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Abstract

We explain the B-model origin of extended Picard—Fuchs equations
satisfied by the D-brane superpotential on compact Calabi—Yau three-
folds. The domainwall tension is identified with a Poincaré normal func-
tion — a transversal holomorphic section of the Griffiths intermediate
Jacobian — via the Abel-Jacobi map. Within this formalism, we derive
the extended Picard—Fuchs equation associated with the mirror of the
real quintic.
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1 Introduction

Mirror symmetry is a powerful tool to manipulate physical and mathematical
data associated with Calabi—Yau manifolds. Soon after the earliest exam-
ples of mirror symmetry [1-3], a computation of the special geometry and
the enumeration of rational curves on the quintic were made by Candelas
et al. [4]. The computation was explained Hodge theoretically in [5] and the
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verification of the enumerative predictions was completed in [6,7]. Approaches
to derive mirror symmetry from the worldsheet point of view have also been
discussed [8,9].

Meanwhile, D-branes have entered mirror symmetry in a variety of ways.
To name the most important, Witten [10] showed that for open topological
strings, cubic string field theory reduces to ordinary or holomorphic Chern—
Simons theory. Kontsevich [11] proposed to understand mirror symmetry
as an equivalence of A.,-categories, whose objects were later identified as
D-branes. Strominger et al. [12] used D-branes to develop the geometric pic-
ture of mirror symmetry as a duality of torus fibrations. Vafa and various
collaborators (beginning with Gopakumar) have shown that Bogomol'nyi —
Prasad—Sommerfield (BPS) states of D-branes are extremely useful invari-
ants that carry a lot of physical and enumerative information [13]. Dou-
glas [14] has complemented the picture by a general formulation of stability
conditions on D-brane categories (see also [15]).

In the course of these developments, the established theory underlying
closed string mirror symmetry for Calabi—Yau manifolds — special geometry
and Gromov—Witten invariants — has played a very useful supporting role.
It has, however, not always been clear whether D-branes would ultimately
be part of the traditional picture or how one would derive the closed string
story, e.g., from D-brane categories. (This problem was posed already in
[11]; for some recent work, see [16-18].) As a physicist, one feels that in
some sense, the underlying reason is that A..-categories are too big. Since
D-brane categories are defined off-shell, they carry a lot of redundant, gauge-
dependent information. With some hindsight, one is led to ask the natural
question: What is the invariant physical information stored in the derived
category?

In this paper, we give answers to these questions by picking up the Hodge
theoretic considerations. Our main motivation is the recent realization that
at least in some cases, there is indeed invariant information in the open
string sector beyond its cohomology. Walcher [19] showed that for a certain
D-brane configuration on the quintic,’ the on-shell value of the superpo-
tential, as a function over closed string moduli space, satisfies a differential
equation which is an extension of the Picard—Fuchs equation which gov-
erns closed string mirror symmetry. According to general principles, this
superpotential makes enumerative predictions in the A-model, which were
subsequently verified rigorously in [22]. In this work, we will explain the
B-model origin of this extended Picard-Fuchs equation. Previous studies
of analogous problems in local Calabi—Yau manifolds include [23,24], whose

"Very similar results appear to hold for many other one-parameter models [20,21].
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enumerative predictions were verified in [25,26] and whose differential equa-
tions were discussed in [27,28] (see also [29,30]).

The main idea to derive Picard—Fuchs equations in the context of open
strings has been implicit in many previous works. Consider, for simplic-
ity, the case when we are wrapping a D5-brane on a curve in some second
homology class of our Calabi—Yau manifold. Assume that this class has two
isolated holomorphic representatives C and C_. Choose a three-chain T,
OI' = C4 — C_ connecting these two representatives. Cy and C_ correspond
physically to two supersymmetric vacua of an A/ = 1 supersymmetric theory
on the brane worldvolume. The tension of a BPS domainwall between the
two vacua is, 7 = W4 — W_, equal to the superpotential difference, and is
given by the geometric formula [31]

Wi (2) —W_(2) = T(2) = /F a(2), (1.1)

where (z) is the holomorphic three-form as a function of complex structure
moduli.

The Picard—Fuchs equation, LII(z) = 0, is the (in general, system of par-
tial) differential equation satisfied by any period II(z) = [ Q(z) of the
holomorphic three-form over a closed three-cycle, 9I'° = 0. When apply-
ing the Picard—Fuchs operator to a chain integral as in (1.1), we will not,
in general, obtain zero. One type of non-vanishing contribution arises as a
boundary term, but there are, in general, also other terms from differentiat-
ing the chain I'. The inhomogeneous Picard—Fuchs equation associated with
C, — C_ is then

LT (z) = f(z2). (1.2)
As we will review below, this inhomogeneous equation is well-defined by the
algebraic cycle C; — C_ and does not depend on the choice of chain I'. It

is also known (although we will not review this) that f(z) is necessarily a
rational function of the suitable algebraic coordinate on moduli space.

The general existence of inhomogeneous Picard—Fuchs equations similar
o (1.2) has been known in the mathematical literature at least as early
as [32]. (In dimension 1, of course, such notions are completely classical.)
A fairly recent reference with examples worked out in dimension 2 (i.e., for
K3 surfaces) is [33]. The main result of the present work is a complete
and mathematically rigorous derivation of the inhomogeneous Picard—Fuchs
equation satisfied by 7 (z) for the B-brane mirror to the real quintic. This
is, to our knowledge, the first explicit example of an inhomogeneous Picard—
Fuchs equation in dimension bigger than 2.
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The particular form of the inhomogeneous Picard—Fuchs equation for the
real quintic was originally guessed in [19] based on very restrictive mon-
odromy properties that its solution should possess. Combined with the
results of [22], our derivation puts open string mirror symmetry for the real
quintic at an equal level with the classical mirror theorems on rational curves
in Calabi—Yau three-folds.

Before doing the computation in Section 4 (some details having been
deferred to the appendix), we will describe in Section 2 how normal func-
tions and the variation of mixed Hodge structure capture certain invariant
information of the open string sector. We will not attempt a detailed com-
parison with the local toric case [27,28]. It would be very interesting to
understand better the relation between those works and ours, especially
with regard to open string moduli. We also note that the insights into the
relation between D-branes and normal functions have proven central in the
recent computation of loop amplitudes in the open topological string using
the extended holomorphic anomaly equation [34].

In Section 3, we review in a self-contained manner the geometry of the real
quintic and its mirror. This will help explain some of the original background
that led to the extended Picard—Fuchs equation. Alternatively, one can
view our results in this paper as further evidence for the conjectural relation
between the real quintic(s) and certain objects in the derived category of the
mirror quintic. This could be a starting point for establishing homological
mirror symmetry for the quintic. We present our conclusions in Section 5.

2 Normal functions and D-branes

The urge to understand the differential equation of [19] in Hodge theoretic
terms is very natural. In hindsight, it is not even surprising that the correct
framework is the theory of Poincaré normal functions, applied to Calabi—Yau
three-folds. That theory was developed by Griffiths [32,35] as an integral
part of Hodge theory in higher dimension. Picard—Fuchs equations play an
important role in the variation of Hodge structure and have been central to
mirror symmetry for closed strings. So one should naturally have wondered
about the use of normal functions in this context.

On the other hand, there are very good reasons to believe that normal
functions will not be the full story for open string mirror symmetry com-
putations. As is now well accepted, D-branes on Calabi—Yau manifolds can
only be fully understood in some sophisticated categorical framework. The
D-brane superpotential, which is the physical observable governed by the
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differential equation, is realized mathematically in a fairly complicated way
in the framework of A, categories [36,37]. From this point of view, the
relevance of classical Hodge theory is not immediate at all.

The purpose of this section is to compile the main definitions and theorems
pertaining to normal functions, as well as to explain, to the best of our
present understanding, the relation to the D-brane superpotential. We point
out that our main computation in Section 4 takes this general theory as
useful background, but does not, strictly speaking, depend on it.

2.1 Normal functions attached to algebraic cycles

For more details on normal functions, we recommend Griffiths’ original
papers [32,35], as well as the books [38,39]. For an introduction to Hodge
theory, see [40].

Let (H%kil, F*Hékil) be an integral Hodge structure of odd weight 2k — 1.
The Griffiths intermediate Jacobian is the complex torus

2k—1
2%—1 _ He

(2.1)

As real torus, J?*~1 is isomorphic to Hﬁk_l / H%k_l, and the complex struc-
ture on J?¥~! arises from the identification H((le“l/F"/’Hék*1 = Hékil as real
vector spaces. Now if (H%kil, F*H?~1) is an integral variation of Hodge
structure of weight 2k — 1 over some base M, we can consider a relative
version of (2.1),

2k—1
g1 H
- _ 2k—1"
kaHQk 1 o HZ
J2=1 5 M is known as the Griffiths intermediate Jacobian fibration of the
integral variation of Hodge structure.

(2.2)

A normal function of the variation of Hodge structure is a holomorphic
section v of the intermediate Jacobian fibration (2.2) satisfying Griffiths
transversality for normal functions?

