the first relation is not an equality “�” but an inclusion “⊆”,
because we ignore the “higher order corrections” from the spectral sequence. This implies
that some of the elements on the right-hand side might actually be trivial in H3(ZB ,Z).
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Analogously the element e in H3(ZB,Z), which corresponds to the Čech
cohomology element ε in Ȟ2(B,H1), is explicitly constructed. Namely, there
are one-forms ξα defined on the open sets Uα, which are exact on double
overlaps Uαβ [72]

1
2π

dϕ(Uαβ) = ρβ(ξα)− ρα(ξβ). (4.5)

Therefore the two-forms dξα patch together to a global two-form se in
H2(B,H1), which in turn can be identified with the three-form e in H3

(ZB,Z) according to (4.4).

In order to extract the geometric flux from the three-fold Z̃B, we need to
get a handle on the 2-form J̃ in the superpotential (4.1). Due to the fibered
structure of the three-fold ZB the Kähler form J splits into two pieces

J = π∗JB + JF ,

where JB = σ∗J , JF = J − π∗JB and JF = S ωF in terms of the integral
generator ωF and the (complexified) Kähler volume of the generic elliptic
fiber. Then upon the “twist” to the three-fold Z̃B the Kähler form J is
transformed into the two-form

J̃ = π̃∗JB + J̃F = π̃∗JB + S ω̃F .

The two-form ω̃F is defined on each open-set π̃−1Uα by

ω̃F |π̃−1Uα
= ωF |π̃−1Uα

+ ξα,

where we now view ξα as a two form in the open set π̃−1Uα. Due to the
“twist” the two-forms ω̃F , which are defined on open sets, patch together to
a global two-form on the three-fold Z̃B. Furthermore, as a consequence of
equation (4.5) we observe that

dJ̃ = S dω̃F = S se, (4.6)

in terms of the element se in H2(B,H1).

In order to evaluate the heterotic superpotential (4.1) we express the
three-forms of Ω̃, H and dJ̃ of the “twisted” three-fold Z̃B as elements sΩ,
sH and se of the sheaf cohomology H2(B,H1 ⊗C). Using equation (4.4) we
induce sΩ from the holomorphic three-form Ω in H3,0(ZB) and the NS flux
sH from an integral three-form in H3(ZB,Z). Furthermore, we also inherit
the pairing 〈·, ·〉 on H2(B,H1 ⊗C) from the three-form pairing

∫
ZB
· ∧ ·
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on the CY three-fold ZB. Then the superpotential (4.1) for the “twisted”
manifold Z̃B becomes

Whet = 〈sΩ, sH〉 − i S 〈sΩ, se〉 =
∫

CH

Ω− iS
∫

CJ

Ω. (4.7)

In the last step we have again related the integral elements sH and se to
their Poincaré dual three-cycles CH and CJ in the original CY manifold ZB.

In the context of heterotic string compactifications on the three-fold ZB

the presented arguments provide further evidence for the encountered struc-
ture of the closed-string periods in equation (3.1). In particular, we find that
the complex modulus S should be identified with the complexified volume
of the generic elliptic fiber.

There is, however, a cautious remark overdue. We tacitly assumed that
the manifold Z̃B can be constructed by simply “twisting” the elliptic fibers
of ZB. In general, however, we expect that such a construction is obstructed
and additional modifications are necessary to arrive at a “true” generalized
CY manifold. A detailed analysis of such obstructions is beyond the scope
of this note. However, we believe that the outlined construction is still suit-
able to anticipate the (geometric) flux quanta, which are responsible for the
transition to the generalized CY manifold Z̃B to leading order. From the
duality perspective of the previous section we actually expect further cor-
rections to the superpotential (4.7). These corrections should be suppressed
in the large fiber limit Im S →∞. It is in this limit, in which we expect the
“twisting” construction to become accurate.

4.2 Chern–Simons contribution to WF(XB)

The F-theory prediction from the last term in (3.1) is the equality, up to
finite S corrections, of certain four-fold period integrals on XB and the
Chern–Simons superpotential on ZB, for appropriate choice of G ∈ H4(XB)
and a connection on E → ZB. The general relation of this type has already
been described in Section 2.4 where we used that the three-fold ZB may be
viewed as a “boundary” within the F-theory four-fold XB in the s.d. limit.
Here we complete the argument and discuss the map of the deformation
spaces by using hypersurface representations for X� and ZB. This will also
lead to a direct identification of the open–closed dual four-fold geometries
for type II branes and the local mirror geometries for (heterotic) bundles
of [22, 23].

To this end, we represent the s.d. limit X�
B of the F-theory four-fold XB

as a reducible fiber of a CY five-fold W obtained by fibering XB over C
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as in [23, 39]. Let μ be the local coordinate on the base C which serves as
a deformation space for the four-fold fiber XB. We start from the Weier-
strass form

pW = y2 + x3 + x
∑
α,β

s4−αs̃4+αμ4−βaα,βfα(xk)

+
∑
α,β

s6−αs̃6+αμ6−βbα,βgα(xk),

where fα(xk) and gα(xk) are functions of the coordinates on the two-
dimensional base B2 of the K3 fibration of the four-fold XB. Moreover (y, x)
and (s, s̃) can be thought of as (homogeneous) coordinates on the elliptic
fiber and the base P1 of the K3 fiber, respectively. Finally aα,β , bα,β are
some complex constants entering the complex structure of W . The fiber of
W → C over a point p ∈ C represents a smooth F-theory four-fold XB with
a complex structure determined by the values of the constants aα,β , bα,β

and of the coordinate μ at p.

Tuning the complex structure of W by choosing aα,β = 0 for α + β > 4
and bα,β = 0 for α + β > 6, the central fiber of W at μ = 0 acquires a non-
minimal singularity at y = x = s = 0, which can be blown up by

y = ρ3y, x = ρ2x, s = ρs, μ = ρμ,

to obtain the hypersurface22

pW � = y2 + x3 + x
∑
α,β

s4−αs̃4+αμ4−βρ4−α−β fα(xk)

+
∑
α,β

s6−αs̃6+αμ6−βρ6−α−βgα(xk), (4.8)

The singular central fiber has been replaced by a fiber X� = X1 ∪X2 with
two components Xi defined by ρ = 0 and μ = 0, respectively. The compo-
nent ρ = 0 is described by

pX1 = p0 + p+,

p0 = y2 + x3 + xf0(xk) + g0(xk),

p+ = x
∑
α>0

s4−αμαfα(xk) +
∑
α>0

s6−αμαgα(xk),
(4.9)

we have collected the terms with zero and positive powers in μ into the two
polynomials p0 and p+ for later use. The hypersurface X1 is a fibration

22The non-zero constants aα,β , bα,β are set to one in the following.
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X1 → B2 with fiber a rational elliptic surface S1. The expressions in (4.9)
are sections of line bundles, specifically the anti-canonical bundle L = K−1

B2
,

a line bundleM over B2 that enters the definition of the fibration XB → B2

and a bundle N associated with a C∗ symmetry acting on the homogeneous
coordinates (y, x, s, μ). The powers of the line bundles appearing in these
sections are

pX1 y x s μ fα(xk) gα(xk)
L 6 3 2 0 0 4 6
M 6 3 2 1 0 α α
N 6 3 2 1 1 0 0 (4.10)

e.g. pX1 ∈ Γ(L6 ⊗M6 ⊗N 6).

The hypersurface X1 has a positive first Chern class c1(X1) = c1(N ) and
the CY three-fold ZB is embedded in X1 as the divisor μ = 0,

pZB
= pX1 ∩ {μ = 0} = p0,

verifying a claim that was needed in the argument of Section 2.4. According
to the picture of F-theory/heterotic duality developed in [12, 15], the poly-
nomial p+ containing the positive powers in s describes part of the bundle
data in a single E8 factor of the heterotic string compactified on ZB. Using
a different argument, based on the type IIA string compactified on fibrations
of ADE singularities, more general n-fold geometries X̂ of the general form
(4.9) have been obtained in [22, 23] as local mirror geometries of bundles
with arbitrary structure group on elliptic fibrations. Mirror symmetry gives
an entirely explicit map between the moduli of a given toric n-fold and the
geometric data of a G bundle on a toric n− 1-fold ZB, which applies to any
geometry X̂ of the form (4.9) [23]. The application of these methods will be
illustrated at the hand of selected examples in Sections 6 and 7.

A special case of the above discussion is the one, where the heterotic
gauge sector is not a smooth bundle, but includes also non-perturbative
small instantons [49]. The F-theory interpretation of these heterotic five-
branes as a blow up of the base of elliptic fibration XB → B3 has been
studied in detail in [13, 15, 39]; see also [23, 73] for details in the case of
toric hypersurfaces and [74] for an elegant discussion of the moduli space in
M-theory.

From the point of Hodge variations and brane superpotentials this is in
fact the most simple case, starting from the approach of [8, 9, 11], as the
brane moduli of the type II side map to moduli of the heterotic five-brane.
An explicit example from [10] will be discussed in Section 7
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4.3 Type II / heterotic map

The above argument also provides a means to describe an explicit map
between a type II brane compactification on ZB and a heterotic bundle
compactification on ZB. The key point is again the afore mentioned relation
(C2) between the large volume limit of the fibration π : XA → P1 and the
s.d. limit of the F-theory four-fold XB. The relation between the F-theory
four-fold geometry, the heterotic bundle on ZB and the type II branes on
ZB is concisely summarized by the following diagram:

ZA → XA → P1

mirror symmetry

��

large base

+ local limit
�� ZA → Xnc

A (L)→ C1

local mirror symmetry
��

XB
stable deg

+ local limit
�� X̂(E)

(4.11)

The upper line indicates how the open–closed string dual Xnc
A (L) of an A-

type bundle L on the three-fold ZA sits in the compact four-fold XA mirror
to XB. The details of the bundle L are encoded in the toric resolution of the
central fiber Z0

A at the origin 0 ∈ C1, as described in terms of toric polyhedra
in [10,16,18]. The limit consists of concentrating on a local neighbourhood
of the point 0 ∈ P1 and taking the large volume limit of P1 base.

The lower row describes how the heterotic bundle E on the elliptic mani-
fold ZB dual to F-theory on XB is captured by a local mirror geometry of the
form (4.9). Assuming that the large base/local limit commutes with mirror
symmetry, the diagram is completed to the right by another vertical arrow,
which represents local mirror symmetry of the non-compact manifolds. The
mirror of the open–closed dual Xnc

A (L) has been previously called Xnc
B (E),

and we see that commutativity of the diagram requires that the open–closed
dual Xnc

B (E) is the same as the heterotic dual X̂(E). Indeed, the hypersur-
face equations for G = SU(N) given in [23] for the heterotic four-fold X̂ and
in [10] for the open–closed four-fold Xnc

B can be both written in the form

p(X̂) = p0(ZB) + v p+(Σ) (heterotic/F–theory duality),

p(Xnc
B ) = P (ZB) + v Q(D) (open–closed duality),

(4.12)

where v is a local coordinate defined on the cylinder related to s in (4.9).
In both cases, the v0 term specifies the three-fold ZB on which the type
II/heterotic string is compactified. In the type II context, Q(D) = 0 is the
hypersurface D ⊂ ZB, which is part of the definition of the B-type brane
[10, 16, 18]. In the heterotic dual of [23], p+(Σ) = 0 specifies the SU(n)
spectral cover [12].
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The agreement of the local geometries dual to the type II/heterotic com-
pactification on ZB predicted by the commutativity of (4.11) is now obvious
with the identification

type II/heterotic map : P (ZB) = p0(ZB), Q(D) = p+(Σ). (4.13)

This map between the dual four-folds in (4.12) can be interpreted as a
geometric reflection of the physical fact that the decoupling limit conforms
the heterotic and type II bundles.

