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Abstract

The graded parafermion conformal field theory at level k is a close
cousin of the much-studied Zk parafermion model. Three character for-
mulas for the graded parafermion theory are presented, one bosonic, one
fermionic (both previously known), and one of spinon type (which is new).
The main result of this paper is a proof of the equivalence of these three
forms using q-series methods combined with the combinatorics of lattice
paths. The pivotal step in our approach is the observation that the graded
parafermion theory — which is equivalent to the coset ôsp(1, 2)k/û(1)
— can be factored as (ôsp(1, 2)k/ŝu(2)k) × (ŝu(2)k/û(1)), with the two
cosets on the right equivalent to the minimal model M(k + 2, 2k + 3) and
the Zk parafermion model, respectively. This factorization allows for a
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new combinatorial description of the graded parafermion characters in
terms of the one-dimensional configuration sums of the (k + 1)-state
Andrews–Baxter–Forrester model.

1 Introduction

A conformal field theory typically has many different formulations. For
instance, it may be formulated (i) as the representation theory of some
extended conformal algebra, (ii) as a coset model, (iii) as a free field rep-
resentation, (iv) in terms of a quasiparticle description. Moreover, within
these different categories there can be more than one description, e.g., the
model under study may be described in terms of an irreducible represen-
tation of more than one conformal algebra, or have more than one coset
representation. Different constructions of the same irreducible modules may
lead to formally equivalent characters which structurally appear rather dis-
tinct. This poses the problem of establishing their direct equivalence. When
successful, such a verification, in turn, places the physical argument under-
lying the construction of the characters on a sound basis.

The aim of this work is to provide direct proofs — at the level of character
representations — of different algebraic descriptions of graded parafermion
theories. Since we rely heavily on the non-graded parafermion theory, we
will first summarize current understanding of this more familiar and much
better understood conformal field theory.

1.1 Ordinary parafermion characters

The Zk parafermion conformal theory [34] provides a good illustration of
a conformal field theory with a multitude of formulations. The theory
is defined by the algebra of parafermionic fields ψ1 and ψ†

1 of dimension
1 − 1/k and central charge 2(k − 1)/(k + 2). The highest-weight modules
are parametrized by an integer (Dynkin label) � with 0 ≤ � < k. We are
interested in modules with fixed relative charge 2r, where r counts the num-
ber of ψ1 modes minus the number of ψ†

1 modes. Suppressing the level k,
the corresponding characters will be denoted by χ̂�,r (q). Here the “hat” has
been used to distinguish ordinary and graded parafermion characters.

The Zk parafermion model is known to be equivalent to the coset

ŝu(2)k

û(1)
. (1.1)



GRADED PARAFERMIONS 947

The first derivation of an explicit expression for the parafermionic characters
by Kac and Petersen relied on (1.1) and identifies the characters with the
coset branching functions.

Let χ̂�(x; q) denote the character of the ŝu(2)k integrable module of
Dynkin label � (with 0 ≤ � ≤ k), and let Km(x; q) denote û(1) character
of charge m, associated to the current algebra of a boson compactified on
an integer square-radius R2 = 2k [8, Section 14.4.4]. Then the branching
functions associated to the coset (1.1) are given by the decomposition

χ̂�(x; q) =
k
∑

m=1−k

b̂�,m(q) Km(x; q). (1.2)

The above-mentioned identification of branching functions and parafermion
characters implies that for m − � even

b̂�, m(q) = χ̂�,(m−�)/2(q). (1.3)

(In fact it can easily be shown that b̂�,m(q) = 0 when m − � is odd).

According to the Weyl–Kac formula, the ŝu(2)k characters are given by a
ratio of differences of theta functions as

χ̂�(x; q) =
Θ(k+2)

�+1 (x; q) − Θ(k+2)
−�−1 (x; q)

Θ(2)
1 (x; q) − Θ(2)

−1(x; q)
. (1.4)

Using (1.2), (1.3), and (1.4), Kac and Petersen [21] (see also [17]) obtained
the following expression for the parafermion characters:

χ̂B
�,r(q) =

1
η2(q)

{(

∑

i≥0
j≥0

−
∑

i<0
j<0

)

(−1)iq

(

�+1+(i+2j)(k+2)
)2

/(4(k+2))−(m+ik)2/(4k)

−
(

∑

i≥0
j>0

−
∑

i<0
j≤0

)

(−1)iq

(

�+1−(i+2j)(k+2)
)2

/(4(k+2))−(m+ik)2/(4k)

}

.