Vi e FF1 1 o Q) (2.3)

%We are here omitting the regularity conditions on normal functions that are required
when the variation of Hodge structure degenerates. Those will play only a minor role in
our application.
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where 7 is any lift of v to H?*~1. Also, V is the Gauss-Manin connection
and Q}\/[ the sheaf of differentials on M. It is easy to see that the condition
(2.3) is independent of the lift. For if 7/ is another lift, then

vV =0+nr+ng, (2.4)

where 75 is a section of F¥H2?*~1 and 7z is a section of H. %k ~1. The claim fol-
lows since Vnjz = 0 and Vg € FFIHZ* 1 Q1 by Griffiths transversality
applied to H2+1,

The variation of Hodge structure of interest in this paper arises from
the deformation of complex structure of a family J — M of Calabi—Yau
three-folds with typical fiber Y. The interesting values of k£ in this case are
k =1,2, and 3. The intermediate Jacobians for k = 1, J! and for k = 3, J°
are known as the Picard variety and the Albanese variety, respectively. But
when Y is simply connected, J! = J° = 0, and the only interesting value is
k=2,2k—-1=3.

In the geometric situation, let us say in dimension m, not necessarily
equal to 3, a useful source of normal functions are the homologically trivial
algebraic cycles. Let C € Z¥()) be a relative algebraic cycle of codimension
k, flat over M, i.e., C = n,C is a finite integral linear combination of
algebraic subsets of ). This cycle is “homologically trivial,” denoted C €
ZF(Y)hom if the image of C,, = CNY,, in H?*(Y,,;7Z) is trivial for all m €
M. (Here, Y,, is the fiber of Y — M over m € M, and we are associating
codimension k cycles with (k, k)-forms via Poincaré duality.)

Before defining the normal function, we note that in the geometric situa-
tion, we have the isomorphism (n := dim(Y))

J2k71(Ym) _ (ank+1H2n72k+1(Ym))*/H2n_2k_1(Ym; 7), (2.5)

which follows from the isomorphism H2k~1/Fk f2k—1 o (pr—hk+l fr2n=2k+1)"
and the equivalence from Poincaré duality, (H %=1y, Z)) Y Hyp opyn
(Y;Z), given by integration.

Stepping on (2.5), to define the normal function associated with C, we
need to specify a map ve : FPF+132n=2k+1 _ O,/ defined modulo periods
Hsy,—9k11(Y;7Z). To this end, for each m € M, we pick a 2n — 2k + 1-chain
I',, such that

Ty =Chp in Yy, (2.6)

where C,,, = C NY,, as a codimension-k cycle. Such a chain exists because
C, is homologically trivial, but is ambiguous by closed 2n — 2k + 1 cycles.
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If we require that I'), depend in a continuous fashion on m, the ambiguity
is reduced to Hoy_op11(Y;Z).

Now given [w] € Fr—k+132n=2k+1 e can locally on M representing it
by a relative 2n — 2k + 1-form w € FnF+1 A2n=2k+1 that is closed in the
fiber direction and well defined up to the image of d¥ : F7—Fk+l A2n=2k _,
Frohtl A2n=2k+1 (this last assertion follows from the Dolbeault theorem).
We then define

ve([w])m ::/ Win.- (2.7)

Let us check that this is well defined. If we choose a different representa-
tive w’ of [w], the difference is

/ (el ) = / o (2.8)

where o € F7F+1 A27=2k " This vanishes by type considerations since 9I',,, =
Cyn, is holomorphic, so Poincaré dual to a (k, k)-form.

Finally, we check holomorphicity and transversality. Namely, we analyze
the variation of (2.7) as m varies to first order in M. If v is a (not necessar-
ily holomorphic) complexified tangent vector to M at m, Kodaira—Spencer
theory provides us with a lift, v/, of v to TY. The differential of (2.7) in the
direction of v can be written as

dy(ve([w]))m = - / (o) + / (Fow)m: (2.9)

where V,w represents V,[w] and V is the Gauss—Manin connection on
H2n72k+1

To check holomorphicity, we let v be anti-holomorphic and [w] be a
holomorphic section of FP~F+13{2n=2k+1  We then have that V,[w] =0 in
H2n=2k+1Tp fact, (@Uw)m = d" (wm, ") by Kodaira-Spencer. Thus, (2.9)
vanishes, and v¢ is a holomorphic section of J2~1,

To show transversality, we take v to be holomorphic. Note that the state-
ment V,7¢ € FF17{?*~1 is under the isomorphism H?2+~1/Fk=1f2k—1 =~
(Fr—k+2[2n=2k+1)" (see (2.5)) equivalent to the assertion that (V¢ )([w])m
=0 for [w] € Frh+2yn=2k+1 where ¢ is any lift of 1o to (K2 2k+1)"
By the compatibility of the Gauss—Manin connection with Poincaré dual-
ity, dv(Te([w]))m = (Vole)([w])m + Pe(Vy[w])m, so this criterion becomes
dy(Pe([w)]))m = Pe(Vy|w])m, which is already independent of the lift. Now
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if [w] € Froht2q2n=2k+1 (4, ') € Frktlg2n=2F the first term in (2.9)
vanishes by type consideration. This implies transversality.

We close this subsection with one more definition: The association
AJ: Z5hom = T*HY),  Ce—uwe (2.10)

is known as the Abel-Jacobi map. It contains some useful information about
algebraic cycles and their algebraic equivalences. The theory is particu-
larly rich for Calabi-Yau three-folds (as mentioned above, the interesting
value is then k£ =2) and led to a lot of early results on questions related
to holomorphic curves [35,41,42]. That subject was later revolutionized by
mirror symmetry and Gromov—Witten theory. As we will try to convey in
this article, normal functions are returning to the enterprise as well, with
promising applications in the context of D-branes and mirror symmetry for
open strings.

2.2 Abel-Jacobi map on the derived category

To explain the relevance of normal functions to D-branes, in general, we
take as starting point Witten’s holomorphic Chern—Simons functional. We
denote by Y a (compact) Calabi-Yau three-fold, E a holomorphic vec-
tor bundle over Y, with 0 the Dolbeault operator coupled to E. If a €
AOD(Y, End(E)) is a (0,1)-form with values in the endomorphisms of E,
we define

1 = 1
Shes(a) :/ Tr(ia/\aajL ga/\a/\a) A, (2.11)
Y

where € is the (unique up to scale) holomorphic (3,0)-form on Y. The
functional (2.11) was originally proposed in [43], as an expression for the
space-time superpotential in the context of the heterotic string. This pro-
posal can be explained on the basis that the critical points of (2.11) are
precisely those a € AV (Y, End(E)) for which the (0,2)-part of the curva-
ture vanishes,

FO2) —da+ana=0, (2.12)

i.e., the deformed operator 9, = 0 + a is an alternative Dolbeault operator
on F, viewed as a differentiable vector bundle on Y. In general, 0, will
define a different complex structure on E.

Witten [10] showed that, in the context of the topological string, the
functional (2.11) is the target space or string field theory action describing
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the tree-level dynamics of open strings on Y coupled to E (a topological
B-brane). This also led to the suggestion that holomorphic Chern—Simons
should make sense as a quantum theory, and to various puzzles related to
non-renormalizability of (2.11), appearance of closed strings as intermediate
states, etc. The classical theory has been analyzed in depth over the years
(see [44] for a review). The recent results on open—closed topological string
[34] can be viewed as giving partial answers to the problems related to the
quantum theory.

Connections of the holomorphic Chern—Simons functional with the theory
of normal functions have appeared in the mathematical literature in [45,
46] (see also [47]). In the physics literature, a relation to the Abel-Jacobi
map for curves on Calabi-Yau three-fold was established, e.g., in [23, 48—
50]. When our B-brane, instead of being specified by a holomorphic vector
bundle, is wrapping a holomorphic curve C, it was shown in [23, 49, 50]
that the dimensional reduction of the holomorphic Chern—Simons action is
nothing but the Abel-Jacobi integral

S(C) = / Q with 0T = C — C (2.13)
T

viewed as a functional on all possible curves homotopic to some given refer-
ence holomorphic curve Cy.

Neglecting the dynamics of open strings, the most direct physical interpre-
tation of the formulas (2.11) and (2.13) is as the tension of BPS domainwalls
connecting the background vacuum (9 or Cp), on the D-brane worldvolume,
with some other vacuum, corresponding to a non-trivial critical point, a. or
C,, respectively.

T:

{W(a*) — W(0) = Shos(ax), (2.14)

It should be clear that, even neglecting open string dynamics, those expres-
sions cannot be fully satisfactory for describing the superpotential for an
arbitrary B-brane, which might be neither a holomorphic vector bundle nor
a holomorphic curve in general. The algebraic device needed to generalize
these formulas to an arbitrary object B in D?(Y) (or some category equiv-
alent to it) is the notion of the algebraic second Chern class, cglg(B) [51]. Tt
takes values in the Chow group CH?(Y) of algebraic cycles of codimension 2,
modulo rational equivalence. The image of ¢3'®(B) in cohomology H*(Y'; Z)
is equal to the ordinary (topological) second Chern class cy’P(B), but cglg is
generally a more refined invariant.
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The algebraic Chern class satisfies axioms very similar to its topological
counterpart. In particular, it splits exact triangles in the D-brane category. If

B
/1\
A~ ¢

for three objects, A, B, and C, then the total Chern classes & =1+ > c?lg
satisfy

(2.15)

calg(A) . calg(C') = calg(B), (2.16)
which together with functoriality (and its behavior on holomorphic line bun-
dles) is essentially enough to define c&.