Note that, with the identification (4.13), the proofs of [11, 16–18], which
relate the relative periods H3(ZB, D) to the periods of the four-fold Xnc

B
in the context of open–closed duality, carry also over to the heterotic string
setting for G = SU(N). More ambitiously, one would like to have an explicit
relation between the four-fold periods and the holomorphic Chern–Simons
integral also for a heterotic bundle with general structure group G. The
approach of [22,23] gives an explicit map from the moduli of a G bundle on
ZB to a local mirror geometry X̂ for any G and evaluation of the periods of X̂
gives the four-fold side. A computation on the heterotic side could proceed
by a generalization of the arguments of Section 2.3, e.g., by constructing
the sections of the bundle from the more general approaches to G bundles
described in [12, 31]. In Section 8 we outline a possible alternative route,
using a conjectural relation between two two-dimensional theories associated
with the three-fold and the four-fold compactification.

5 Type II/heterotic duality in two space–time dimensions

In the previous sections we demonstrated the chain of dualities in equa-
tion (3.3) by matching the holomorphic superpotentials of the various dual
theories. In this section we further supplement this analysis by relating the
two-dimensional low energy effective theories of the type IIA compactifica-
tons on the four-folds XA and XB with the dual heterotic compactification
on T 2 × ZB. Many aspects of the type II/heterotic duality on the level of
the low-energy effective action are already examined in [44]. We further
extend this discussion here.

For the afore mentioned string compactifications the low-energy effective
theory is described by two-dimensional N = (2, 2) supergravity.23 Chiral
multiplets ϕ and twisted chiral multiplets ϕ̃ comprise the dynamical degrees

23Note that these two-dimensional theories describe the effective space–time theory and
not the two-dimensional field theory of the underlying microscopic string worldsheet.
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of freedom of these supergravity theories [75,76]. In a dimensional reduction
of four-dimensional N = 1 theories the two-dimensional chiral multiplets/
twisted chiral multiplets arise from four-dimensional chiral multiplets/vector
multiplets, respectively.

The scalar potential of the two-dimensional N = (2, 2) Lagrangian arises
from the holomorphic chiral and twisted chiral superpotentials W (ϕ) and
W̃ (ϕ̃), and the kinetic terms are specified by the two-dimensional Kähler
potential24

K(2)(ϕ, ϕ̄, ϕ̃, ¯̃ϕ) = K(2)(ϕ, ϕ̄) + K̃(2)(ϕ̃, ¯̃ϕ). (5.1)

Here K(2) and K̃(2) can be thought of individual Kähler potentials for the
chiral and twisted chiral sectors. In this section we mainly focus on the
Kähler potential (5.1) to further establish the type II/heterotic string duality
of equation (3.3).

5.1 Type IIA on CY four-folds

The low-energy degrees of freedom of type IIA compactifications on the CY
four-fold X are the twisted chiral multiplets TA, A = 1, . . . , h1,1(X) and the
chiral multiplets zI , I = 1, . . . , h3,1(X).25 They arise from the Kähler and
the complex structure moduli of the four-fold X.26 Then the tree-level
Kähler potential is given by [44]

K
(2)
IIA = K

(2)
CS (z, z̄) + K̃

(2)
K (T, T̄ ) = − lnY IIA

CS (z, z̄)− ln Ỹ IIA
K (T, T̄ ), (5.2)

where the exponential of the potential K
(2)
CS for the complex structure moduli

is determined by

Y IIA
CS (z, z̄) =

∫
X

Ω(z) ∧ Ω̄(z̄), (5.3)

24This splitting of the Kähler potential does not represent the most general form. In
fact, in general the target space metric need not even be Kähler [75]. The given ansatz,
however, suffices for our purposes.

25In two dimensions the graviton and the dilaton are not dynamical [77].
26For h2,1(X) �= 0 there are additional h2,1 chiral multiplets, which we do not take

into account here. With these multiplets the simple splitting ansatz (5.1) ceases to be
sufficient [44].
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in terms of the holomorphic (4, 0) form Ω of the CY X. In the large radius
regime the twisted potential K̃

(2)
K for the Kähler moduli reads

Ỹ IIA
K =

1
4!

∫
X

J4

=
1
4!

∑
A,B,C,D

KABCD(TA − T̄A)(TB − T̄B)(TC − T̄C)(TD − T̄D),

(5.4)

with KABCD the topological intersection numbers of the four-fold X. The
Kähler moduli TA appear in the expansion of the complexified Kähler form
B + iJ = TAωA, ωA ∈ H2(X,Z), where B and J are the NS two-form and
the real Kähler form, respectively. Finally, in the presence of background
fluxes, we obtain the holomorphic superpotentials [24, 50]

W (z) =
∫

X
Ω ∧ Fhor, W̃ (t) =

∫
X

eB+iJ ∧ Fver. (5.5)

Here Fhor ∈ H4
hor(X) is a non-trivial horizontal RR four-form flux, whereas

Fver ∈ Hev
ver(X) is a non-trivial even-dimensional vertical RR flux.27 The

twisted chiral superpotential W̃ receives non-perturbative world-sheet cor-
rections away from the large radius point [78,79].

5.2 Type IIA on the CY four-folds XA and XB

We now turn to the type IIA compactification on the special CY four-fold
XA. As discussed in Section 4.1. the four-fold geometry XA is a fibration
over the P1 base, where the generic fiber is the CY three-fold ZA. Geome-
tries of this type have been studied previously in [44, 79] and we extend
the discussion here to fibrations with singular fibers, which support the
brane/bundle degrees of freedom in the context of open–closed/heterotic
duality.

For the divisor DS dual to the base this implies
∫

DS

c3(XA) = χ(ZA). (5.6)

Here c3(XA) is the third Chern class of the four-fold XA and χ(ZB) is the
Euler characteristic of three-fold ZA. Hence the divisor DS is homologous
to the generic (non-singular) fiber ZA.

27The six- and eight-forms are the magnetic dual fluxes to the RR four- and two-form
fluxes in type IIA.
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For type IIA compactified on the four-fold XA we are interested in the
twisted chiral sector, and hence in the twisted Kähler potential (5.4). This
means we need to obtain the intersection numbers of the fibered four-fold
XA. We use similar arguments as in [56], where the intersection numbers of
K3-fibered CY threefold are determined.

We denote by S the (complexified) Kähler modulus that measures the
volume of the P1 base, which is dual to the divisor DS representing the
generic fiber ZA. Consider now a divisor Ha of the generic fiber ZA. As we
move this divisor about the base by mapping it to equivalent divisors in the
neighboring generic fibers, we define a divisor Da in the CY four-fold XA.28

The remaining (inequivalent) divisors of the four-fold XA are associated to
singular fibers, and we denote them by D̂â.

The two-forms ωS , ωa and ω̂â, which are dual to the divisors DS , Da

and D̂â, furnish now a basis of the cohomology group H2(XA,Z), and we
denote the corresponding (complexified) Kähler moduli by S, ta and t̂â.
They measure the volume of the P1-base, the volume of the two-cycles in
the generic three-fold fiber ZA, and the volume of the remaining two-cycles
arising from the degenerate fibers.

From this analysis we can extract the structure of intersection numbers.
Since DS is a homology representative of the generic fiber it intersects only
with the CY divisors Da according to the triple intersection numbers κabc of
the three-fold ZA. The intersection numbers for divisors, which do not
involve DS , cannot be further specified by these general considerations.
Therefore we find

1
4!
KABCDTA TB TC TD =

1
3!

κabc S ta tb tc +
1
4!
K′

αβγδt
′
α t′β t′γ t′δ, (5.7)

where t′α are the Kähler moduli (ta, t̂â) with their quartic intersection num-
bers K′

αβγδ. The twisted Kähler potential for the four-fold XA then reads

ỸK(XA) =
1
3!

(S − S̄)
∑

κabc(ta − t̄a)(tb − t̄b)(tc − t̄c)

+
1
4!

∑
K′

αβγδ(t
′
α − t̄′α)(t′β − t̄′β)(t′γ − t̄′γ)(t′δ − t̄′δ). (5.8)

28Due to monodromies with respect to the degenerate fibers, it may happen that two
inequivalent divisors Ha and Hb are identified globally, and hence yield the same divisor
Da = Db. Then we work on the three-fold ZA with monodromy-invariant (linear combi-
nations of) divisors such that only inequivalent divisors Da are generated on the four-fold
XA.
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The essential point here is that the leading term for large S involves only
the moduli ta associated with the bulk fields in the dual compactifications,
whereas the brane/bundle degrees of freedom appear in the subleading term.
In the decoupling limit Im S →∞, the kinetic terms derived from (5.8)
factorize into the bulk and bundle sector of the dual theories as

GAB̄(TC) ∂μTA∂μT̄ B̄ → Gbulk
ab̄ (tc) ∂μta∂μt̄b̄ +

1
Im S

Gbundle
αβ̄ (tc, tγ) ∂μtα∂μt̄β̄,

illustrating the separation of the physical scales at which the fields in the
two sectors fluctuate. In this limit, the backreaction of the (dual) bulk
fields to the (dual) bundle fields vanishes and the latter fluctuate in the
fixed background determined by the bulk fields. A more detailed treatment
of the heterotic dual will be given below.

Analogously to the three contributions to H2(XA,Z) distinguished above,
we can decompose the even-dimensional fluxes FV into three distinct classes

FV = f (1) + f (2) ∧ ωS + f (3), (5.9)

where the components f (1) and f (2) pull back to even-forms in Hev(ZB),
while the fluxes f (3) vanish upon pullback to the regular three-fold fiber ZA.
With the vertical fluxes (5.9) the (semi-classical) twisted chiral superpoten-
tial W̃ (XA) simplifies to

W̃ (XA) =
∫

ZB

e
∑

a taωa ∧ (Sf (1) + f (2)) +
∫

XA

e
∑

α t′αω′
α ∧ (f (1) + f (3)),

(5.10)

with the generators (ωa, ω̂â) collectively denoted by ω′
α.

Next, we turn to the chiral sector of type IIA strings compactified on the
mirror four-fold XB. The Kähler potential (5.3) is then expressed in terms
of the periods ΠΣ =

∫
γΣ

Ω(4,0) of the CY four-fold XB

YCS(XB) =
∑

γΣ,γΛ∈H4(XB)

ΠΣ(z)ηΣΛΠ̄Λ(z̄), (5.11)

where ηΣΛ is the topological intersection paring on H4(XB). The horizon-
tal background fluxes FH induce the chiral superpotential W (XB) given in
equation (3.1), where the quanta NΣ correspond to the integral flux quanta
of four-form flux FH.

By four-fold mirror symmetry the superpotential W̃ (XA) and W (XB)
are equal on the quantum level. In comparing the semi-classical expression
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(5.10) for the twisted superpotential to the structure of the chiral super-
potential (3.1) in the stable degeneration limit (3.1), we observe that the
vertical fluxes f (1), f (2) and f (3) give rise to the flux quanta MΣ, NΣ and
N̂Σ, respectively.

5.3 Heterotic string on T 2 × ZB

The low-energy effective action of the heterotic string compactified on the
four-fold T 2 × ZB together with a (non-trivial) gauge bundle V has in the
large radius regime the structure [44]

K
(2)
het = K

(4)
het(Φ, Φ̄) + K̃

(2)
het(Φ̃, ¯̃Φ). (5.12)

The chiral Kähler potential K
(4)
het coincides with the four-dimensional Kähler

potential of the heterotic string compactified on the CY three-fold ZB with
the gauge bundle V . Apart from the heterotic dilaton, which is not a
dynamic field in two dimensions [77], it comprises all the kinetic terms
for both the chiral multiplets of the Kähler/complex structure moduli of
the three-fold ZB and the chiral multiplets from the gauge bundle V . The
Kähler potential K̃

(2)
het of the twisted chiral multiplet consists of the modes

arising from the torus T 2 and the gauge fields, which correspond to the
vector multiplets in higher dimensions.