(1.5)

Here 2r = m − � and η is the Dedekin eta function: η(q) = q1/24(q; q)∞,
with (q; q)n =

∏n
i=1(1 − qi). The superscript B attached to χ̂�,r(q) indicates

a bosonic or inclusion–exclusion form — a characteristic inherited from the
form (1.4) for the ŝu(2)k characters.

Other derivations of χ̂�,r(q) have been given in the literature using a free
field representation (one boson and a pair of ghosts [9], or three bosons [27])
and the BRST construction. This has led to bosonic expressions for the
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characters that are only superficially different from (1.5), and can easily be
proved to be equivalent by simple manipulations.

Shortly after the Kac–Petersen derivation, an intrinsically different for-
mula for the parafermion characters was obtained. This is the famous
Lepowsky–Primc expression [23] which yields the characters as a manifestly
positive multiple series or fermionic (F) form (see also [19]). Specifically,

χ̂F
�,r(q) = qΔ�

∞
∑

n1,...,nk−1=0
(r+�)/k+(C−1n)1∈Z

qnC−1(n−e�)

(q; q)n1 · · · (q; q)nk−1

, (1.6)

where ei denotes, the ith standard unit vector in Z
k−1 (with e0 = ek the

zero vector), n = (n1, . . . , nk−1) and C denotes the Ak−1 Cartan matrix.
(For more precise definitions of the employed notation, see Section 2.4).
The exponent Δ� in the above is given by

Δ� = − �2

4k
+

(� + 1)2

4(k + 2)
− 1

12
. (1.7)

Yet a third expression for the parafermion characters can be obtained
from the so-called ŝu(2)k spinon formula for χ̂�(q) which was conjectured in
[6] and proved in [3, 25, 26]. Using (1.2) to extract the branching function
from the spinon formula yields

χ̂S
�,r(q) = (q; q)∞ qΔ�

×
∞
∑

L,n1,...,nk−1=0
(L+r+�)/k+(C−1n)1∈Z

qL(L+�+2r)/k+nC−1(n−e�)

(q; q)L(q; q)L+�+2r

k−1
∏

i=1

[

mi + ni

ni

]

,

(1.8)

where
[

n
m

]

is a q-binomial coefficient, and where the integers mi can be
computed from L and the ni by

m = C−1
[

(2L + r)e1 + e� − 2n
]

,

with m = (m1, . . . , mk−1).

Finally, a fourth form of the parafermionic characters has been obtained
in [18], relying on what can be called “parafermionic representation theory”.
The basic building block is the character of the parafermionic Verma module
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of relative charge 2t, given by

V̂t(q) =
∞
∑

j=0

qj+t

(q; q)j(q; q)j+t
. (1.9)

Combined with knowledge of the explicit structure of the singular vectors
in the theory, the Verma character (1.9) leads to a second bosonic form of
the characters as follows:

χ̂B′
�,r(q) = q−(1/12)−(�+2r)2/(4k)

∞
∑

j=−∞
q(k+2)

(

j+(�+1)/(2(k+2))
)2

×
{

V̂r−(k+2)j(q) − V̂r+�+1+(k+2)j(q)
}

. (1.10)

Viewed as formal q-series, the identities

χ̂B
�,r(q) = χ̂S

�,r(q) = χ̂F
�,r(q) (1.11)

have all been demonstrated in [29]. To complete the formal proof of the
equality of all four parafermion expressions it remains to be shown that, for
example,

χ̂B
�,r(q) = χ̂B′

�,r(q). (1.12)

We fill this small gap in the literature in the appendix.

This concludes our review of character representations for ordinary para-
fermions, and next we turn our attention to graded parafermions.

1.2 Graded parafermion characters

The present work is concerned with a demonstration — at the level of q-
series — of the graded analogue of (1.11), that is,

χB
�,r(q) = χS

�,r(q) = χF
�,r(q). (1.13)

Here χ�,r(q) is a graded parafermion characters of relative charge r and
Dynkin label �, to be introduced below. B, S, and F again refer to bosonic,
spinon, and fermionic representations, each of which arises from a different
algebraic formulation of the graded parafermion theory.