Using the algebraic second Chern class puts us directly in the situation dis-
cussed in the previous subsection. When c;Op(B) =0¢ H*Y;Z), the alge-
braic cycle defined by cglg(B ) € CH?(Y") is homologically trivial and yields,
for fixed Y, an Abel-Jacobi class according to the above discussion. When

B suitably deforms with Y, we obtain a normal function vg = Vol ) In
2
particular, the formula for the domainwall tension is
T =vp(Q), (2.17)

where () is the same holomorphic three-form as above. It is not hard to see
that this definition reduces to (2.11) and (2.13) when B is a holomorphic
vector bundle or a holomorphic curve, respectively.

We should emphasize that the second Chern class will certainly not cap-
ture all the intricacies of the superpotential for a general B-brane on a
Calabi—Yau. This will require a much more sophisticated analysis, partly
along the lines of the cited literature.

2.3 Comments on open problems

Before turning to the applications, we will collect a few more remarks from
the general theory of normal functions, some of which might prove valuable
for further developments.

Extension of Hodge structure

Let (H%k_l, F*H?%=1) be an integral variation of Hodge structure of weight
2k — 1 over a base M. Let v be a normal function. In Exercises 1 and 2
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in Chapter 7 of [39], it is shown that this data can be used to define an
extension of Hodge structure to yield an integral variation of mized Hodge
structure. At the integral level, this is a locally trivial extension

HZ' — (Hp=HZ 'a17) > 2 (2.18)

The weight filtration is given by Way_oHyz = 0, Way_1 Hz = HZF™!, Wy, =
Hy, whereas the Hodge filtration on ‘H = (H%k_1 @ Z) ® Oy is such that it
reduces to the given Hodge filtration F*H?*~! on #?*~1, and to F¥*10y; =
0, F*Opr = Oy on the quotient.

In the context of mirror symmetry, a different mixed Hodge structure is
relevant. This mixed Hodge structure is associated with the degeneration
at a point of maximal unipotent monodromy in the moduli space [5,52].
The monodromy calculations of [19], partially reviewed in Section 4, are
indicative of a very interesting interaction between this limiting mixed Hodge
structure and the one given by extension using the normal function (2.18).
It would be interesting to elucidate this further.

More extensions?

We have so far largely suppressed the existence of an A..-structure on the
category of B-branes, except to ask the natural question how much of that
structure is possibly captured by the normal function? In thinking about
this problem, we are led to the following speculations.

The Aso-structure on a brane B in the category of B-branes is given by
a collection of “higher” products m,, satisfying certain conditions of asso-
ciativity. At the level of the string worldsheet, the m,, with n > 2 can be
determined by computing the (topological) disk amplitudes with n + 1 open
string insertions on the boundary. m; is identified with the open string
BRST operator. Finally, mg is related to the bulk-to-boundary obstruction
map by taking one derivative with respect to the closed string moduli [34].

From general considerations, as well as the identification of the disk ampli-
tude with two bulk insertions as the Griffiths infinitesimal invariant [34], it
appears natural that the normal function v can fit as an “m_1” into the
Aso-structure. As emphasized in [34], the obstruction map can be inter-
preted Hodge theoretically as the dual of the infinitesimal Abel-Jacobi map.
Those two observations suggest that one should try to understand whether
the higher A, products m, for n > 1 can also be given a Hodge theoretic
interpretation.
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A-model version

All considerations in this paper are phrased in the language of the B-model.
On the other hand, we recall that much of the deeper understanding of clas-
sical (closed string) mirror symmetry involved the reconstruction of Hodge
theoretic structures in the A-model. In particular, the importance of quan-
tum cohomology and the structure of the mirror map become especially clear
in the “A-model variation of Hodge structure” [53,54].

It would be very interesting to extend these insights to the open string.
A general definition of a functional conjecturally mirror to the holomorphic
Chern—Simons functional/domainwall tension (see equation (2.14)) is given
in [22], extending [10]. This functional includes corrections from world-
sheet instantons (holomorphic disks ending on Lagrangian submanifolds)
and should in principle be related to Floer theory and the Fukaya category,
as the open string analogues of quantum cohomology. This relation should
be similar to that between the holomorphic Chern—-Simons functional and
the derived category. In the A-model, the precise relation is not currently
understood, but as an intermediate step, it would be interesting to check at
least the Hodge theoretic statements pertaining to normal functions, based
on, say, axioms for open Gromov—Witten invariants.

3 The real quintic and its mirror

Our interest now turns to the quintic Calabi-Yau X = {G = 0} C P*, defined
as the vanishing locus of a degree 5 polynomial G in five complex variables
T1,...,T5. We assume that X is defined over the reals, which means that
all coefficients of G are real (possibly up to some common phase). The real
locus {x; = Z;} C X is then a Lagrangian submanifold, and after choosing a
flat U(1) connection, will define an object in the (derived) Fukaya category
Fuk(X). In this section, we will first review a proposal which identifies a mir-
ror object in the category of B-branes of the mirror quintic, in its Landau—
Ginzburg description. Via some detours, we will be able to derive from the
matrix factorization the corresponding normal function. In the next section,
we will then show by an explicit computation that this normal function sat-
isfies precisely the inhomogeneous Picard—Fuchs equation proposed in [19].

3.1 Six hundred and twenty-five real quintics

Both the topological type and the homology class in H3(X;Z) of the real
locus depend on the complex structure of X (the choice of (real) polynomial
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G). On the other hand, the Fukaya category is independent of the choice
of G (real or not). The object in Fuk(X) that we shall refer to as the
real quintic is defined from the real locus L of X when G is the Fermat
quintic G = 23 + 23 + :Ug + x5+ mg It is not hard to see that topologically
L = RP3. There are therefore two choices of flat bundles on L, and we will
denote the corresponding objects of Fuk(X) by Li and L_, respectively.
More precisely, since Fuk(X ) depends on the choice of a complexified Kéhler
structure on X, we define L4 for some choice of Kéhler parameter ¢ close to
large volume Im(t) — oo, and then continue it under Kéhler deformations.
In fact, the rigorous definition of the Fukaya category is at present only
known infinitesimally close to this large volume point [55]. However, Fuk(X)
does exist over the entire stringy Kéahler moduli space of X, and at least
some of the structures vary holomorphically. Our interest here is in the
variation of the categorical structure associated with L4 over the entire
stringy Kéahler moduli space of X, identified via mirror symmetry with the
complex structure moduli space of the mirror quintic Y.

The Fermat quintic is invariant under more than one anti-holomorphic
involution. If Z5 denotes the multiplicative group of fifth roots of unity, we
define for x = (x1,...,xs5) € (Z5)® an anti-holomorphic involution o, of P*
by its action on homogeneous coordinates

Oy * Tj = XiT;- (3.1)

The Fermat quintic is invariant under any o,. The involution and the fixed-
point locus only depend on the class of x in (Z5)®/Zs5 = (Zs5)*, and we obtain

in this way 5* = 625 (pairs of) objects L[f in Fuk(X). We will return to

those 625 real quintics below, and for the moment focus on Ly = L[f:l].

We emphasize again that although we have defined the Lagrangians L[j[d
as fixed-point sets of anti-holomorphic involutions of the Fermat quintic, we
can think of the corresponding objects of Fuk(X) without reference to the
complex structure.

3.2 The prediction

The image in K°(Fuk(X)) is the same for L and L_. This is the counter-
part in the A-model of the triviality of topological Chern classes c'°P(By —
B_) for two objects By in the category of B-branes. As mentioned above,
there should exist a definition of an Abel-Jacobi map to a normal function
of the A-model variation of Hodge structure constructed from the quantum
cohomology of X [53,54]. As explained in [19], this normal function can be
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realized geometrically by wrapping a D-brane on a disk D whose bound-
ary on L represents the non-trivial element of Hy(L;Z) = Zy. Neglect-
ing instanton corrections, the corresponding truncated normal function is
% + % mod tZ + Z.® Instanton corrections deform this to

t 1 1
— 'y (f — 4/ 2) 2
TA(t) ) 4 + 272 Z nqq ) (3 )
d odd
where ¢ = ¢?™, and ng are the open Gromov-Witten invariants of the real
quintic defined in [56], predicted in [19], and fully computed in [22]. The

precise result for the ng is as follows.

Mirror symmetry for the quintic is governed by the differential operator
L=0%"—52(50 +1)(50 4 2)(50 + 3)(50 + 4), (3.3)

where 6 = zd/dz. As we will review further below, £ is the Picard-Fuchs
operator of the mirror quintic. The equation Lw(z) = 0 has four linearly
independent solutions. Two of those solutions are given by the following
power-series expansion around z = 0:

N (3.4)
w1(2) = wo(z)log z + 5;1 Eijf)); ZM (1 +5m) — ¥(1 4+ m)],
and determine the mirror map as
F=t(z) = ;MZ;EE; g(2) = exp(2mit(2)). (3.5)
The result of [19,22] is
£(w0(2)Ta(2) = 155 V7 (3.6)

Combined with the boundary conditions (3.2), this is equivalent to

wi(z) ?D(J(Z)_i_gT(z)7 (3.7)

@o(2)Tal2) = = 4 2

3The sign depends on whether we consider Ly — L_ or L_ — L. For this to make
sense, note that £ — 1 = —(£ + 1) mod tZ + Z. For details, see [19].
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where

L(3/2)° 2 LGM+7/2) s _ 5005 RN
@) =T Z T(m 1 3/2)5 = Vit =g~ (38)

gives a particular solution of the inhomogeneous Picard—Fuchs equation
(3.6).