For heterotic CY compactifications with the standard embedding of the
spin connection the Kähler potential K

(4)
het splits further according to

K
(4)
het = K

(4)
CS (z, z̄) + K

(4)
K (t, t̄) + . . . ,

where K
(4)
CS and K

(4)
K are the Kähler potentials for the chiral complex struc-

ture and Kähler moduli z and t of the CY ZB. For a general heterotic string
compactification, we do not know of any generic model independent proper-
ties of the Kähler potential. However, in the context of type IIA/heterotic
duality (3.3), we expect a special subsector associated with the kinetic terms
of the complex structure moduli za of the three-fold together with the spe-
cific moduli fields ẑâ of the bundle captured by the dual four-fold.

In order to infer some qualitative information about the relevant kinetic
terms of the moduli za and ẑâ, we briefly discuss the general structure of the
bosonic part of the four-dimensional low-energy effective heterotic action in
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the four-dimensional Einstein frame

S
(4)
het =

1
2κ2

4

∫
d4x
√

g4

(
R(4) − 1

2

(
Cab̄∂μza∂μz̄b̄

)
− 1

2

(
B

â
¯̂
b
∂μẑâ∂μ ¯̂z

¯̂
b
)

+ · · ·
)

.

(5.13)

Here R(4) is the Einstein–Hilbert term, κ4 is the four-dimensional gravita-
tional coupling constant. Cab̄ and B

â
¯̂
b
denote the Kähler metrics of the chiral

fields za and ẑâ. For simplicity cross terms among bulk and bundle moduli
and the kinetic terms of other moduli fields are omitted. Note that the α′
dependence of the bundle moduli is absorbed into the Kähler metric B

â
¯̂
b
.

From a dimensional reduction point of view the bundle moduli ẑâ arise
from a Kaluza–Klein reduction of the 10-dimensional vector field A(10),
which in terms of four-dimensional coordinates x and internal coordinates
y enjoys the expansion

A(10)(x, y) = A(4)
μ (x) dxμ +

∑
â

(ẑâ(x) vâ(y) + c.c.) + · · · .

The four-dimensional vector A(4) gives rise to the Yang–Mills kinetic term,
while the internal vectors fields vâ are integrated out in the dimensional
reduction process and yield the metric B

â
¯̂
b

B
â
¯̂
b
=

1
V (ZB)

∫
ZB

d6y
√

g6 α′gij̄ Tr
(
vâ,i v̄¯̂

b,j̄

)
. (5.14)

The volume factor V (ZB) arises due to the Weyl rescaling to the four-
dimensional Einstein frame, and it compensates the scaling of the (internal)
measure d6y

√
g6. Thus the dimensionless quantity α′

�2
, where � is the length

scale of the internal CY manifold ZB, governs the magnitude of the kinetic
terms B

â
¯̂
b
.

As discussed in Section 4.1, the decoupling limit Im S →∞ defined in [11]
is mapped on the heterotic side to the large fiber limit of the elliptically
fibered CY three-fold ZB → B. In order to work in at semi-classical regime,
the volume V (B) of the base B, common to the K3 fibration XB → B and
the elliptic fibration ZB → B, has to be taken of large volume as well, due
to the relations [44]

λ−2
II,2d = λ−2

het,2d, Vhet(B) · VII(B) = λ−4
II,2d,

which follow from the relations λII,6d = λ−1
het,6d, ghet = λ−2

II,6dgII in six dimen-
sions [58]. As we move away from the stable degeneration point in the dual
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type IIA description, the volume of the elliptic fiber in the three-fold ZB

becomes finite while we keep the volume of the base large

0� �F � �B. (5.15)

Here �F is the length scale for the generic elliptic fiber and �B is the length
scale for the base.

As a consequence, as we move away from the stable degeneration point,
the bundle components, which scale with the dimensionless quantity

gF ≡ α′

�2
F

,

are the dominant contributions to the metric (5.14). The moduli of the
spectral cover correspond on the (dual) elliptic fiber to vector fields vâ,
which are contracted with the metric component scaling as gF . Therefore
the bundle moduli ẑâ associated to the subbundle E of the spectral cover
becomes relevant.

Thus for the heterotic string compactification on the three-fold ZB with
gauge bundle the complex structure/bundle moduli space of the pair (ZB, E)
is governed by the deformation problem of a family of CY three-folds ZB

together with a family of spectral covers Σ+. As proposed in (3.1), this
moduli dependence is encoded in the relative periods ΠΣ(z, ẑ) of the rela-
tive three forms H3(ZB, Σ+), and therefore in the semi-classical regime the
Kähler potential of the complex structure/bundle moduli space (ZB, E) is
expressed explicitly by [11,80]

K
(4)
CS,E = − lnYCS,E(ZB, Σ+),

YCS,E(ZB, Σ+) =
∑

γΣ,γΛ∈H3(ZB ,Σ+)

ΠΣ(z, ẑ)η
ΣΛ

Π̄Λ(z̄, ¯̂z). (5.16)

The topological metric ηΣΛ arises from the intersection matrix of the relative
cycles γΣ. This intersection matrix has the form [11]

(
η
)

=
(

ηZB
0

0 i gF η̂Σ+

)
,

where ηZB
is the topological metric of the absolute cohomology H3(ZB) and

η̂Σ+ is the topological metric of the variable cohomology sector H2
var(Σ+) of

the relative cohomology group H3(ZB, Σ+).
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Note that the structure of the Kähler potential (5.16) is also in agreement
with the mirror Kähler potential of type IIA compactified on the four-fold
XA. By the arguments of Section 4, the Kähler modulus S of the P1 base
of the four-fold XA is related to the heterotic volume modulus of the elliptic
fiber of the fibration ZB → B. In the large base limit of XA/bundle decou-
pling limit of (ZB, V ) the leading order terms are the Kähler moduli of the
three-fold fiber ZA/complex structure moduli of the three-fold ZB. These
moduli spaces are identified by mirror symmetry of the three-fold mirror pair
(ZA, ZB). The subleading terms for type IIA on XA in equation (5.8) should
be compared to the subleading bundle moduli terms in equation (5.16) on
the heterotic side.

Finally, we remark that since the chiral sector of the heterotic string
compactification on T 2 × ZB and on ZB are equivalent (cf. equation (5.12)),
the identification of the chiral Kähler potentials in the type IIA/heterotic
duality in two space–time dimensions carries over to the analog identification
of Kähler potentials in the F-theory/heterotic dual theories in four space–
time dimensions discussed in Section 4.

6 A heterotic bundle on the mirror of the quintic

Our first example will be an N = 1 supersymmetric compactification on the
quintic in P4 and its mirror. This was the first compact manifold for which
disc instanton corrected brane superpotentials have been computed from
open string mirror symmetry in [29, 30]. This computation was confirmed
by an A model computation in [81]. An off-shell version of the superpotential
was later obtained in [9–11, 17], both in the relative cohomology approach,
equation (2.1), as well as from open–closed duality, equation (2.3).

6.1 Heterotic string on the three-fold in the decoupling limit

Here we follow the treatment in [10,11], In the framework of [82], the mirror
pair (XA, XB) of toric hypersurfaces can be defined by a pair (Δ, Δ∗) of toric
polyhedra, given in Appendix B.1 for the concrete example. The h1,1 = 3
Kähler moduli ta, a = 1, 2, 3, of the fibration ZA → XA → P1 describe the
volume t = t1 + t2 of the generic quintic fiber of the type ZA, the volume
S = t3 of the base P1 and one additional Kähler volume t̂ = t2 measuring
the volume of an exceptional divisor intersecting the singular fiber Z0

A. This
divisor is associated with the vertex ν6 ⊂ Δ in equation (B.1) and its Kähler
modulus represents an open string deformation of a toric A brane geometry
(ZA, L) of the class considered in [7].
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The hypersurface equation for the mirror four-fold XB is given by the
general expression

P (XB) =
N∑

i=0

ai

M∏
j=0

x
〈νi,ν

�
j 〉+1

j . (6.1)

Here the sums for i and j run over the relevant integral points of the polyhe-
dra Δ and Δ∗, respectively, and ai are complex coefficients that determine
the complex structure of XB. A similar expression holds for the hypersurface
equation of the mirror manifold XA, with the roles of Δ and Δ∗ exchanged.

Instead of writing the full expression, which would be too complicated
due to the large number of relevant points of Δ∗, we first write a simplified
expression in local coordinates that displays the quintic fibration of the
mirror:

P (XB) = p0 + v1p+ + v−1p−, (6.2)
with

p0 = x5
1 + x5

2 + x5
3 + x5

4 + x5
5 − (z1z2)−1/5 x1x2x3x4x5,

p+ = x5
1 + z2 (z1z2)−1/5 x1x2x3x4x5, p− = z3 x5

1.
(6.3)

Here v is a local coordinate on C∗ and za the three complex structure moduli
of XB related to the afore mentioned Kähler moduli of XA by the mirror
map, ti = ti(z.). In the large volume limit the leading behavior is ti(z.) =
1

2πi ln(zi) +O(z.). The special combination z1z2 appearing above is mirror
to the volume of the quintic fiber of π : XA → P1, We refer to Appendix B.1
for further details of the parametrization used here and in the following.

Although the above expression for P (XB) is oversimplified (most of the
coordinates xj in (6.1) have been set to one), it suffices to illustrate the
general structure and to sketch the effect of the decoupling limit, which,
again simplifying, corresponds to setting z3 = 0, removing the term ∼ p− in
(6.3).29 This produces a hypersurface equation of the promised form (4.12).
In particular, p0(ZB) = 0 defines the mirror of the quintic, which has a single
complex structure deformation parametrized by z = z1z2. The hypersurface
D for the relative cohomology space H3(ZB, D), which specifies the Hodge
variation problem, is defined by p+ = 0, that is

ZB ⊃ D : x5
1 + z2 (z1z2)−1/5 x1x2x3x4x5 = 0. (6.4)

More precisely the component of (6.4) relevant to the brane superpotential
of [10, 29] is in a patch with xi 	= 0 ∀ i and passing to appropriate local

29A more precise description of this process as a local mirror limit is given in [23].
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coordinates for this patch, the Hodge variation on D is equivalent to that
on a quartic K3 surface in P3 [10].

The F-theory content of the toric hypersurface XB and its heterotic dual
are exposed in different local coordinates on the ambient space, which put
the hypersurface equation into the form studied in the context of
F-theory/heterotic duality in [23]:

p0 = Y 3 + X3 + Y XZ(stu + s3 + t3)− z1z2 Z3(s2t2u5),

p+ = X3 − z2 Y XZ(stu) , p− = z3 X3.
(6.5)

Here (Y, X, Z) are the coordinates on the elliptic fiber, a cubic in P2. Again
the zero set p0 = 0 defines the three-fold geometry ZB, while the polynomials
p± specify the components Σ± of the spectral cover of the heterotic bundle
in the two E8 factors. While p− corresponds to the trivial spectral cover,
p+ describes a non-trivial component

Σ+ : X2 − z2 Y Z(stu) = 0. (6.6)

This equation can be seen to correspond to a bundle with structure group
SU(2) as follows. The intersection of the equation Σ+ with the cubic elliptic
equation gives six zeros. However these zeros are identified by the Greene–
Plesser orbifold group Z3, acting on the coordinates {Z, Y, X} according to

{Z, Y, X} → {ρ2 Z, ρ Y, X} , ρ3 = 1, (6.7)

where ρ is a third root of unity. Note that the spectral cover Σ+ represents
the most general polynomial of degree two invariant with respect to the
orbifold group (6.7). As a consequence, the six zeros become just two distinct
zeros in the elliptic fiber E, adding up to zero. Therefore the spectral cover
describes a SU(2) bundle on the heterotic manifold ZB.