Graded parafermions were first introduced in [7]. The underlying alge-
bra is generated by “fermionic” parafermions ψ1/2 and ψ†

1/2 of dimension
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1 − 1/(4k) and central charge

c = − 3
2k + 3

. (1.14)

The spectrum of the model has been determined in [7], and was shown to
be equivalent to that of the coset

ôsp(1, 2)k

û(1)
, (1.15)

where ôsp(1, 2)k is the affine extension of the Lie superalgebra osp(1,2).
The latter is a graded version of su(2) obtained by adding to the usual su(2)
generators J± and J0, the two fermionic generators F± such that F 2

± = J±.

The equivalence between the graded parafermion theory and the coset
(1.15) leads to the graded analogue of (1.2) and (1.3):

χ�(x; q) =
k
∑

m=1−k

χ�,m−�(q)Km(x; q), (1.16)

where χ�(x; q) denotes the character of the ôsp(1, 2)k integrable module of
Dynkin label � (with 0 ≤ � ≤ k), and Km(x; q) again denotes the û(1) char-
acter of charge m.

A further analysis of the graded parafermion model has been presented in
[20], resulting in an exact expression of the singular vectors and a
description — in terms of jagged partitions — of the special nature of the
spanning set of states. The resulting expression for the Verma character of
relative charge t is given by

Vt(q) =
1

(q; q)∞

∞
∑

i, j=0

q(
2j−2i−t

2 )+j

(q; q)i(q; q)j
. (1.17)

The associated character for the irreducible modules is an alternating sum
over these Verma characters — encoding the subtraction and addition of the
embedded singular vectors — and reads [4]

χB
�,r(q) = q−(�+r)2/(4k)

∞
∑

j=−∞
q(1/2)(2k+3)

(

j+(2�+1)/(2(2k+3))
)2

×
{

Vr−(2k+3)j(q) − Vr+2�+1+(2k+3)j(q)
}

. (1.18)

This is the bosonic formula for graded parafermions, one of the three central
objects of our work. Its underlying algebraic formulation is what could be
dubbed the “graded parafermionic representation theory”.

In Section 2.3 we present an alternative, purely analytic derivation of
(1.18) along the lines of the Kac–Peterson derivation of (1.5), utilizing the
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branching rule (1.16) and the Weyl–Kac formula for the ôsp(1, 2)k charac-
ters. Unlike the non-graded theory, we have chosen to only work with a
single bosonic representation, dispensing of the need for B′.

The fermionic expression of a character reflects the construction of the
corresponding module using a quasiparticle basis by a filling process subject
to a generalized exclusion principle. When the model is viewed directly from
the point of view of the parafermionic algebra, the modes of the parafermion
ψ1/2 are the natural choice for these quasiparticles. A descendant can thus
be represented by the ordered sequence of its modes, and up to an overall
sign this sequence forms a jagged partition [20]. The generalized exclusion
principle takes the form of certain (k-dependent) difference conditions on
parts of the jagged partitions. The generating function of the restricted
jagged partitions yields, up to a minor adjustment, the fermionic expression
for the characters of the irreducible modules:

χF
�,r(q) = qh�−c/24

×
∞
∑

n0,...,nk−1=0
(r+2�+n0)/(2k)+(C−1n)1∈Z

q−n0(n0+2�)/(4k)+(n0+1
2 )+nC−1(n−n0e1−e�)

(q; q)n0 · · · (q; q)nk−1

.

(1.19)

Here the exponent h� is given by the r = 0 instance of (2.1) of Section 2.1.

Finally, we describe a third form for graded parafermion characters,
referred to as a spinon formula. It is inherited from the following ôsp(1, 2)k

analogue of the ŝu(2)k spinon formula:

χ�(x; q) = qh�−c/24+�2/(4k)−1/24
∞
∑

L+,L−,n0,...,nk−1=0
(L++L−+n0+�)/(2k)+(C−1n)1∈Z

x−(L+−L−)/2

× q[(L++L−)2−(n0+�)2]/(4k)+(n0+1
2 )+nC−1(n−n0e1−e�)

(q; q)L+(q; q)L−(q; q)n0

k−1
∏

i=1

[

ni + mi

ni

]

,

(1.20)

where

m = C−1
[

(L+ + L− + n0)e1 + e� − 2n
]

.