3.3 Matrix factorization

For the rest of this work, W will denote the one-parameter family of quintic
polynomials

1
W = = (m? + 23 + 23 + 25 + :L‘g) — Yx1T2T3T4T5. (3.9)

Geometrically, the mirror quintic, Y, is the quotient of this one-parameter
family of quintics by (Zs)® = (Z5)*/Zs, where (Zs)* is the group of phase
symmetries of W (for ¢ # 0). Alternatively, we can think of a Landau-
Ginzburg orbifold model with worldsheet superpotential W and orbifold

group (Zs)".

We will also have occasion to work in the B-model on the one-parameter
family of quintic hypersurfaces given by W =0 in P* (without quotient).
In this context, we will denote this family by X,;. When we work in the
context of the A-model, with an arbitrary complex structure represented
by a general quintic polynomial GG, we will continue to denote the quintic
simply by X.

Recall that for a quintic X defined by G = 0, the homological Calabi-
Yau/Landau-Ginzburg correspondence [57-60] states that the derived cat-
egory of coherent sheaves of X is equivalent to the graded, equivariant
category of matrix factorizations of the corresponding Landau-Ginzburg
superpotential,

DY(X) = MF(G/Zs), (3.10)
where Zs is the diagonal group of phase symmetries. The analogous state-
ment for the mirror quintic is

DP(Y) = MF(W/Z3) (3.11)
with (Zs)* as above.

To describe an object mirror to the real quintic, we begin with finding
a matrix factorization of the one-parameter family of superpotentials (3.9).
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If V = C® is a five-dimensional vector space, we can associate to its exte-
rior algebra a C[zy,...,z5]-module M = A*V ® C[xy,...,z5]. It naturally
comes with the decomposition

M = My + My + My + Ms + My + Ms, MSZ/\SV®C[$1,...,$5],
(3.12)
and the Zs-grading (—1)". Let 1; be a basis of V and #; the dual basis
of V*, both embedded in End(M). We then define two families of matrix
factorizations (M, Q<) of W by

5 5
@+ = \}5 > @i+ 2im) £ VO ] [ — wimi).- (3.13)
=1 i=1

To check that Q% = Widy,, one uses that 7; and #; satisfy the Clifford
algebra

{mi 15} = 04, (3.14)

as well as the ensuing relations
(@i + 2im), (i —zimi)} =0 and  (n; — 2i7;)* = —i. (3.15)

The matrix factorization (3.13) is quasi-homogeneous (C*-gradable). The
R-charges of the superpotential and the x; are 2 and 2/5, respectively. So
if we assign R-charge 1/5 and —1/5 to n; and 7;, respectively, @ will have
uniform R-charge 1. Since @ is irreducible, this determines the R-charge of
M uniquely up to an overall shift. As explained in [57], this ambiguity should
be fixed by Tr R = 0 for studying the stability of the matrix factorizations.
But for the present purposes, we will use a different convention (see below).

To specify objects in MF(W/T), where I' = Z5 or (Zs5)* for the quintic
and mirror quintic, respectively, we have to equip M with a representation
of I such that Q is equivariant with respect to the action of I' on z;. Since Q
is irreducible, this representation of I' on M is determined up to a character
of I' by a representation on V, i.e., an action on the n;. For v €I, we
have y(z;) = y;2; for some fifth root of unity 7;. We then set v(n;) = 7; *n;,
making () equivariant. As noted, this representation is unique up to an
action on My, i.e., a character of I.

For the mirror quintic, I' = Ker((Zs5)® — Zs), so I'* = (Zs5)®/Zs, and we
label its characters as [x]. The corresponding objects of MF(W/T") con-

structed out of Q4 (3.13) are classified as Q[j[d = (M, Qx, pjy)), where pjy) is
the representation on M we just described.
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Conjecture: There is an equivalence of categories Fuk(X) = MF(W/

(Z5)*) which identifies the 625 pairs of objects L[jcd with the 625 pairs of
equivariant matrix factorizations Q[jtd.

Note: One can formulate a similar conjecture for any hypersurface in
weighted projective space which has a Fermat point in its complex structure
moduli space.

3.4 Intersection index

The first piece of evidence for the above conjecture comes from Ref. [61].
In that paper, the 625 Lagrangian submanifolds of X described above were
associated with the so-called L = (1,1,1,1,1) A-type Recknagel-Schomerus
states in the Gepner model. These A-type boundary states had been con-
structed in [62] as tensor products of Cardy states in the A/ =2 minimal
model building blocks of the Gepner model. In turn, these Cardy states
of the minimal model were identified in [63] with the Lagrangian wedge
branes of opening angle 47 /5 in the Landau—Ginzburg description of the
N = 2 minimal models. Via mirror symmetry for the minimal models, those
wedges are equivalent to the matrix factorizations based on 29 = z2z3 (see,
e.g., [64]). These are precisely the building blocks of the factorization (3.13),
specialized to ¢ = 0. The above deformation away from ¢ = 0, as well as
the identification of the pairs Q[j[d with the pairs of objects L[j[d, was first
noted in [65], following the suggestion of [61].

The initial step in the above identification of L[id with Q[f was justified

in [61] by a comparison of the intersection indices of the L[f] with the cor-

responding intersection indices of the Gepner model boundary states. We
will reproduce this here using the matrix factorizations. The match of the
domainwall tensions* L, — L_ and Q4 — Q_ computed in the A-model and
B-model, respectively, constitutes further evidence for the above conjecture.

Let us start with the geometric intersection index between® LI and LIXT,
Because of the projective equivalence, we have to look at the intersection
of the fixed-point loci of o, and o, from (3.1) where w runs over the five

4Note that because of the symmetries, these domainwall tensions do not depend on the
discrete group representation.

5The intersection index, being topological, does not depend on the Wilson lines on the
A-branes. For the B-branes, it is correspondingly independent of the sign of the square
root in (3.13).
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fifth roots of unity. It is not hard to see that topologically
Fix(oy) NFix(0,,) N X 2 RPC2 d = #{x} = wxi}. (3.16)

After making the intersection transverse by a small deformation in the nor-
mal direction, we obtain a vanishing contribution for d = 0,1, 3,5, and +1
for d = 2,4, where the sign depends on the non-trivial phase differences
Xfwx;. Explicitly, one finds

LA LT = 3" f(x (3.17)

WEZLs

where

5
i) = il_[lsgn(lm()(i)), if #{i,x; = 1} = 2,4, (3.18)

0 else.

To compute the intersection index between the matrix factorizations, we use
the index theorem of [57]. It says in general

x Hom((M, Q, p), (M',Q', p")) '—Z(— )" dim Hom' (M, Q, p), (M",Q', p))

1
Stray p'(7) =———Stras p(v),
Na Z TR

(3.19)

where 7; are the eigenvalues of v € I' acting on x;, and p and p’ are the
representations of I'on M. For M = M’, Q = @', and p = pj, and p' = pj,1)
described above, this evaluates to

5
_% Yo xOX) [I0i +97 =27 =) == Y- lx"wx), (3:20)

76(25)4 =1 WEZs

where

hx) = il;[lsgn(lm(xi)), if #{i,xa=1}=0 (3.21)

0 else.

We do not know any generally valid result from the representation theory
of finite cyclic group which shows that (3.17) and (3.20) coincide. It is,
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however, not hard to check by hand or computer that for all y,

> (f1+ f2)(wy) =0. (3.22)
wWEZs
Hence
LM A LXT = y Hom(QX, X' (3.23)
as claimed.
3.5 Bundles

We now proceed with the construction of the normal function from the
matrix factorization (3.13). To this end, we use the homological Calabi-
Yau/Landau-Ginzburg correspondence (3.10) for the quintic as described
in [60]. This will produce for us a set of five complexes of coherent sheaves
(bundles) on the one-parameter family of quintics X,. By making those
equivariant with respect to the geometric (Zs)® action (thus implementing
(3.11)) will yield the 625 objects in D®(Y") mirror to the real quintics.

The technique underlying the algorithm of [60] is the gauged linear sigma
model of [66]. Thus, we first construct a D-brane in the gauged linear sigma
model from the equivariant matrix factorization, and in the second step a
complex of (line) bundles on the quintic. We have to and can live with two
ambiguities in the construction. The first ambiguity is the Landau—-Ginzburg
monodromy (cyclic permutation of the characters of I' = Z5), whereas the
second depends on a certain “band restriction rule” for assignment of the
gauge charges in the linear sigma model. The upshot of the construction is
the following. We can view the matrix factorization, namely the Zo-graded
module M equipped with @ of Q% = W as a 2-periodic infinite complex over
the affine singularity W = 0. We then truncate this infinite complex to a
semi-infinite complex in a way that depends on the charge and representa-
tion assignments in the gauged linear sigma model. The departure of this
construction from the traditional (Serre) correspondence between sheaves
on the hypersurface and graded modules on the affine singularity is that the
cohomological grading of the complexes also depends on the linear sigma
model charges. We now implement this algorithm in our example, referring
to [60] for the complete details.