Alternatively, one may study the perturbative gauge symmetry of the het-
erotic compactification from studying the singularities of the elliptic fibra-
tion XB. The result of this procedure, described in detail in the appendix,
is that the bundle leads to the gauge symmetry breaking pattern

E6 × E6
�� SU(6)× E6 (6.8)

in agreement with a new component of the bundle of structure group SU(2).
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6.1.1 Flux superpotential in the decoupling limit

To be more precise, the above discussion describes only the data of the
bundle geometrized by F-theory and ignores the “non-geometric” part of
the bundle arising from fluxes on the seven-branes, which may lead to a
larger structure group of the bundle, and thus smaller gauge group of the
compactification then the one described above [13].

In particular, to compute the heterotic superpotential (2.7), we have to
specify the class γ of Section 2.2, which determines the flux number N̂Σ

in (3.1), and thus the superpotential as a linear combination of the four-
fold periods. This is the heterotic analog of choosing the five-brane flux on
the type II brane (6.4). Since equation (4.13) identifies the type II open
string brane modulus z2 literally with the heterotic bundle modulus in the
decoupling limit Im S →∞, the relative cohomology space and the associ-
ated Hodge variation problem are identical to the one studied in the con-
text of type II branes in [11]. Using the identification γ = γ̃ between the
classes defined in (2.5) and (2.6), the heterotic superpotential in the decou-
pling limit is identical to that for the type II brane computed in Section 5
of [11], see equation (5.3). We now discuss the corrections to this result for
finite Im S.

6.2 F-theory superpotential on the four-fold XB

According to the arguments of Section 3, Hodge theory on the F-theory
four-fold XB computes further corrections to the superpotential of the type
II/heterotic compactification for finite S. We will now perform a detailed
study of the periods of XB using mirror symmetry of the four-folds
(XA, XB).

Mirror symmetry is vital in two ways. Firstly, it allows to determine
the geometric periods on H4(XB,Z), appearing as the coefficients of the
flux numbers NΣ in (3.1), from an intersection computation on the mirror
XA. Secondly, the mirror map t(z) can be used to define preferred local
coordinates on the complex structure moduli space MCS(XB) near a large
complex structure point. In the context of open–closed string duality, these
two steps are central to extracting the large volume world-sheet instanton
expansion of the periods for the mirror A-model geometry XA, as they yield
the disc instanton expansion of the superpotential for A-type brane geometry
(ZA, L) by open–closed duality [10,11]. In the present context, we use this A
model expansion to describe the superpotential WF (XB) near a large com-
plex structure limit of XB, which by the previous arguments describes the
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decoupling limit Im S →∞ of the dual heterotic compactification (ZB, E)
near large complex structure of ZB.30

The methods of mirror symmetry for toric four-fold hypersurfaces used
in the following have been described in detail in [79, 83, 84] and we refer to
these papers to avoid excessive repetitions. We work at the large complex
structure point of XB defined by the values za = 0, a = 1, 2, 3 for the moduli
in the hypersurface equation (6.2). This corresponds to a large volume
phase ta ∼ 1

2πi ln(za)→ i∞ in the Kähler moduli of the mirror manifold XA

generated by the charge vectors

l1 = (−4 0 1 1 1 1 −1 1 0),
l2 = (−1 1 0 0 0 0 1 −1 0),
l3 = ( 0 −2 0 0 0 0 0 1 1). (6.9)

The topological intersection data for this phase can be determined from toric
geometry in the standard way, see [19, 23, 79, 84] for examples. We refer to
the appendix of [11] for details on this particular example and restrict here
to quote the quartic intersections

F4 =
1
4!

∫
Xc

J4 =
1
4!

∑
a,b,c,d

Kαβγδt
αtβtγtδ

=
5
6
(t1 + t2)3t3 +

5
12

(t1 + t2)4 − 1
6
t41 =

5
6
ť31ť3 +

(
5
12

ť41 −
1
6
ť42

)
. (6.10)

Here J =
∑

a taJa =
∑

a ťaJ̌a denotes the Kähler form on XA, with Ja, a =
1, 2, 3 a basis of H1,1(XA) dual to the Mori cone defined by (6.9). In the
above, we have introduced the linear combinations

ť1 = t = t1 + t2, ť2 = t̂− t = −t1, ť3 = S = t3, (6.11)

and the corresponding basis {J̌a} of H1,1(XA) to expose the simple depen-
dence on the Kähler modulus ť1 = Vol(ZA) of the generic quintic fiber of
π : ZA → XA → P1.

The leading terms of the period vector ΠΣ =
∫
γΣ

Ω for XB in the limit
za → 0 can be computed from the classical volumes of even-dimensional

30The fact that the large complex structure limit of the four-fold XB implies a large
structure limit of the dual heterotic three-fold ZB follows already from the hypersurface
equation, equation (6.5), and is explicit in the monodromy weight filtration of the four-fold
periods discussed below.
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algebraic cycles in XA

ΠΣ(XB) =
∫

γΣ

Ω(z) ∼ 1
q!

∫
γ̃Σ

Jq,

where γΣ ∈ H4(XB,Z) refers to a basis of primitive four-cycles in XB and
γ̃Σ a basis for the 2q dimensional algebraic cycles in H2q(XA), q = 0, ..., 4,
related to the former by mirror symmetry. Except for q = 2, there are
canonical basis elements for H2q(XA,Z), given by the class of a point, the
class of XA, the divisors dual to the generators J̌a and the curves dual to
these divisors, respectively. On the subspace q = 2 we choose as in [11]
the basis γ1 = D1 ∩D2, γ2 = D2 ∩D8, γ3 = D2 ∩D6. Here the Di = {xi =
0}, i = 0, . . . , 8 are the toric divisors defined by the coordinates xi on the
ambient space for XA (cpw. equation (6.1)), which correspond to the vertices
of the polyhedron Δ in (B.1). The classical volumes of these basis elements
computed from the intersections (6.10) are

Π0 = 1, Π1,i = ťi, Π2,1 = 5ť1ť3, Π2,2 = 5
2 ť21, Π2,3 = 2ť22,

Π3,1 = 5
2 ť21ť3 + 5

3 ť31, Π3,2 = −2
3 ť32, Π3,3 = 5

6 ť31, Π4 = F4,
(6.12)

where the first index q on Πq, denotes the complex dimension of the cycle.

The entries of the period vector Π(XB) are solutions of the Picard–Fuchs
system for the mirror manifold XB with the appropriate leading behavior
(6.12) for za → 0. The Picard–Fuchs operators can be derived from the toric
GKZ system [79,84] and are given in equation (A.6) in the Appendix.

The Gauss–Manin system for the period matrix imposes certain integra-
bility conditions on the moduli dependence of the periods of a CY n-fold.
For n = 2 these conditions imply that there are no instanton corrections on
K3 and for n = 3 they imply the existence of a prepotential F for the peri-
ods. For n = 4 the periods can no longer be integrated to a prepotential,
but still satisfy a set of integrability conditions discussed in [11].

Applying the integrability condition to the example the leading behav-
ior of Π near ť3 = i∞, is captured by only seven functions denoted by
(1, ť1, ť2, F̃t, W̃ , F̃0, T̃ ). The 11 solutions can be arranged into a period vector
of the form

Π0 = 1,
Π1,1 = ť1, Π1,2 = ť2, Π1,3 = ť3,

Π2,1 = 5ť1ť3 + π2,1, Π2,2 = −F̃t, Π2,3 = −W̃ ,

Π3,1 = ť3 F̃t + π3,1, Π3,2 = T̃ , Π3,3 = −F̃0,

Π4 = ť3 F̃0 + π4, (6.13)



EFFECTIVE COUPLINGS OF N = 1 1483

where the index q on Πq, now labels the monodromy weight filtration w.r.t.
to the large volume monodromy ťa → ťa + 1.

Since the decoupling limit sends the compact four-fold XB to its non-
compact open–closed dual Xnc

B , these functions should reproduce the relative
three-fold periods on H3(ZB, D) in virtue of equation (2.3). Indeed the four
functions (1, ť1, F̃t, F̃0) converge to the four periods on H3(ZB)

lim
ť3→i∞

(1, ť1, F̃t,−F̃0) = (1, t, ∂tF(t),−2F(t) + t∂tF(t)), (6.14)

where F(t) = 5
6 t3 +O(e2πit) is the closed string prepotential on the mirror

quintic.31 The remaining three functions reproduce the three chain integrals
on H3(ZB, D) with non-trivial ∂γ ∈ H2(D):

lim
ť3→i∞

(ť2, W̃ , T̃ ) = (t̂− t, W (t, t̂), T (t, t̂)), (6.15)

with classical terms W (t, t̂) = −2ť22 +O(e2πiťk), T (t, t̂) = 2
3 ť32 +O(e2πiťk),

k = 1, 2. In the context of open–closed duality, the double logarithmic solu-
tion W (t, t̂) of the four-fold is conjectured [16] to be the generating function
of disc instantons in the type II mirror configuration (ZA, L),

W (t, t̂) = −2ť22 +
∑
β

∞∑
k=1

Nβ
qkβ

k2
,

similarly as F(t) is the generating function of closed string sphere instan-
tons [85]. In the above formula, β denotes the homology class of the disc
and the Nβ are the integral Ooguri–Vafa disc invariants [86].

Since the closed string period vector (6.11) appears twice in (6.13), with
coefficients 1 and ť3 = S, respectively, the leading terms of the 11 periods
on XB are proportional to the seven relative periods on H3(ZB, D)

lim
Im S→∞

Πq, ∼
{

(1, S)× (1, t, ∂tF ,−2F + t∂tF),
(t̂− t, W (t, t̂), T (t, t̂)).

A linear combination of these leading terms gives a large S expansion for
the superpotential of the form (3.1).

31Here and in the following we neglect terms in the geometric periods from polynomials
of lower degree in ťi.
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6.3 Finite S corrections: perturbative contributions

There are two types of finite S contributions in the four-fold periods, which
correct the three-fold result: linear corrections ∼ S−1 and exponential cor-
rections ∼ e2πiS . In the type II orientifold where Im S ∼ 1/gs, the first
should correspond to perturbative corrections.

These linear corrections are described by the three additional functions
π2,1, π3,1, π4 in (6.13) with leading behavior

lim
ť3→i∞

π2,1 = f2,1(q̌1, q̌2),

lim
ť3→i∞

π3,1 = −5
3 ť31 + f3,1(ť1, ť2, q̌1, q̌2),

lim
ť3→i∞

π4 = 5
12 ť41 − 1

6 ť42 + f4(ť1, ť2, q̌1, q̌2),

(6.16)

An immediate observation is that these terms seem to break the naive
S-duality symmetry of the type II string (and the T -duality of the heterotic
string) even in the large S limit where one ignores the D-instanton correc-
tions ∼e2πiS . The above functions fq, vanish exponentially in the q̌i = e2πiťi

for i = 1, 2 near the large complex structure limit of ZB, but contribute in
the interior of the complex structure moduli space of ZB.

For example, the ratio of two periods corresponding to the central charges
of an “S-dual” pair of BPS domain walls with classical tension ∼ F̃t is

Z2/Z1 =
SF̃t + π3,1

F̃t

= S +
2
3
t + f̃(ťk, q̌k) +O(e−2π/gs).

In principle, there are various possibilities regarding the fate of S duality.
Firstly, there could be a complicated field redefinition which corrects the
relation Im S = 1

gs
away from the decoupling limit such that there is an S

duality for a redefined field S̃ including these corrections. Such a redefinition
is known to be relevant in four-dimensional N = 2 compactifications of the
heterotic string, where one may define a perturbatively modular invariant
dilaton [87]. On the other hand, duality transformations often originate from
monodromies of the periods in the CY moduli space, which generate simple
transformations at a boundary of the moduli space, such as Im S =∞, but
correspond to complicated field transformations away from this boundary.
Again, such a “deformation” of a duality transformation is known to happen
in the heterotic string [88]. At this point we cannot decide between these
options, or a simple breaking of S-duality, without a detailed study of the
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monodromy transformations in the three-dimensional moduli space of the
four-fold, which beyond the scope of this work.

6.4 D-instanton corrections and Gromov–Witten invariants
on the four-fold

There are further exponential corrections ∼e2πiS to the moduli dependent
functions in equations (6.13). Recall that we are considering here the clas-
sical periods of XB, which describe the complex structure moduli space of
the four-fold XB and complex deformations of the dual heterotic bundle
compactification on ZB. From the point the type IIA compactification on
XB, obtained by compactifying F-theory on XB × T 2, these are B model
data and do not have an immediate instanton interpretation.

However, according to the identification of the decoupling limit in Sec-
tion 2, we expect these B model data to describe D-instanton corrections
∼e−2π/gs to the type II orientifold on the three-fold, see (3.3). Lacking a
sufficient understanding of the afore mentioned issue of field redefinitions,
we will express the expansion in exponentials ∼e2πiS in terms of Gromov–
Witten invariants, or rather in terms of integral invariants of Gopakumar–
Vafa type, using the multi-cover formula for four-folds given in [79,83]. These
invariants capture the world-sheet instanton expansion of the A-model on
the mirror XA of XB. Note that if mirror pair (XA, XB) supports a duality of
the type (3.16), then this expansion captures world-sheet and D-instanton
corrections computed by the twisted superpotential W̃ (XA), according to
the arguments in Section 3.5. However, according to equation (3.6) such
a duality can only exist if the mirror four-fold XA is given in terms of a
suitable fibration structure, which is not true for the quintic example of
this section (since XA is neither elliptically nor K3 fibered), but for other
examples considered in Section 7.

The integral A model expansion of the four-fold is defined by [79,83]32

Π2,γ = pγ
2(ta) +

∑
β

∑
k>0

Nγ
β

qβ·k

k2
, (6.17)

where Π2,γ is one of the periods in the q = 2 sector, double logarithmic near
the large complex structure limit za = 0, and p2 a degree two polynomial

32The fact that this multi-cover formula for spheres in a four-fold is formally the same
as the multi-cover formula for discs in a three-fold [86] is at the heart of the open–closed
duality of [10,16,17].
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in the coordinates ta defined by (6.9). Moreover β is a label, which in the
A model on the mirror XA specifies a homology class β ∈ H2(XA,Z) with
exponentiated Kähler volume qβ =

∏
a qna

a , qa = e2πita . As discussed above,
these Kähler moduli of XA map under mirror symmetry to coordinates on
the complex structure moduli space of the F-theory compactification on
XB,33 and we use these coordinates to write an expansion for the B model
on XB.

We restrict here to discuss only the few leading coefficients Nγ
β for the

three linearly independent q = 2 periods of XB. We label the “class” β by
tree integers (m, n, k), such that Nγ

β is the coefficient of the exponential
exp(2πi(mt1 + nt2 + kt3) in the basis (6.9). Thus k is the exponent of e2πiS

in the expansion.

6.4.1 Deformation of the closed string prepotential Ft

The leading term of the period Π2,2 is the closed string prepotential (6.13).
This period is mirror to a four-cycle in the quintic fiber of XA and depends
only on the closed string variable t = t1 + t2 in the limit Im S →∞. The
leading terms in the expansion (6.17) of the four-fold period are

k = 0 0 1 2 3

0 0 0 0 0

1 0 2,875 0 0

2 0 0 1,218,500 0

3 0 0 0 951,619,125

k = 1 0 1 2 3

0 5 20 0 0

1 0 8,895 33,700 600

2 0 19,440 16,721,375 63,071,800

3 0 −1,438,720 49,575,600 32,305,559,000

k = 2 0 1 2 3

0 0 0 0 0

1 0 0 3,060 3,750

2 0 0 5,03,8070 98,649,500

3 0 0 19,074,160 47,957,485,000

k = 3 0 1 2 3 4

0 0 0 0 0 0

1 0 0 0 −2,010 −1,300

2 0 0 0 1,710,620 13,806,200

3 0 0 0 4,610,786,345 243,610,412,900

(6.18)

where the vertical (horizontal) directions corresponds to m (n). The k = 0
expansion is a power series in the closed string exponential, which displays
the independence of the closed string prepotential on the open string sector.
This independence is lost taking into account e2πiS corrections, as is expected

33The ta are the distinguished flat coordinates of the Gauss–Manin connection.
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from the backreaction of the closed string to the open string degrees of
freedom at finite gs.

The mixture between the closed and open string sector at finite S is
already visible in the definition of mirror map. In [8,89] it had been observed,
that the definition of the flat closed string coordinate does not depend on the
open string moduli in the non-compact case, in other words, the mirror map
t = t(z) for the closed string modulus t = t1 + t2 is the same as in the theory
without branes, with z = z1z2. This is no longer the case for finite S, as there
are corrections to the mirror map of the form t(za) = t(z) + e2πiSf(z, ẑ).

6.4.2 Deformation of disc superpotential W (t, t̂)

The leading term of the period Π2,3 is the brane superpotential of [11], which
conjecturally computes the disc instanton expansion of an A type brane on
the quintic. The leading terms in the expansion (6.17) of the four-fold period
with respect to the corrections e2πikS are

k = 0 0 1 2 3 4 5

0 0 20 0 0 0 0

1 −320 1,600 2,040 −1,460 520 −80

2 13,280 −116,560 679,600 1,064,180 −1,497,840 1,561,100

3 −1,088,960 12,805,120 −85,115,360 530,848,000 887,761,280 −1,582,620,980

k = 1 0 1 2 3 4 5

0 0 20 0 0 0 0

1 0 1,600 30,640 3,180 −1,160 160

2 0 −116,560 3,772,320 55,277,220 10,018,200 −6,906,880

3 0 12,805,120 −351,282,880 7,862,229,440 104,899,190,560 23,999,809,580

k = 2 0 1 2 3 4 5 6

0 0 0 0 0 0 0 0

1 0 0 2,040 3,180 480 −40 0

2 0 0 679,600 55,277,220 151,559,040 10,282,300 −4,775,320

3 0 0 −85,115,360 78,62,229,440 333,857,152,320 974,522,062,840 92,723,257,200

(6.19)

6.4.3 Deformation of Π2,1

As discussed in the previous subsections, the corrections to the third period
Π2,1 contain S−1 corrections and are in this sense the most relevant. The
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leading terms of the expansion (6.17) are

k = 0 0 1 2 3

0 0 20 0 0

1 0 6,020 3,060 −2,010

2 0 19,440 3,819,570 1,710,620

3 0 −1,438,720 19,074,160 3,659,167,220

4 0 148,132,440 −2,365,073,280 20,826,366,840

k = 1 0 1 2 3

0 −10 −20 0 0

1 0 −6,020 0 3,150

2 0 −19,440 0 35,577,700

3 0 1,438,720 0 15,651,926,000

4 0 −148,132,440 0 79,135,362,000
(6.20)

The k = 0 corrections capture the linear corrections discussed in Section 6.3.
These should arise from a one-loop effect on the brane; it would be interest-
ing to verify this by an independent computation.

7 Heterotic five-branes and non-trivial Jacobians

In this section we discuss a number of further examples to illustrate the
duality relations and the application of the method. The geometries are
mostly taken from [10], where the brane superpotential for B-type branes
has been already computed. Since the superpotential (2.7) for the heterotic
compactification on ZB with the appropriate bundle E agrees with the brane
superpotential in the decoupling limit, the explicit heterotic superpotential
in this limit can be read off from the results of [10]. We have performed also
a computation of the finite S corrections to the heterotic superpotential
for the examples below, by the methods described in detail in the previous
section. The results are of a similar general structure as in the quintic case.
Detailed expressions for the examples are available upon request.

The main focus of this section will be to describe some additional aspects
arising from the point of F-theory and the heterotic compactification on ZB.
Let us recall the following basic result on F-theory/heterotic duality which
will help to understand the different outcomes in the following examples.
The elements of the Hodge group H1,1(XB) of the four-fold can be roughly
divided into the following sets w.r.t. their meaning in the dual heterotic
compactification on the CY three-fold ZB with bundle E (see [13,15,90]):
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Generic classes:

The first set arises from the two generic classes from the K3 fiber Y of the
K3 fibration XB → B2:

1. The class E of the fiber of the elliptic fibration Y → P1, which is also
the elliptic fiber of XB. This curve shrinks in the 4D F-theory limit
and does not lead to a field in four dimensions;

2. The class F of the section of the elliptic fibration Y → P1, which
provides the universal tensor multiplet associated with the heterotic
dilaton.

Geometry of ZB:

3. h1,1(B2) classes of the base of the K3 fibration XB → B2 with K3 fiber
Y .

4. h1,1(ZB)− h1,1(B2)− 1 classes associated with singular fibers of the
elliptic fibration ZB → B2.

Gauge fields and five-branes:

5. h1,1(Y )− 2 = rank Gpert classes from singular fibers of the elliptic
fibration Y → P1, corresponding to the Cartan subgroup of the per-
turbative gauge group Gpert.

6. h1,1(B3)− h1,1(B2)− 1 classes arising from blow ups of the P1 bundle
B3 → B2 with fiber of class F . These blow ups correspond to heterotic
five-branes wrapping a curve C ∈ B2.

7. The remaining rankGnon−pert classes of XB arise from extra singulari-
ties of the elliptic fibration, which correspond to the Cartan subgroup
of a non-perturbative gauge group Gnon−pert.

Fixing the heterotic three-fold ZB, one can still vary the four-fold data in
the last group, to choose a bundle E. In the framework of toric geometry,
this step can be made very explicit by using local mirror symmetry of bun-
dles [22]. Starting from the toric three-fold polyhedron for ZB one may to
“geometrically engineer” the bundle in terms of a four-fold polyhedron, by
appropriately adding or removing exceptional divisors, as described in great
detail in [23, 73]. By the type II/heterotic map (4.13), this is the comple-
ment of adding singular fibers to the mirror fibration XA → P1 in (3.5), to
define a toric A type brane on the three-fold mirror ZA [10].

Items 5–7 in the above describe, how an element of H1,1(XB) added
in the engineering of the bundle falls into one of the three classes in the
last set, depending on the relative location of the exceptional divisor w.r.t.
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the fibration structure. It follows that the B-type branes in the type II
compactification may map to quite different heterotic degrees of freedom
under the type II/heterotic map (4.13): perturbative gauge fields, heterotic
five-branes and non-perturbative gauge fields. This variety can be seen
already in the examples of [10], as discussed below.

7.1 Structure group SU(1): heterotic five-branes

As seen in the previous section, the quintic example of [9,10,29] corresponds
to a perturbative heterotic bundle with structure group SU(2). Another
example of a brane compactification taken from [10] turns out to have a
quite different interpretation. In this case, the brane deformation of the
type II string does not translate to a bundle modulus on the heterotic side
under the type II/heterotic map (4.13), but rather to a brane modulus. On
the heterotic side, this is a five-brane representing a small instanton [49].

Let us first recall the brane geometry on the type II side, which is defined
in [10] as a compactification of a non-compact brane in the non-compact CY
O(−3)P2 , i.e., the anti-canonical bundle of P2. This example has been very
well studied in the context of open string mirror symmetry in [18, 89, 91].
The non-compact CY can be thought of as the large fiber limit of an ellip-
tic fibration ZA → P2 which gives the interesting possibility to check the
result obtained from the compact four-fold against the disc instanton cor-
rected three-fold superpotential computed by different methods in [18,89,91].
Indeed it was shown in [10] that four-fold mirror symmetry reproduces the
known results for the non-compact brane in the large fiber limit, including
the normalization computed from the intersections of the four-fold XA. The
result for the local result is corrected by instanton corrections for finite fiber
volume.34

Two different three-fold compactifications of O(−3)P2 were considered
in [10], with a different model for the elliptic fiber.35 As the two examples
produce very similar results, we discuss here the degree 18 case of [10] in
some detail and only briefly comment on the difference for the degree 9
hypersurface, below.