Given (M, @, py), we first assign R-charges (i.e., a C*-representation, gen-
erated by a rational Hermitian matrix, R on M) in such a way that

¢ = py()(~1)", (3.24)
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where (—1)® is the Zs-grading on M and v = ¢*™/5 is the generator of Zs.
In the decomposition (3.12), py(y) = e*™("=29)/5 where x = e?™"/>. We
choose the R-charge assignment of M in (3.12) as Ry = £ + 22,

Following the algorithm of [60], we now select a “band” of five consecutive
integers A = {0,1,2,3,4} and find for each s an integer Ry = s mod 2 and
an integer g5 € A such that

2qs

R, and ¢, are uniquely determined by this equation. Depending on n, we

find for the pairs (R, gs) the following table:

n

(3.26)

Tl W N~ O
NN N N N

This data yields a graded, gauge-invariant matrix factorization, Qarsm of
the linear sigma model superpotential Wgrgm = PW, where P is Witten’s
P-field [66]. In reducing to the non-linear sigma model on the hypersurface,
the bulk modes of P are integrated out, while the quantization of the single
boundary degree of freedom yields the Fock space of a harmonic oscillator,
HP = @nsoHL, where each HE = C. The resulting complex on the quintic
hypersurface is built from the tensor product M @ H¥, where M, ® ’Hﬁ is
placed in homological degree d = R, + 2N and twisted by the line bundle
O(gs + 5N). The original matrix factorization @ acts on this complex in a
way compatible with all gradings.

For the data above, we obtain explicitly the following five complexes
(here, V* = A®*V, and the integer in square brackets indicates the homo-
logical degree of the first term in the complex):

n=20:[0]
00) V° 0@2) e V! 0BG)e V0 oM eVt
- 0V = 0@WeV? - 06)V3 —......
00)® V> o3)eVv? oB)eV°
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omeVl 0@Vt 0B eVl 09 eV
002V - 0B)aV?: - 0B)aV? - 0B)@V? — ...
o@2)e v OM4) e V° o) V4

(3.28)
n=2:[1]
00) e V? 0B)e VY o) Vi O®B)®V°
- 02)eV: - 0V - OMNeV: —......
o)Vt 0B)® V> 06) @V
(3.29)
n=23:[2|
02)e VY O4) e V! A% 09) @ V!
OV = 0B3)aV3 = 06B)aV2 = 0B)QV3 — . ...
00) ® V* 02)eV? O(B)e Vi oM eV
(3.30)
n=4:]2]
oMV 0B3)e V! 06)V° 0B V!
00)eV: - 02V - 0B)eV: - OV —......
o) Vs O4) eVt 06)® V>
(3.31)

The differential on these complexes is @ from (3.13), whereas before 7; and
7; act on the exterior algebra A*V in the usual way. It would be interesting
to obtain a more intrinsic description of these five objects in Db(Xw), to
understand their deformations to a general quintic,® to investigate stabil-
ity at large volume, etc. It is not hard to compute the topological Chern
characters of these five objects and to check that they agree with those deter-
mined from [61]. For example, the virtual ranks of the objects are given by
(—3,3,-7,8,7) for n=(0,1,2,3,4), respectively. The simplest and most
canonical object appears to be the one corresponding to n = 3, namely as
found in [67], it carries precisely the topological charges required for anom-
aly cancellation in a type I (or type IIB orientifold) string compactification
on the quintic with non-trivial discrete B-field. (This is mirror to a type ITA
orientifold compactification on the mirror quintic.) It is natural therefore to
assume that this corresponds to a rank 8 bundle which moreover is stable
at large volume on the quintic.

SWe thank Tony Pantev and Ron Donagi for extensive discussions on possible such
descriptions.
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3.6 From matrix factorization to curve

The five complexes in the previous subsection define five objects in Db(Xw).
(Although semi-infinite, they are quasi-isomorphic to finite complexes
because of the eventual periodicity.) As discussed before, to obtain the 625
objects in D®(Y") mirror to the real quintics, we have to make these objects
(Zs5)? equivariant. It would be interesting to understand this construction in
detail and, in particular, what happens under the resolution of the orbifold
singularities. For our purposes, however, we do not need this. In fact, to
compute the normal function by the Abel-Jacobi map, we do not even need
to distinguish between the five objects on the quintic. Note that the defining
semi-infinite complexes differ only in low homological degree by extensions
by line bundles, which contribute only trivially to algebraic K-theory and the
Abel-Jacobi map. In other words, all the information about the normal func-
tion is contained in the 2-periodic part of the complexes, which is nothing but
the original matriz factorization! This fact would have allowed us to bypass
all the complications associated with the homological Calabi—Yau/Landau—
Ginzburg correspondence. We nevertheless presented the detailed results in
the previous subsection, because we feel that they might be of independent
interest, for instance, for questions of stability.

In this subsection, we proceed with the computation of the algebraic

second Chern classes of QLX], where € = +1. Specifically, the domainwall

tension of our interest is given by the image under the Abel-Jacobi map
of Q[j_d — Q[X]. Note that this is well defined since, as follows, e.g., from

the index tl;eorem (3.19), the topological Chern classes only depend on Y,
and not on €, which is the sign of the square root in (3.13). On the other
hand, the Abel-Jacobi map is independent of y, as explained in the previous

paragraph.

It does, however, make a difference whether we work on the quintic or its
mirror. On the quintic, we can work with the explicit bundle representatives
from (3.30). Let

By =Ker(0(2) & O(1) @ 0(0)> 5 0(4° & 0(3)° @ 0(2)).  (3.32)

In general, for a bundle of rank r with sufficiently many sections, one can
determine the second Chern class by choosing r — 1 generic sections and
finding the codimension-2 locus where those sections fail to be linearly inde-
pendent. Since twisting by O(1) will alter the image in the Chow group
only trivially, we can always arrange for sufficiently many sections by twist-
ing with O(n) for n large enough. For bundles such as Fi(n), we can
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conveniently find sections” by using the 2-periodicity of the complex (3.30)
as the image of @) in the previous step. In the case at hand, we select seven
columns of the matrix representation of (3.30) and study the ideal generated
by the minors of the resulting 7 x 16-dimensional matrix.

After some algebra, we find that the second Chern classes can be repre-
sented as

ca(Ey) —co(B-) =[Oy — C_] € CH*(Xy), (3.33)

where C stands for the algebraic curve

Cr={x1+20=0,23+24 = 0,:0% + /5pxir3 = 0} C Xy (3.34)

Of course, we are really interested in the matrix factorizations and cor-
responding bundles as objects in D?(Y), where Y = X,/(Z5)? is the mirror
quintic. Their second Chern classes take values in CH?*(Y) and can be
described by considering the image of C under the (Zs5)? orbifold group.
We will study this quotient procedure carefully in the following section.

4 Main computation

As before, we let Xy, be the one-parameter family of quintics given by (3.9).
The intersection of X, with the plane P = {z1 + 2y =23+ x4 =0} is a
plane curve of degree 5 which is reducible, with three components (see left
part of figure 1). One component is the line x5 = 0, the other two are conics
C4 described by (3.34). Obviously, [Cy — C_] = 0 € Hy(Xy) for all ¢, and
thus the cycle Cy — C_ defines a normal function v for the one-parameter
family of quintics Xy,. Consequently, we also obtain a pair of curves and a
normal function for the mirror quintic Y, which we will denote by the same
symbols. Now pick a family of three-chains I' C Y with o' = C'y — C_. The
domainwall tension or truncated normal function is given by

A~

Ezﬁ@z/@ (4.1)

r

where ) is a particular choice of holomorphic three-form on Y, further
specified below.

"This was initially suggested to us by Nick Warner and anticipated also by Duco van
Straten.
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X< =0
c, >
(-2) (=2)
D D
m | 5
P P> C,
C_ D<1—3> D;—S)
C

Figure 1: The curves Cy on P = CP? (quintic) and on S = CP? /Z5 (mirror
quintic).

The main result of our paper is that the Picard—Fuchs operator from (3.3),

L=0"—52(50 4 1)(50 +2)(50 + 3)(50 +4), 6= g (4.2)

acting on Tp(z) gives
15

LTp(z) = 162

Vi (43)
(as usual, z = (51) %), where the constant is precisely the one in (3.6). We
conclude that Tp(z) coincides with wg(2)7T4(2), up to a solution of the homo-
geneous Picard—Fuchs equation. This is not unexpected since the choice of
I' is ambiguous by H3(Y;Z), so Tp is ambiguous by an integral period. The
claim that 7p(2z) — wo(2)7Ta(z) is indeed an integral period will follow from
the analytic continuation performed in [19] and the boundary conditions on
Tg as we shall discuss below.

4.1 Sketch of computation

The strategy for proving (4.3) is to use the representation of the holomorphic
three-form on the hypersurface {W = 0} as the residue of a meromorphic
four-form Q on projective space (Griffiths-Dwork method). The domainwall
tension, which is defined by integrating the holomorphic three-form over a
three-chain I' in Y with 0I' = C; — C_ can then be obtained by integrating
Q over a four-chain which is a tube in P* \ {W = 0} around I".® By following
the usual steps in the derivation of the Picard—Fuchs equation (see, e.g. [5]),

8We are here temporarily confusing the mirror quintic with the family Xy. The homo-
geneous Picard—Fuchs equation does not depend on this. The inhomogeneous term, how-
ever, does (see below).
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the action of £ on the domainwall tension can be reduced to a boundary
term consisting of the integral of certain meromorphic three-forms over a
tube around the boundary curves C4. To be specific, let us consider the
contribution from Cy. The main observation that will make the computation
possible is the following.

The curve C; lies in the plane P = {z; 4+ x9 = x5+ x4 = 0}. There-
fore, if we could fit the tube around C, completely inside P, the integral
over it of any meromorphic three-form with poles on W =0 would van-
ish. The reason we cannot restrict the computation to P is of course that
PN {W =0} contains not just C, but also C_, as well as the line z5 = 0,
so that a tube around C. inside P will intersect one of the other compo-
nents, hence Xy,. But then, we can fit the tube around C into P except for
a small neighborhood of the points where the components of P N {W = 0}
meet. There are two such points, p; = {z1 = —x2,23 = x4 = x5 = 0} and
p2 = {x1 =29 = x5 = 0,23 = —x4}, and the computation can be localized
to a small neighborhood of p; and ps, which fit entirely inside an affine
patch.

There is, however, an important subtlety in performing this computation
as we have just sketched.” Namely, the intersection points p; and py are
actually singular points of the mirror quintic, and these singularities must be
resolved first in order to perform the computation. Recall that resolving the
singularities amounts to varying the Kahler class on the quintic mirror to
a generic value; since the inhomogeneous Picard—Fuchs equation should be
independent of the Kahler class, it will not matter how we do the resolution
of singularities.

4.2 Resolution of singularities

Since the plane P = {x1 + x2 = x3 + x4 = 0} itself plays an important role
in the computation, we also need to resolve singularities that appear on it
after passing to the quotient. The symmetry group (Zs)? permutes 25 - 2?—;, =
750 similar planes, but a Zs subgroup preserves our plane, with a generator

acting via
2mi/5 2mi/5 —47i/5
(x17—$1,$3,—$3,$5) 7 (.’E]_7—CC]_,e 1'3,—6 553,6 .’175).

This group action has three fixed points, at p1, p2, and (0,0,0,0,1), and the
first two of these must be resolved.!?

9We can attest to the fact that if this subtlety is ignored, a wrong answer is obtained!
10The third point does not lie on the quintic mirror for generic ¥ and hence need not
be resolved.
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These singularities on S = P/Zs are Hirzebruch—Jung singularities [68,69]

and can be resolved by classical methods!! to obtain a surface S = CP? /Zs.
The result is that each singular point p; is replaced by two rational curves

D and D(_S), in the configuration shown in figure 1. We denote the

% %
intersections of (the transforms of) C'y with the curve D§_3) by pi +.

Resolving the quintic mirror itself is more involved, and we defer the
explicit computation to an appendix. The result, however, is the existence
of two coordinate charts for the quintic mirror: the first has coordinates

-1
T = x] w9,
—2.3 -2
X =z115 )75 7,
5 s (4.4)
Y =z 3,

3..—2, -2
Z = 11237, "T85 ",

and the polynomial, locally defining Yy,

(1+T°+ X*Y?Z2 + X°Y?Z° +Y) — T XY Z.

U] =

The resolution S of the surface S is given by T'= —1 and Z = — X, and the
restriction of the polynomial to S is

1

2Y - VXY = éyu + V50 X) (1 — /5y X).

The points p; + are given by X = iﬁ and Y = 0. In the other coordinate
chart, we have coordinates

(4.5)

and polynomial

((X/)Q(Y/)Z(Z/)?;+(Xl>3(Y/)2(Z/)21+(T/>5++Y/) —'lﬂTXYZ

U] =

See [70] for a recent discussion on the physics literature. In fact, the example in
figure 2 of [70] is exactly the case we must consider here.
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The resolution S of the surface S is given by 7" = —1 and Z' = —X’, and
the restriction of the polynomial to S is

Y = P(XPY = LY (14 VBRX)(1 - /BYX).

: : ! __ 1 ! __
The points pa + are given by X' = iﬁ and Y' = 0.

4.3 Inhomogeneous Picard—Fuchs via Griffiths—Dwork

Let us recall our conventions. We have

1
W =

=% (25 + 25 + 2§ + 2} + 28) — Yr132w3T475, (4.6)

and z = (5¢)~°. To derive the Picard-Fuchs equations by the Griffiths—
Dwork method, we introduce the four-form on P4,

w:Z(—l)i_lxidxl/\.../\d/agi/\.../\d%, (47)
i
as well as the contraction of w with the tangent vectors 0; (i = 1,...,5)
W; = w(@l) (4.8)

A convenient choice of gauge for the holomorphic three-form is

w

Q(z) = Resp—o Qz), Q(z) := W)

(4.9)

Traditionally, one derives the Picard—Fuchs equation by working with the
expression (4.9), thought of as living on the quintic X,. The holomorphic
three-form on the mirror quintic ¥ can be obtained by pulling back (4.9)
in local patches via blowup maps such as described in the appendix. For
ordinary periods, the net effect of the quotient by (Zs)? is then simply an
additional normalization factor of 573 [4]. Such a simple relation is not
expected to hold for generic normal functions, so we need to evaluate things
more carefully.
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Following the reduction of pole algorithm of Griffiths and keeping track
of exact pieces, we find with the above definitions,

L = ((1 =)0 — 1090} — 25007 — 15429, — 1)Q = —dB, (4.10)
where the exact piece is

_ 3l
g = (x2m3xix5w1 + Yroriaririws + PP meriairiws
4
+ PP atadriaialos + pratedaiaiaivs)
2
+ W (Yasriziws + 3¢ a1 mazsriziows + 6y riviairiziws) (4.11)
1 5 2 2
+ e (¢x4:c5w4 + T x1m2m3x4w5w5)
1
+ — (Yr5ws).
W (Yasws)

Now the standard Picard-Fuchs operator £ from (3.3) is related to £ from
(4.10) by

1 +1

L=——L—. 4.12

54 w ( )
On the other hand, the normalization of the holomorphic three-form in
which the solutions (3.4) correspond to primitive integral periods of the
mirror quintic is [4]

~

0= (2m> wQ = (%>3¢R68W:0%. (4.13)

The domainwall tension for which we claim (4.3) is defined by

To(z) = /F a(2), (4.14)

where T is any three-chain in Y with OI' = C — C_. Let T,(I") be a small
tube around T" of size € > 0. Then by (4.9),

/ Q0= i Q. (4.15)
T 2mi TS(F)

By combining this with (4.12) and (4.13), the claim (4.3) takes the form

5 ~ 32

which we now proceed to show.
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There are two types of contributions to the RHS of (4.16), depending on
whether the derivatives in £ act on the chain or on 2. When £ acts entirely
on (2, we use (4.10) and obtain the boundary term

— / 8. (4.17)
T (C+—C-)

We will see below that this in fact gives the entire contribution claimed
in (4.16). To show that the contributions from derivatives acting on T¢(I")
vanish, we use the fact that as vy varies, the three-chain I' changes to first
order only at its boundary, in a way dictated by the dependence of C'y on
¢. Namely, the first-order variation of Cy is a section n € N¢, sy of the
normal bundle of Cy in Y. This normal vector lifts to the tube 7.(C4) and
we shall show below that for [ = 0,1, 2,3,

(z129232475) w(n)
=0, 4.18
/7“5(C+C_) Wi+t (4.18)

where w(n) is the contraction of w with the normal vector n. Establishing
this claim together with the fact that (4.17) evaluates to the RHS of (4.16)
will complete the proof.

As described in Section 4.1, we can evaluate integrals of meromorphic
three-forms over T,(Cy) as in (4.17) and (4.18), by laying the tube into
the plane P (or rather its resolution §) outside a small neighborhood of
the points p; +. In those neighborhoods, we can use the coordinates of
Section 4.2. Consider p;j 4, with coordinates (4.4). The curve C is given
by T = —1, X = —Z = 1/1/59, and locally parametrized by

Y =rel? (4.19)

varying in a neighborhood of » = 0. Our tube T,(C}) is defined by picking
a C* normal vector v which satisfies d,W # 0 on C; and points inside of
P outside of a small neighborhood of Y = 0. To this end, let f(r) be a
non-negative C* function with f(0) =1 and f(r) =0 for r > r, > 0. We
then choose

f(r)

TR

Clearly, v points inside of P for » > r, and one easily checks

Or — e ¥Ox + e %0y, (4.20)

d.Wlc, = f(r) + 2\/%7“ >0 for0<r <2r,. (4.21)

(We are here assuming that ¢ > 0. This is no restriction as long as ¥ # 0.)
So the part of the tube T,(C;p; ) around C4 which is close to py 4+ is
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parametrized as

. f(r) 1 .
T=-1+ eeX , X=-Z=— —c¥e™?, 4.22
1+ % V59 (4.22)
0<x<2m, 0<p<2m, 0<r<2r. (4.23)

(In all of this, we should really be taking the limit ¢ — 0, but the result will
turn out to be independent of €.) There is then a corresponding piece of the
tube around ps 4. The part of the tube in between does not matter as it lies
entirely within P, so any meromorphic three-form vanishes there. Finally,
the contribution from C_ will come from substituting /4 — —+/2 in the
final answer.