The B-type brane is defined in [10] by adding a new vertex

ν8 = (−1, 0, 2, 3,−1) (7.1)

34Note that this is a large fiber limit in the type IIA theory compactified on ZA, not
the previously discussed large fiber limit of the heterotic string compactified on ZB .

35A cubic in P2 for the degree 9 and a sixtic in P2(1, 2, 3) for the degree 18 hypersurface.
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in the base of the “enhanced” toric polyhedron Δ. The Hodge numbers of
the space XB obtained in this way are XB : h1,3 = 4, h1,2 = 0, h1,1 = 2796,
χ = 16, 848 (= 0 mod 24). We refer the interested reader again to Appen-
dix B for the details on the toric geometry and the parametrizations used in
the following and continue with a non-technical discussion of the geometry.
The addition of the vertex ν8 corresponds to the blow up of a divisor in the
singular central fiber of the four-fold fibration XA → P1. The new element
in H1,1(XA) is identified as the deformation parameter of the A-brane on
the three-fold ZA, via open–closed duality.

On the mirror side, the blow up modulus corresponds to a new complex
structure deformation parametrizing a holomorphic divisor in ZB. As will
be explained now, this deformation maps in the heterotic compactification
to a modulus moving a heterotic five-brane that wraps a curve C in the base
B2 of the three-fold ZB.

In appropriate local coordinates, the form (6.2) of the hypersurface equa-
tion, exposing the elliptic fibration of both, ZB and XB, is

p0 = Y 2 + X3 + (z3
1z2z3)−1/18 Y XZ stu

+ Z6 ((z2z3)−1/3 (stu)6 + s18 + t18 + u18),

p+ = Z6 ((stu)6 + ẑs18), p− = Z6 (stu)6. (7.2)

The brane geometry in ZB, reducing to the mirror of the non-compact brane
in O(−3)P2 of [89], is defined by the hypersurface D : p+ = 0 within ZB

defined by p0 = 0 [10].

The hypersurface constraint (7.2) is already in the form to which the
methods of [23] can be applied. The relevant component of p+ deforming
with the modulus ẑ lies in a patch with s, t, u 	= 0 and is given by

Σ+ : Z6 (t6u6 + ẑs12) = 0. (7.3)

Here the deformation ẑ does not involve the coordinates of the elliptic fiber,
and therefore it does not correspond to a bundle modulus. Instead this F-
theory geometry describes heterotic five-branes wrapping a curve C in the
base B2 of the heterotic compactification. As described in detail in [13,15,39]
(see also [74]), F-theory describes these heterotic five-branes by a blow ups
of the P1 bundle B3 → B2.

The toric four-fold singularities associated with heterotic five-branes of
type (7.2) were also studied in great detail in [23,73]. In the present case, the
five-branes wrap a set of curves C in the elliptic fibration ZB → B2, defined
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by the zero of the function f(s, t, u) = s6(t6u6 + ẑs12). The deformation ẑ
moves the branes on the second component, similarly as it moves the type
II brane in the dual type II compactification on ZB.

By the F-theory/heterotic dictionary developed in [13, 15, 39], the above
singularity describes a small E8 instanton, which can be viewed as an M-
theory/type IIA 5-brane [49]. Note that there are also exceptional blow up
divisors in XB associated with the 5-brane wrapping, which support the
elements in H1,1(XB) dual to the world-volume tensor fields on the five-
branes [13, 15, 39]. However, these Kähler blow ups are not relevant for the
purpose of computing the superpotential W (XB).

The above conclusions may again be cross-checked by analyzing the per-
turbative gauge symmetry of the heterotic compactification, which does not
changes in this case for ẑ 	= 0

E8 × E8
�� E8 × E8 , (7.4)

as is expected from the trivial structure group of the bundle, with the anom-
aly cancelled entirely by five-branes.

The compactification of the non-compact brane in O(−3)P2 in the degree
9 hypersurface leads to similar results. The four-fold considered in [10] has
the Hodge numbers

XB : h1,3 = 6(2), h1,2 = 0, h1,1 = 586, χ = 3600 (= 0 mod 24)

and describes a heterotic compactification with five-branes wrapping a curve
given by the equation

Σ+ : Z3 s3 (t3u3 + ẑs6) = 0. (7.5)

The further discussion is as above, except for the gauge symmetry breaking
pattern, which is in this case E6 × E6 → E6 × E6.

In the decoupling limit Im S →∞ limit, the heterotic superpotential for
the five-branes in these two cases agrees with the type II brane superpo-
tential computed in Section 3.2 and Appendix B of [10], respectively. See
also Section 5 of [19] for a reconsideration of the first case, with an identical
result (Table 3a/5.2).
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7.2 Non-trivial Jacobians: SU(2) bundle on a degree 9 hyper-
surface

A new aspect of another example of [10] is the appearance of a non-trivial
Jacobian J(Σ) of the spectral surface, corresponding to non-zero h1,2 [12].
In this case there are additional massless fields associated with the Jacobian
J(XB) = H3(XB,R)/H3(XB,Z) in the F-theory compactification, and the
non-trivial Jacobian of Σ in the heterotic dual [12, 31,32].

The present example has been considered in Section 3.3 of [10] and
describes a brane compactification on the same degree 9 hypersurface ZA

as in the previous section, but with a different gauge background. ZA is
defined as a hypersurface in the weighted projective space P4(1, 1, 1, 3, 3)
with hodge numbers and Euler number

ZA : h1,1 = 4(2), h1,2 = 112, χ = −216, (7.6)

The numbers in brackets denote the non-toric deformations of ZA, which
are unavailable in the given hypersurface representation.

As familiar by now, the technical details on toric geometry are relegated
to Appendix B. The Hodge numbers of the dual F-theory four-fold XB are

XB : h1,3 = 4, h1,2 = 3, h1,1 = 246(11), χ = 1530 = 18 mod 24.

The local form (6.2) of the hypersurface equation for XB, exposing the
elliptic fibration and the hypersurface ZB is

p0 = a1Y
3 + a2X

3 + Z3 (a3(stu)3 + a4s
9 + a5t

9 + a6u
9) + a0Y XZ stu,

p+ = Y (a8Y
2 + a7XZ stu), p− = a9Y

3. (7.7)

Again the zero set p0 = 0 defines the three-fold geometry ZB for the com-
pactification of the type II/heterotic string, while the brane geometry con-
sidered in [10] is defined by the hypersurface D : p+ =0. By the type
II/heterotic map (4.13), we reinterprete these equations in terms of a het-
erotic bundle on ZB. While p− corresponds to the trivial spectral cover, p+

describes a component with non-trivial dependence on a single modulus ẑ:

Σ+ : Y 2 + ẑXZstu = 0, (7.8)

where ẑ is the brane/bundle deformation. As in the quintic case, Σ+ may be
identified with a component with structure group SU(2). This is confirmed
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by a study of the perturbative gauge symmetry of the heterotic compactifi-
cation, which changes for ẑ 	= 0 as

E6 × E6
�� SU(6)× E6 . (7.9)

The Im S →∞ limit of the heterotic superpotential for this bundle coincides
with the type II result computed in [10].

8 ADE singularities, Kazama–Suzuki models and matrix
factorizations

In the above we have described how four-fold mirror symmetry computes
quantum corrections to the superpotential and the Kähler potential of super-
symmetric compactifications to four and lower dimensions with four super-
charges. Specifically, these corrections are expected to correspond to D(−1),
D1 and D3 instanton contributions in the type II orientifold compactification
on ZB and to world-sheet and space–time instanton corrections to a (0, 2)
heterotic string compactification on the same manifold. At present, it is hard
to concretely verify these predictions by an independent computation. A
particularly neat way to find further evidence for our proposal (in the N = 2
supersymmetric situation) would be to establish a connection with [92]. In
these works, considerable progress has been made in understanding correc-
tions to the hyper-multiplet moduli, especially the interaction with mirror
symmetry. It would be very interesting to study the overlap with the non-
perturbative corrections discussed in the present paper. In this section, we
discuss a different application of heterotic/F-theory duality which might be
viewed as an interesting corroboration of our main statements, and is also
of independent interest.

8.1 N = 2 supersymmetry

It is best again to begin with eight supercharges. Consider a heterotic string
compactification on a K3 manifold near an ADE singularity with a trivial
gauge bundle on the blown up two-spheres. The hypermultiplet moduli space
of this heterotic compactification is corrected by α′ corrections from pertur-
bative and world-sheet instanton effects. It has been shown in [93] that
for an A1 singularity, the heterotic moduli space in the hyperkähler limit
is given by the Atiyah–Hitchin manifold, which is also the moduli space of
three-dimensional N = 4 SU(2) Yang–Mills theory. This relation between
the moduli space of the heterotic string on a singular K3 and the moduli
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space of a three-dimensional gauge theory can be derived and generalized by
studying the stable degeneration limit of the dual type IIA/F-theory three-
fold. Specifically it is shown in [94, 95] that the three-fold XB dual to the
heterotic string on an ADE singularity of type G and with a certain local
behavior of the gauge bundle V develops a singularity, which ‘geometrically
engineers’ a three-dimensional gauge theory of gauge group and matter con-
tent depending on G and V , see [96]. In connection with the N = 2 version
of the decoupling limit Im S →∞, equation (3.11), this leads to a very con-
crete relation between the three-fold period and the world-sheet instanton
corrections to the heterotic hypermultiplet space in the hyperkähler limit.
This could be explicitly checked against the known result, at least in the
case dual to 3D SU(2) SYM theory.

8.2 N = 1 supersymmetry

The above situation has an interesting N = 1 counter part. Namely, it
has been conjectured in [95] that one may use the heterotic string on a
certain three-fold singularity to geometrically engineer (the moduli space
of) interesting two-dimensional field theories. The three-fold singularities
are of the type

y2 + H(xk) = 0, (8.1)

where H(xk) describes an ADE surface singularity. The idea is the obvious
generalization of the above, by first applying heterotic/F-theory duality and
then exploiting the relation of [24] between similar four-fold singularities and
Kazama–Suzuki models. We here make this correspondence more precise.

Recall that the identification of [24] proceeded through the comparison of
the vacuum and soliton structure of a type IIA compactification on CY four-
fold with its superpotential from four-form flux, and the Landau–Ginzburg
description [97] of the deformed Kazama–Suzuki coset models [98]. The
four-folds relevant for this connection are local manifolds that are fibered
by singular two-dimensional ALE spaces and their deformations. The ADE
type of the singularity in the fiber determines the numerator G of the N = 2
coset G/H, while the flux determines the denominator H and the level. More
precisely, the fluxes studied in [24] are the minimal fluxes corresponding to
a minuscule weight of G. These give rise to the so-called SLOHSS models
(simply-laced, level one, Hermitian symmetric space), which is the subset
of Kazama–Suzuki models admitting a Landau–Ginzburg description. This
identification was checked for the A-series in [24] and worked out in detail
for D and E in [25]. It has remained an interesting question to identify the
theories for non-minimal flux, see e.g., the conclusions of [25].
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An important clue to address this question has come from the study of
matrix factorizations and their deformation theory. In particular, it was
observed in [26], see also [99], that the superpotential resulting from the
deformation theory of certain matrix factorization in N = 2 minimal models
coincides with the Landau–Ginzburg potential of a corresponding SLOHSS
model. More precisely, the matrix factorizations are associated with the
fundamental weights of ADE simple Lie algebras via the standard McKay
correspondence, and the relevant subset are those matrix factorizations cor-
responding to the minuscule weights. We argue that this coincidence of
superpotentials can be explained via heterotic/F-theory/type II duality.

The missing link is provided by Curto and Morrison [100]. Among the
results of this work is that the matrix factorizations of ADE minimal models
can be used to describe bundles on partial resolutions (Grassmann blowups)
of the three-fold singularities of ADE type (8.1) that appear in the above-
mentioned conjecture of [95]. The bundles have support only on the smooth
part of the partial blowup, which is important to apply the arguments of [93].

The combination of the last three paragraphs suggests that we should
couple the heterotic worldsheet to the matrix factorizations of [100]! This
can be implemented by using the (0, 2) linear sigma model [76] resp. (0, 2)
Landau–Ginzburg models [101], along the lines of [102], in combination with
an appropriate non-compact Landau–Ginzburg model to describe the fibra-
tion structure. The resulting strongly coupled heterotic world-sheet theories
are conjectured to be dual to those 2D field theories that are engineered on
the four-fold side. The ADE type of the minimal model is that of the fiber of
the four-fold, while the fundamental weight specifies the choice of four-form
flux.

As formulated, the above conjecture makes sense for all, fundamental
weights. The main testable prediction is thus the coincidence of the deforma-
tion superpotentials of the higher rank matrix factorizations corresponding
to non-minuscule fundamental weights with the appropriate periods of the
four-folds of [24,25]. Note that the Kazama–Suzuki models only appear for
the minuscule weights, and that we have not covered the case of fluxes corre-
sponding to non-fundamental weights. We plan to return to these questions
in the near future.

9 Conclusions

In this note we study the variation of Hodge structure of the complex struc-
ture moduli space of certain CY four-folds. These moduli spaces capture
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certain effective couplings of the N = 1 supergravity theory arising from
the associated F-theory four-fold compactification. Furthermore, through a
chain of dualities we relate such F-theory scenarios to heterotic compacti-
fications with non-trivial gauge bundle and small instanton five-branes and
to type II compactifications with branes.

The connection to the heterotic string is made through the stable degener-
ation limit of the F-theory four-fold [12,15,39]. Taking this limit specifies the
corresponding heterotic geometry. Due to the employed F-theory/heterotic
duality the resulting heterotic geometry is given in terms of elliptically
fibered CY three-folds. Furthermore, in the simplest cases, the geomet-
ric bundle moduli are described in terms of the spectral cover, which is
also encoded in the four-fold geometry in the stable degeneration limit [12].
Alternatively, depending on the details of the F-theory four-fold, we describe
the moduli space of heterotic five-branes instead of bundle moduli. On the
other hand, the link to the open–closed type II string theories is achieved
through the weak coupling limit [11], and it realizes the open–closed duality
introduced in [16–18].

We argue that the two distinct limits to the heterotic string and to the
open–closed string map the variation of Hodge structure of the F-theory
CY four-fold to the variation of mixed Hodge structure of the corresponding
CY three-fold relative to a certain divisor. For the heterotic string this
divisor is either identified with the spectral cover of the heterotic bundle or
with the embedding of small instantons. In the context of open–closed type
II geometries the divisor encodes a certain class of brane deformations as
studied in [8–11,17,19,20,103,104].

Starting from the F-theory four-fold geometry we discuss in detail non-
trivial background fluxes and compute the N = 1 superpotential, which cou-
ples to the moduli fields described by the variation of Hodge structure.
We trace these F-terms along the chain of dualities to the open–closed
and heterotic string compactifications. For the heterotic string we find
that, depending on the characteristics of the four-fold flux quanta, these
fluxes either deform the bulk geometry of the heterotic string to general-
ized CY manifolds [69–71], or they give rise to superpotential terms for
the bundle/five-brane moduli fields. The superpotentials associated to the
flux quanta encode obstructions to deformations of the spectral cover. Fur-
thermore, we show that in the stable degeneration limit the holomorphic
Chern–Simons functional of the heterotic gauge bundle gives rise to these
F-terms for the geometric bundle moduli.

The underlying four-fold description of the heterotic and the type II
strings allows us to extract (non-perturbative) corrections to the stable
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degeneration limit and the weak coupling limit, respectively. We discuss
the nature of these corrections, and we find that they encode world-sheet
instanton, D-instanton and space–time instanton corrections depending on
the specific theory in the analyzed web of dualities. In order to exhibit the
origin of these corrections we compare our analysis with the analog N = 2
scenarios, which have been studied in detail in [23,36].

Apart from these F-term couplings we demonstrate that our techniques
are also suitable to extract the Kähler potentials for the metrics of the
studied moduli spaces in appropriate semi-classical regimes. In [11] the
connection to the open–closed Kähler potential for three-fold compactifica-
tions with seven-branes has been developed. Here, starting from the Kähler
potential of the complex structure moduli space of the CY four-fold, we
also extract the corresponding Kähler potential associated to the combined
moduli space of the complex structure and certain moduli of the heterotic
gauge bundle. In leading order these Kähler potentials are in agreement
with the results obtained by dimensional reduction of higher dimensional
supergravity theories [44, 80]. In addition our calculation predicts sublead-
ing corrections.

Thus, the used duality relations together with the presented compu-
tational techniques offer novel tools to extract (non-perturbative) correc-
tions to N = 1 string compactifications arising from F-theory, from het-
erotic strings or from type II strings in the presence of branes. It would be
interesting to confirm the anticipated quantum corrections by independent
computations and to understand in greater detail the physics of various
(non-perturbative) corrections discussed here. In particular, our analysis
suggests a connection to the quantum corrections in the hypermultiplet sec-
tor of N = 2 compactifications analyzed in [92].

Our techniques should also be useful to address phenomenological inter-
esting questions in the context of F-theory, type II or heterotic string com-
pactifications. As discussed in Sections 5 and 6, the finite S corrections
to the superpotential capture the backreaction of the geometric moduli to
the bundle moduli. Such corrections are a new and important ingredient
in fixing the bundle moduli in phenomenological applications, as empha-
sized, e.g., in [35]. Thus the calculated (quantum corrected) superpotentials
provide a starting point to investigate moduli stabilization and/or super-
symmetry breaking for the class of models discussed here. In the context of
the heterotic string it seems plausible that our approach can be extended
to more general heterotic bundle configurations, which can be described in
terms of monad constructions [101,105]. Such an extension is not only inter-
esting from a conceptual point of view, but in addition it also gives a handle
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on analyzing the effective theory of phenomenologically appealing heterotic
bundle configurations as discussed, for instance, in [106].

In Section 8, we propose an explanation, and conjecture an extension of,
an observation originally made by Warner, which relates the deformation
superpotential of matrix factorizations of minimal models to the flux super-
potential of local four-folds near an ADE singularity. One of the results of
this connection is the suggestion that (higher rank) matrix factorizations
should also play a role in constructing the (0, 2) world-sheet theories of het-
erotic strings.

The presented approach to calculate deformation superpotentials by
studying adequate Hodge problems is ultimately linked to the derivation
of effective obstruction superpotentials with matrix factorization or, more
generally, world-sheet techniques [107–112]. While the latter approach leads
to effective superpotentials up to field redefinitions, our computations give
rise to effective superpotentials in terms of flat coordinates due to the under-
lying integrability of the associated Hodge problem. It would be interesting
to explore the physical origin and the necessary conditions for the emergence
of such a flat structure in the context of the deformation spaces studied in
this note.

Appendix A Some toric data for the examples

A.1 The quintic in P 4(1, 1, 1, 1, 1)

A.1.1 Parametrization of the hypersurface constraints

The toric polyhedra for the example considered in Section 6 are defined as
the convex hull of the vertices

Δ ν0 = ( 0, 0, 0, 0, 0) Δ∗ ν

0 = ( 0, 0, 0, 0, 0)

ν1 = (−1, 0, 0, 0, 0) ν

1 = ( 1,−4, 1, 1, 0)

ν2 = ( 0,−1, 0, 0, 0) ν

2 = ( 1, 1,−4, 1, 0)

ν3 = ( 0, 0,−1, 0, 0) ν

3 = ( 1, 1, 1,−4, 0)

ν4 = ( 0, 0, 0,−1, 0) ν

4 = ( 1, 1, 1, 1, 0)

ν5 = ( 1, 1, 1, 1, 0) ν

5 = (−4, 1, 1, 1, 1)

ν6 = ( 0, 0, 0, 0,−1) ν

6 = (−4, 1, 1, 1,−5)

ν7 = (−1, 0, 0, 0,−1) ν

7 = ( 0,−3, 1, 1, 1)

ν8 = (−1, 0, 0, 0, 1) ν

8 = ( 0, 1,−3, 1, 1)

ν

9 = ( 0, 1, 1,−3, 1)

ν

10 = ( 0, 1, 1, 1, 1)

(A.1)
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The local coordinates in expressions (6.3) and (6.5) are defined by the fol-
lowing selections Ξ1 and Ξ2 of points of Δ∗, respectively:

Ξ1

x′
1−4 1 1 1 0

x2 1−4 1 1 0
x3 1 1−4 1 0
x4 1 1 1−4 0
x5 1 1 1 1 0
a −4 1 1 1−1
b −4 1 1 1 1

Ξ2

Z 1 1 0 0 0
Y 1−2 0 0 0
X ′−2 1 0 0 0
s 1 1−2 1 0
t 1 1 1−2 0
u 1 1 1 1 0
a −2 1 0 0 1
b −2 1 0 0−1 (A.2)

As described in Section 6, the local coordinates {xi} and {Z, Y, X ′, s, t, u}
may be associated with the “heterotic” manifold ZB encoded in the F-theory
four-fold XB. In the example, ZB is the mirror quintic, which is embedded
in a toric ambient space with a large number h1,1 = 101 of Kähler classes,
resulting in 101 coordinates xk in the hypersurface constraint (6.1). {xi}
and {Z, Y, X ′, s, t, u} are special selections of these 101 coordinates, where
the latter display (one of) the elliptic fibration(s) of ZB.

On the other hand (a, b) are coordinates inherent to the four-fold XB,
parametrizing a special P1, F , which plays the central role in the stable
degeneration limit of [12, 39] and the local mirror limit of [22, 23]. F is the
base of the elliptic fibration of a K3 Y , which in turn is the fiber of the K3
fibration of XB:

Y → F, Y → XB → B2.

In the above example, B2 can be thought of as a blow up of P2. The
stable degeneration limit of the toric hypersurface can be defined as a local
mirror limit in the complex structure moduli of XB, where one passes to
new coordinates [23]

(6.3) : x1 = x′
1ab, v = a/b , (6.5) : X = X ′ab, v = a/b.

The distinguished local coordinate v = a/b on C∗ parametrizes a patch near
the local singularity associated with the bundle/brane data for a Lie group
G [22]. For G = SU(n), v appears linearly, which leads to a substantial
simplification of the Hodge variation problem, as described in the appendices
of [16, 17].

A.1.2 Perturbative gauge symmetry of the heterotic string

The perturbative gauge symmetry of the dual heterotic string is determined
by the singularities in the elliptic fibration of the K3 fiber Y [15]. There is a
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simple technique to read off fibration structures for the CY four-fold XB from
the toric polyhedra described in [113]. Namely a fibration of XB → B4−n

with fibers a CY n-fold Yn corresponds to the existence of a hypersurface H
of codimension 4− n, such that the integral points in the set H ∩Δ∗ define
the toric polyhedron of Yn.

In the present case, the toric polyhedron Δ∗
K3 for the K3 fiber Y is given

as the convex hull of the points in Δ∗ lying on the hypersurface H : {x3 =
x4 = 0}:

ΔK3 μ0 = ( 0, 0, 0) Δ∗
K3 μ


0 = ( 0, 0, 0)
μ1 = ( 0,−1, 0) μ


1 = (−2, 1,−3)
μ2 = ( 1, 1, 0) μ


2 = (−2, 1, 1)
μ3 = ( 0, 0,−1) μ


3 = ( 0,−1, 1)
μ4 = (−1, 0,−1) μ


4 = ( 0, 1, 1)
μ5 = (−1, 0, 1) μ


5 = ( 1,−2, 0)
μ


6 = ( 1, 1, 0) (A.3)

where the zero entries at the third and fourth position have been deleted
and ΔK3 is the dual polyhedron of Δ∗

K3. The elliptic fibration of Y is visible
as the polyhedron Δ∗

E = Δ∗
K3 ∩ {x5 = 0} of the elliptic curve

ΔE = Conv {(−1, 0), (0,−1), (1, 1)} , Δ∗
E = Conv {(−2, 1), (1,−2), (1, 1)} .