We now apply the coordinate transformation (4.4) to evaluate the three-
forms w; on the tube (4.22). Choosing z1 = 1, we have

w1 = —xodrgdrygdrs + x3drs dry dos — x4 dxo dos das + x3 das dzs day,
W = d:l?g dl’4 dZL‘5,

w3 = — dl’g d:c4 dLL’5,

wy = dxodrgdrs,

Wy = — dl‘g dxg d(L’4,
(4.24)
and
dl’g . d7T
i) - T ’
des 3dZ 2dX 2dY
=-—t+t -+t
Z3 572 5X b5Y
(4.25)
dry _3dX 247 2dY
gy 5X 5Z 5Y
drs _ 1dY
z5  5Y
After restricting to X = —Z, this yields w; = ws = w5 = 0 and
ws = wy = duo dus dzs = g;’;“;f AT dX dY. (4.26)
Substituting (4.22), we obtain
!
AT dX dY = ¢ QixL(i ~1)dyded 1.27
T 7 xdedr, (4.27)



584 DAVID R. MORRISON AND JOHANNES WALCHER

where f'=df/dr. The procedure to compute integrals of the forms p dzs dzs
dzs /W1 where p is some monomial in x;’s, over the tube T,.(Cy;p1 ) is
to first write a Laurent series in powers of ee’X and e'?. Integration over y
and ¢ will then retain only terms of order e”X and ¥, respectively. Finally,
we will do the integral over 7.

To begin with, on the tube we have the expansion

W:g<f+2\/@> — & <2f2+2\/gfr+¢re—w>

+ e (2 Py fre_i‘p> + O, (4.28)

where € = eeX and f = f/(1+ (Y/5)). In (4.28), we have truncated to order
3

€3 since ws o< €2, and the highest power of W of interest corresponds to I = 3.
Let us consider the computation of a sample term in § from (4.11).
Expanding in €, we have

1/).5[?;;;22(.{)4 = <—\/Eei@r1f Y/J; <f+ 2[ ) > dy dedr.

(4.29)
The integration over ¢ clearly kills this term. In fact, it turns out that all
the terms in [ which do not already vanish after restricting to T¢(Cy;p1)
give zero after integration over x and ¢.

Going to pg y, where the local coordinates of (4.5) can be accomplished
in the above formulas by exchanging x3 with x1 and x4 with x5. There are
then only two terms to consider.

e The term Gx%xéxixéwl/ W# gives, after integration over y and ¢,

Ur® +4y/5¢rf + 15f°
(2m)212(rf" — f)r? (4.30)
1259 (f + 2/ (@/5)r)°
Integration over r then gives
372
W. (4.31)

e The term 6yzox3ziziws/ W4 gives some complicated expression after

integration over the angles, but the integral over r vanishes.
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Taking into account the contribution from C_, the final result for
(4.17) is

= 32
— b=———, 4.32
/TE<C+—0) Vb2 (4.52)
precisely as claimed.

To show (4.18), we note that the normal vector implementing first-order
deformation of C is given by

po_ B Lo, m 1, (4.33)
TR g2y '
Thus, we find
~ l 2
O on) = n\IATTAT) L5 (4.34)

Wi+l Qﬁw3/2

The expression (4.34) vanishes after restriction to the tube, on which w3 = wy
holds.

4.4 Boundary conditions and monodromy

We have just derived that the domainwall tension of the normal function
associated with Cy — C_ satisfies the same inhomogeneous Picard-Fuchs
equation (4.3) as the generating function for open Gromov-Witten invariants
of the real quintic (3.6). This shows that

Te(2) = wo(2)Ta(t(2)) (4.35)

up to a solution of the homogeneous Picard—Fuchs equation, i.e., up to
a C-linear combination of periods. Identification of the normal function
requires equality modulo integral periods, which is a stronger statement. To
establish it, we need to determine a sufficient number of boundary conditions
on 7p(z). (The boundary conditions on T4 are given by (3.7).)

To fix this result, we make an explicit choice of three-chain connecting C+
and C_. This is most easily done at 1) = 0, since Cy and C'_ degenerate there
(see (3.34)). The Landau-Ginzburg monodromy 1) — e2™/54) interchanges
C4 with C_. The natural choice of three-chain is therefore one that vanishes
at ¢ = 0 and changes orientation under the monodromy.
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Now note that in our choice of gauge (4.13), the solutions of the Picard—
Fuchs equation Lw = 0 actually all vanish as ¢* ~ 2=%/5 for some k =
1,2,3,4 as ¥ — 0. More precisely, the integral periods, known from [4],
vanish as ¢! ~ z71/% and are cyclically permuted by the Landau—Ginzburg
monodromy 1) — e2™/54). We also know, however, that the manifold itself
is not singular at 1) = 0; so none of these vanishing periods corresponds to
a vanishing cycle. The integral over the three-chain should therefore vanish
faster than any period and just change sign under the monodromy. The
unique solution of (4.3) with these properties is given by

00 _5m 5
T(z) =77(e) = ng: T R " @

The explicit analytic continuation done in [19] now shows that 7°™(2) rep-
resents the same solution as wy(z)7Ta(t(z)), up to an integral period that
depends on the path chosen to connect ¥ = 0 with ¥ = oco.

5 Summary and conclusions

In this paper, we have explained why the superpotential/domainwall ten-
sion for D-branes wrapped on compact Calabi—Yau manifolds will in general
satisfy a differential equation which is an extension of the ordinary Picard—
Fuchs equation. This relationship follows from the insight that certain
invariant holomorphic information about the topological D-brane bound-
ary state, as a function of closed string moduli, is contained in the image of
the algebraic second Chern class under the Abel-Jacobi map to the inter-
mediate Jacobian, known as Hodge theoretically as a normal function. We
have applied this formalism to the B-brane mirror to the real quintic and
thereby re-derived the extended Picard—Fuchs equation proposed in [19].

In combination with the proof of the enumerative predictions in the
A-model [22], our results put open string mirror symmetry for the real quin-
tic [19] at the same level as the classical mirror theorems of Kontsevich,
Givental, Lian—Liu—Yau and others. What is more, we have seen at several
places very close connections to ideas from homological mirror symmetry.
We have listed in Section 2 several open problems that would make these
connections more concrete.

A somewhat unsatisfactory aspect of our derivation is that the nature of
the computation in Section 4 was severely analytic. For many reasons, it
would be desirable to develop a more algebraic understanding of extended
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Picard-Fuchs equations. The Griffiths infinitesimal invariant is likely to play
an important role in such a development. Among other things, this might
allow an easier generalization to other situations, especially if the expected
connections with the categorical framework can be realized.
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Appendix

In this section, we describe the resolution of singularities of the quintic
mirror, deriving the coordinate charts which are used in making our key
computation (see Section 4.3).

The starting point is the singular model of the quintic mirror as a hyper-
surface inside the singular ambient space CP*/(Zs)3. Because the points p;
and po at which we wish to perform our computation are singular points
of this quotient, we need to carefully resolve the singularities. We will also
explicitly resolve the singularities on the surface S = CP? /Zs defined by
r1+xo =0 and x3+ x4 = 0.

A consistent strategy for resolving singularities of the quintic mirror was
described in Appendix B of [5]. This strategy involves a choice of blowup,
and we will use the choice described in [71] rather than that described in [5].
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What makes the resolution tricky is that the ambient space CP?*/(Zs5)3
does not have a crepant resolution: the coordinate vertices (1,0,0,0,0)
(and cyclic permutations) cannot be resolved without introducing extra-
neous extra zeros into the holomorphic form of top degree. However, the
quintic mirror does not pass through those points, so this fact does not
prevent us from resolving the quintic mirror itself.

Each of the points p; and ps lies in the fixed locus of a particular (Zs)?
subgroup of (Zs)3. Thus, we will describe a coordinate chart on the blowup
for each by describing the blowup of the quotient by the (Zs5)? subgroup,
and indicating how the quotient by the remaining Zs is to be performed.

The point p; = (1,—1,0,0,0) is contained in the affine chart x; = 1, and
its stabilizer is the (Z5)? subgroup of (Zs)? which fixes the affine coordinate
xa/x1.

That is, we begin with affine coordinates t = za/x1, u = x3/x1, v = x4/71,
and w = x5/x1 and the (Z5)? action on (u, v, w) which preserves the product
uvw. The rational function invariants under this action are generated by t,

5 .5 . s : 3
u®, v°, and wvw; the remaining Zs in our full (Zs)® symmetry group then
preserves u® and v® while acting oppositely on ¢ and on uvw, so that the
invariants under the full group would include t° and tuvw. The polynomial

defining the quintic mirror in this affine coordinate chart is

(148 +u’ 4+ 0° + w®) — Ptuvw,

o] =

and our surface S is defined by ¢t = —1 and v = —u.