Since the model for the elliptic fiber is not of the standard form, but the cubic
in P2 orbifolded by the action (6.7), the application of the standard methods
to determine the singularity of the elliptic fibration and thus the perturba-
tive heterotic gauge group should be reconsidered carefully. The singularity
of the elliptic fibration can be determined directly from the hypersurface
equation of X of the elliptically fibered K3 polynomial

p(K3) = Z3 + Y 3 + X ′3(a2b4 + a4b2 + a3b3) + ZY X ′(ab + b2), (A.4)

which is associated to the toric data (A.3). The Z3 orbifold singularity is
captured by r3 = p q in terms of the invariant monomials p = Y 3

X′3 , q = Z3

X′3

and r = ZY
X′2 . Then, to leading order, the singularities of the elliptic fiber E

in the vicinity a = 0 and in the vicinity b = 0 are, respectively, given by

pa→0(K3) = a2q + q2 + qr + r3, pb→0(K3) = b2q + q2 + bqr + r3.

Using a computer algebra system, such as [114], it is straightforward to
check that the polynomials pa→0(K3) and pb→0(K3) correspond to the ADE
singularities SU(6) and E6.
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In fact it turns out that the same answer is obtained by naively applying
the method developed in [115, 116] for the standard model of the elliptic
fiber, which implements the Kodaira classification of singular elliptic fibers
in the language of toric polyhedra, such that the orbifold group is taken into
account automatically. The polyhedron Δ∗

K3 splits into a top and bottom
piece Ξ+ and Ξ− with the points

Ξ+

−2 1 1
−1 0 1
−1 1 1

0−1 1
0 0 1
0 1 1

Ξ−
−2 1 −3
−2 1 −2
−2 1 −1
−1 0 −2
−1 1 −2

0−1 −1
0 1 −1

which build up the affine Dynkin diagrams of SU(6) and E6, respectively.
As asserted in [90, 115, 116], these toric vertices corresponds to two ADE
singularities of the same type, in agreement with the direct computation.
Moreover, deleting the vertex ν7 ∈ Δ which is associated with the excep-
tional toric divisor that described the brane/bundle modulus ẑ, the same
analysis produces a K3 fiber with two ADE singularities of type E6, leading
to the pattern (6.8).

A.1.3 Moduli and Picard–Fuchs system

The moduli za are related to the parameters ai in (6.1) by

za = (−)la0
∏

i

a
lai
i , (A.5)

where lai are the charge vectors that define the phase of the linear sigma
model for the mirror XA. For the phase considered in [10,11], these are given
in (6.9). The complex structure modulus z ∼ e2πit mirror to the volume
of the generic quintic fiber, the brane/bundle modulus ẑ ∼ e2πit̂ and the
distinguished modulus zS ∼ e2πiS capturing the decoupling limit are given by

z = z1z2 = −a1a2a3a4a5

a5
0

, ẑ = z2 = −a1a6

a0a7
, zS = z3 =

a7a8

a2
1

.

The GKZ system for CY four-folds has been discussed in the context of
mirror symmetry e.g., in [10, 79, 84]. A straightforward manipulation of
it leads to the following system of Picard–Fuchs operators for the above
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example:

L1 = θ4
1(θ1 + θ3 − θ2)− z1(−θ1 + θ2)(4θ1 + 1 + θ2)(4θ1 + 2 + θ2)

× (4θ1 + 3 + θ2)(4θ1 + 4 + θ2),

L2 = (θ1 + θ3 − θ2)θ3 − z3(2θ3 − θ2)(2θ3 + 1− θ2),

L3 = −(2θ3 − θ2)(−θ1 + θ2)− z2(θ1 + θ3 − θ2)(4θ1 + 1 + θ2),

L4 = (−θ1 + θ2)θ3 + z2z3(2θ3 − θ2)(4θ1 + 1 + θ2),

L5 = −(2θ3 − θ2)θ4
1 − z1z2(4θ1 + 1 + θ2)(4θ1 + 2 + θ2)(4θ1 + 3 + θ2)

× (4θ1 + 4 + θ2)(4θ1 + 5 + θ2),

L6 = −(2θ3 − θ2)θ3
1 − 5z1z2(4θ1 + 1 + θ2)(4θ1 + 2 + θ2)(4θ1 + 3 + θ2)

× (4θ1 + 4 + θ2)− z2θ
3
1(θ1 + θ3 − θ2). (A.6)

Here θa = za
∂
za

are the logarithmic derivatives in the coordinates za, a =
1, 2, 3.

A.2 Heterotic five-branes

A.2.1 Degree 18 hypersurface in P4(1, 1, 1, 6, 9)

The polyhedra for the mirror pair (XA, XB) of four-folds dual to the three-
fold compactifications on (ZA, ZB) are defined as the convex hull of the
points:

Δ
ν0 0 0 0 0 0
ν1 0 0 0−1 0
ν2 0 0−1 0 0
ν3 0 0 2 3 0
ν4−1 0 2 3 0
ν5 0−1 2 3 0
ν6 1 1 2 3 0
ν7 0 0 2 3−1
ν8−1 0 2 3−1
ν9 0 0 2 3 1

Δ∗
6 6 1 1 0
6 6 1 1−6
6−12 1 1 0
6−12 1 1−6
0 6 1 1 6
0 0 1−1 0
0 0−2 1 0
0 −6 1 1 6

−12 6 1 1 6
−12 6 1 1−6

xi Ξ
Y 0 0 1−1 0
X 0 0−2 1 0
Z ′ 0 0 1 1 0
s−12 6 1 1 0
t 6−12 1 1 0
u 6 6 1 1 0
a 0 0 1 1−1
b 0 0 1 1 1

(A.7)

Δ is the enhanced polyhedron for Xnc
A in Table 2 of [10], with the point

ν9 added in the compactification XA of Xnc
A . The polyhedron Δ3 for the

three-fold ZA defined as a degree 18 hypersurface in P4(1, 1, 1, 6, 9) is given
by the points on the hypersurface νi,5 = 0, with the last entry deleted. The
vertices of the dual polyhedron Δ∗

3 of Δ3 are given by the points of Δ∗ with
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ν

i,5 = 0 and on extra vertex (−12, 6, 1, 1). On the r.h.s. we have given the

selection Ξ of points in Δ∗ used to define local coordinates in (7.2). The
relation to the coordinates used there is Z = Z ′ab, v = a/b.

The relevant phase of the Kähler cone considered in [10,19] is

l1 = ( −6 3 2 1 0 0 0 0 0 0),
l2 = ( 0 0 0 −2 0 1 1 −1 1 0),
l3 = ( 0 0 0 −1 1 0 0 1 −1 0),
l4 = ( 0 0 0 −1 −1 0 0 0 1 1). (A.8)

In the coordinates (A.5), the brane modulus in (6.6) is given by ẑ = z
1/3
2 z

−2/3
3 .

A.2.2 Degree 9 hypersurface in P4(1,1,1,3,3)

The polyhedra for the mirror pair (XA, XB) of four-folds dual to the three-
fold compactifications on (ZA, ZB) are defined as the convex hull of the
points:

Δ
ν0 0 0 0 0 0
ν1 0 0 0−1 0
ν2 0 0−1 0 0
ν3 0 0 1 1 0
ν4−1 0 1 1 0
ν5 0−1 1 1 0
ν6 1 1 1 1 0
ν7 0 0 1 1−1
ν8−1 0 1 1−1
ν9 0 0 1 1 1

Δ∗
−6 3 1 1 3

0 3 1 1 3
0−3 1 1 3
3 3 1 1−3
−6 3 1 1−3

3−6 1 1−3
3 3 1 1 0
3−6 1 1 0
0 0−2 1 0
0 0 1−2 0

xi Ξ
Y 0 0 1−2 0
X 0 0−2 1 0
Z ′ 0 0 1 1 0
s−6 3 1 1 0
t 3−6 1 1 0
u 3 3 1 1 0
a 0 0 1 1−1
b 0 0 1 1 1

(A.9)

The polyhedron Δ3 for the three-fold ZA defined as a degree 9 hypersurface
in P4(1, 1, 1, 3, 3) is again given by the points on the hypersurface νi,5 = 0.
On the r.h.s. we have given the selection Ξ of points in Δ∗ used in (7.5),
with the redefinitions Z = Z ′ab, v = a/b. The phase of the Kähler cone
considered in [10] is

l1 = (−3 1 1 1 0 0 0 0 0 0),
l2 = ( 0 0 0 −2 0 1 1 −1 1 0),
l3 = ( 0 0 0 −1 1 0 0 1 −1 0),
l4 = ( 0 0 0 −1 −1 0 0 0 1 1). (A.10)

In the coordinates (A.5), the brane modulus in (7.5) is given by ẑ = z
1/3
2 z

−2/3
3 .
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A.3 SU(2) bundle of the degree 9 hypersurface in P4(1, 1, 1, 3, 3)

The polyhedra for the mirror pair (XA, XB) of four-folds dual to the three-
fold compactifications on (ZA, ZB) are defined as the convex hull of the
points:

Δ
ν0 0 0 0 0 0
ν1 0 0 0−1 0
ν2 0 0−1 0 0
ν3 0 0 1 1 0
ν4−1 0 1 1 0
ν5 0−1 1 1 0
ν6 1 1 1 1 0
ν7 0 0 0 0−1
ν8 0 0 0−1−1
ν9 0 0 0−1 1

Δ∗
3 3 1 1 0
3−6 1 1 0
2 2 1 0 1
2−4 1 0 1
0 0 1−2 1
0 0 1−2−3
0 0−1 0 1
0 0−2 1 0
−4 2 1 0 1
−6 3 1 1 0

xi Ξ
Y ′ 0 0 1−2 0
X 0 0−2 1 0
Z 0 0 1 1 0
s−6 3 1 1 0
t 3−6 1 1 0
u 3 3 1 1 0
a 0 0 1−2−1
b 0 0 1−2 1

(A.11)

Δ is the enhanced polyhedron for Xnc
A in Table 4 of [10], with the point

ν9 added in the compactification XA of Xnc
A . The polyhedron Δ3 for the

three-fold fiber ZA of the fibration XA → P1 is given by the points on the
hypersurface νi,5 = 0, with the last entry deleted [10]. The vertices of the
dual polyhedron Δ∗

3 of Δ3 are given by the points of Δ∗ with ν

i,5 = 0 and

one extra vertex (0, 0, 1,−2) (which is a point, but no vertex, in Δ∗). On
the r.h.s. we have given the selection Ξ of points in Δ∗ used to define
local coordinates in (7.7). The relation to the coordinates used there is
Y = Y ′ab, v = a/b. The charge vectors for the phase of the linear sigma
model considered in [10] is

l1 = (−2 0 1 1 0 0 0 −1 1 0),
l2 = ( 0 0 0 −3 1 1 1 0 0 0),
l3 = (−1 1 0 0 0 0 0 1 −1 0),
l4 = ( 0 −2 0 0 0 0 0 0 1 1). (A.12)

In the coordinates (A.5), the brane modulus in (7.8) is given by ẑ = z3

(z3
1z2z

3
3)

−1/9. The combination z3
1z2z

3
3 of complex structure parameters is

mirror to the overall volume of ZA.

Explicit expressions for the superpotential in the decoupling limit can be
found in Section 3.3 and Appendix B. of [10].
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[92] M. Roček, C. Vafa and S. Vandoren, Hypermultiplets and topo-
logical strings, JHEP 0602 (2006), 062 [arXiv:hep-th/0512206];
D. Robles-Llana, F. Saueressig and S. Vandoren, String loop
corrected hypermultiplet moduli spaces, JHEP 0603 (2006), 081
[arXiv:hep-th/0602164]; D. Robles-Llana, M. Roček, F. Saueres-
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