The group action on the surface S is generated by
(u’ w) — (627ri/5u7e—47ri/5w)’

and the invariant rational monomials for this action are generated by w®
and uw~2. To describe the corresponding toric geometry, we represent an
arbitrary invariant rational monomial in the form

(w5)a(uw—2)b _ ubw5a—2b’

and note that the condition for this monomial to be regular, i.e., to have
no pole at the origin, b > 0, 5a — 2b > 0. These inequalities determine the
toric data: the dual vectors (0,1) and (5, —2) generate a cone consisting of
all inequalities satisfied by regular monomials, as depicted in figure 2 (which
was borrowed from [70]).
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° ° ° ° ° (5.-2)

Figure 2: Toric data for the resolution of the C?/Zs quotient (from [70]).

To resolve the singularity, we subdivide this cone using cones whose edges
form a basis for the lattice Z2. This can always be done by using lattice
elements which are close to the origin: in our example, the three subcones
are generated by (i) (0,1) and (1,0), (ii) (1,0) and (3,—1), and (iii) (3, —1)
and (5, —2).

The coordinates on these three charts have the property that the inequal-
ities defining which monomials are regular within the chart are precisely
spanned by the generators of the cone. In our example, the first chart has
coordinates

Uy = uw_2, w() = w57
so that
uPw 2 = (ug))* (w))?,
the second chart has coordinates

_,.3,,,—1 _ .2 -1
u(ii) =Uuw 5 w(ii) =wu

so that b 502
ww T = (ugy)) " (wa

and the third chart has coordinates

A _ -3
U(if) = Uy W) = wu

so that

3a—b 5a—2b

ubwm? = (i)™ (W)

The exceptional curve Dg_g) is represented by wg;) = ug;) =0 and has

self-intersection —3 due to the change of coordinate maps

3 _
u(ii) = u(i)w(i), w(ii) = U(l) .
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(=2)

The exceptional curve D ™ is represented by w;;) = ug) = 0 and has
self-intersection —2 due to the change of coordinate maps

2 —1
U(iii) = W) W) Wii) = i)

The defining polynomial for the quintic mirror, when restricted to S, takes
the following form in these coordinate charts:

1 1
520 — Yugye = sue = Vivue) 1+ v5vug),
1
Ui n) YUy Wiy = = U(i) Wi (waiy — v/ 5Y) (W) + /59),

1
3 5 2 /7 /7
U i) W) — Wt(iii)w(iii) = gu(iii)w(iﬁ) (u(iii)w(iii) — V/59)( U)W m) +

| =

ot =

Thus, the intersection points py + of C4+ with D§_3) can be found in either
chart (i) at (£(51)~1/2,0) or chart (ii) at (0, +(5¢)"/2). All of these agree
with the illustration in figure 1.

We now turn to the resolution of the quintic mirror itself. In order to
describe the C3/(Zs)? quotient singularity in terms of toric geometry, we
represent an arbitrary invariant rational monomial in the form

(uS)a(v5)b(uvw) 5a+c 5b+c c

and note that the condition for this monomial to be regular is 5a + ¢ > 0,
50+ ¢ >0, and ¢ > 0. Those three inequalities determine the toric data:
one takes the dual vectors (5,0,1), (0,5,1), (0,0,1) to these inequalities and
notes that all inequalities satisfied on the regular functions are non-negative
linear combinations of these vectors.

The resolutions of toric geometry are obtained by subdividing the cone
generated by those vectors into cones whose generating vectors give a basis
for the lattice Z3. There are a number of ways of doing this, but we use
the symmetric one illustrated in figure 3 (which is borrowed from [71]). The
three dual vectors (5,0,1), (0,5,1), (0,0,1) are the vertices of the large
triangle, and the resolution has coordinate charts determined by the small
triangles in the diagram.

There are two kinds of coordinate charts. The first type of chart U,g,
labeled by « and § with a > 0, >0, and o+ 8 < 4, corresponds to the
upward-pointing triangle in figure 3 with vertices (o, 3+ 1, 1), (o, 8, 1), and



D-BRANES AND NORMAL FUNCTIONS 591

(0,0,1)

(0,5,1) (5,0,1)
Figure 3: Toric data for the resolution of the C3/(Z5)? quotient (from [71]).

a+1,6,1). This chart will have coordinates X,5, Yo3, Zag, and T =1t
8 8 5
satisfying

(Xaﬁ)aa—i-b(ﬂ-l—l)-‘rc(Yaﬁ)acx—I—bﬁ—i—c(Zaﬂ)a(a-I—l)—i-bﬁ—i-c _ (u5)a(v5)b(uvw)c'

This can be solved for the coordinates, giving

T =t

Xag = u*ﬁv‘:’*ﬁw*ﬂ,
Yaﬂ — ua+ﬁ—4va+ﬂ—4wa+ﬁ+1
S5—a,, —a —a

Zag =u’ " "0 %W

The defining polynomial of the quintic mirror in this chart is

1 5 +1 | yB+1y8 8 4—a—By 5—a—B yi-a—p
5 <1+T +Xg/3 ng;’g +on,3 YaﬁZa,3+Xaﬁa Yaﬁa Zaﬂa )
— YT X3YopZas-

The second type of chart ﬁaﬁ, labeled by a and 8 with a > 0, 8 > 0, and
a+ (8 < 3, corresponds to the downward-pointing triangles in figure 3 with
vertices (o, 4+ 1,1), (¢ + 1,54+ 1,1), and (o + 1, 3, 1). This chart will have
coordinates )Z'ag, }7&5, Zag, and T =t satisfying

()N(aﬁ)aa+b(,@+1)+c(gaﬁ)a(a+1)+b(ﬁ+1)+c(Zaﬁ)a(a+1)+bﬁ+c _ (u5)“(v5)b(uvw)c.

This can be solved for the coordinates, giving

T =t,

Xaﬁ — ua74va+1wa+l

)
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i;ocﬁ — u4—a—ﬁv4—a—ﬁw—l—a—ﬁ’
Zog = a5

The defining polynomial of the quintic mirror in this chart is

1 =5 | va vatlzatl | vB+H1T6H1 58 | wd—a—Br3—a—p Fi—a—p
g(1+T + XogVa Zett + XUV 2+ X g IV P 2

T RV Zos

To determine which chart we should use, we restrict the coordinates on
Uap and ﬁag to the blowup of S and express them as functions of the
coordinates u(;) and w;) in the first coordinate chart of that blowup. In
Uap we find

T=1,
_ 5-,,5-26,,2-5

Xag = (=1 Pug) "™
_ a+pB—4 2a+2,3 8 a+ﬂ 3

Yag = (=1 g ™ wgy
_ 5—2a, 2

Zop = (— 1)O‘u aw(i)a,

and from this we conclude that Uss restricts to this coordinate chart on S,
and contains the points p1 4. In U,g we find

T

1,

( 1)a+1 2(34 3wg) 17
(1)4aﬁ820¢2ﬁ30¢6
(-

ug W
B—4 25 3 /3—1
D7 gy wgy

and so none of the coordinate charts (7@5 is a neighborhood of pq +.

Thus, the first coordinate chart we use will have coordinates

T = T22 =t= .7}1_13}2,

X=Xp=u 23w ? = xlxgzximgz,

5 —5.5
Y =Y =w’ =z x5,

= Uy = wWotw 2 = 3:1:13333;2@;2,
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and polynomial

(1+T°+ X?Y?Z3 + X*Y? 2% +Y) —yTXY Z.

| =

The resolution S of the surface S is given by T'= —1 and Z = — X, and the
restriction of the polynomial to S is

Ly - Q/JXY—f Y (14 /50X)(1 — /5 X).

5
The points p; 4+ are given by X = +1/y/5¢ and Y = 0.

To find a neighborhood of the points ps +, we use the affine chart z3 =1
and label the coordinates on this chart as v’ = 1 /23, v = xy/x3, t’ = x4/ 23,
and w’ = x5/x3. The defining polynomial becomes

1
5 ((ul)5 + (U/)5 + 1+ (t/)5 + (w/)5) _ Q,Z)t’u'v’w',
and the surface S is defined by ' = —1 and v/ = —u/. We have chosen the
notation so that the (Zs)? subgroup of (Zs)? which stabilizes py acts exactly
as in the previous case: acting on (u/,v’,w’) and preserving the product
u'v'w’.

Since the combinatorics are identical, the computation produces the same
result as in the first part of this appendix. We find a neighborhood of pa +
with coordinates

T =t = T3y T4,
= () 2(0)* (w') 7% = ey Padwsas
= (w')” = T3 bas,
= ()’ () (w')7? = afay *wsas?,

and polynomial

é((X’)Z(Y’)z(Z’)3—|—(X’)3(Y’)2(Z’)21+(T’)5++Y’) —¢TXYZ

The resolution S of the surface S is given by 7" = —1 and Z’ = —X’, and
the restriction of the polynomial to S is

Y G(XPY = Y14 VB - V/BUX).

The points py 1 are given by X’ = £1/4/5¢ and Y’ = 0.
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Just for completeness, we include the change of coordinates between these

two charts.
X
T =/~
Z 9

X' =T3VX273,
1
/_

(X2Y Z3)
7 =T 2vVX273.

These formulas illustrate the important point that the additional Zs quotient
must be considered in each case.
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