The formula (1.20) for the ôsp(1, 2)k character was initially conjectured
using the analogy with the non-graded theory. In the non-graded context,
the term spinon refers to the two components of the basic � = 1 ŝu(2)k

WZW primary field. In the present case, however, the doublet is traded by
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a triplet, the third component manifesting itself in the presence of the n0
mode in (1.20). Its derivation from a spinon-type basis of states remains to
be worked out.

The expression for the parafermionic character that results from (1.20)
and (1.16) is, with L+ = L + r + � and L− = L,

χS
�,r(q) = (q; q)∞ qh�−c/24

×
∞
∑

L,n0,...,nk−1=0
(2L+r+2�+n0)/(2k)+(C−1n)1∈Z

qL(L+r+�)/k−n0(n0+2�)/(4k)+(n0+1
2 )

× qnC−1(n−n0e1−e�)

(q; q)L(q; q)L+r+�(q; q)n0

k−1
∏

i=1

[

ni + mi

ni

]

, (1.21)

where
m = C−1

[

(2L + r + � + n0)e1 + e� − 2n
]

.

Our proof of (1.21) in Section 3 of course also confirms the validity of (1.20).

1.3 Outline of the proof of (1.13)

The proof of the equivalence of the three character representations (1.18),
(1.19), and (1.21) is presented in Section 3, and forms the core of this paper.
Due to its very technical nature, the proof may — certainly at first reading
— not be very insightful. It thus seems important to point out the main
ideas and underlying physics.

Given our much better understanding of the non-graded parafermions, an
obvious approach to establishing (1.13) is to connect with the non-graded
character theory. To this end, we use a little trick and write the coset
(1.15) as

ôsp(1, 2)k

û(1)
=

ôsp(1, 2)k

ŝu(2)k
× ŝu(2)k

û(1)
, (1.22)

where the second coset on the right is that of ordinary parafermions, see
(1.1). In [11, 22], it was shown that

ôsp(1, 2)k

ŝu(2)k
� M(k + 2, 2k + 3), (1.23)

where the right-hand side denotes the non-unitary minimal model of central
charge

c(k+2,2k+3) = 1 − 6(k + 1)2

(k + 2)(2k + 3)
.
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(The reader may readily check that −3/(2k + 3) = c(k+2,2k+3) − 2(k − 1)/
(k + 2)).

Now let χ̃
(p,p′)
r,s (q) be the usual M(p, p′) Virasoro character [8]

χ̃(p,p′)
r,s (q) =

1
η(q)

∑

σ∈{±1}

∞
∑

j=−∞
σqpp′

(

j+(p′r−σps)/(2pp′)
)2

. (1.24)

Then, by (1.23) and

ôsp(1, 2)k =
ôsp(1, 2)k

ŝu(2)k
× ŝu(2)k,

we have

χ�(x; q) =
k
∑

i=0

χ̃
(k+2,2k+3)
i+1,2�+1 (q)χ̂i(x; q). (1.25)

By (1.2), (1.3) (plus b̂�,m(q) = 0 when m − � is odd) and (1.16) it thus follows
that the decomposition (1.22) gives rise to

χ�,r−�(q) =
k
∑

i=0
i≡r (mod 2)

χ̃
(k+2,2k+3)
i+1,2�+1 (q)χ̂i,(r−i)/2(q). (1.26)

It is this formula that provides the necessary handle on (1.13).

Indeed, both the Virasoro and (ordinary) parafermion character on the
right admit an interpretation in terms of the same combinatorial objects: the
one-dimensional configuration sums X

(p,p′)
r,s (L, b; q) of the Andrews–Baxter–

Forrester models. This leads to (see Section 3.2)

χ�,r−�(q) = qh�−(r−�)(r+�)/(4k)−c/24

× (q; q)∞

∞
∑

n=0
n≡r+� (mod 2)

qn2/2

(q; q)n

∞
∑

L=0

q(2L+r−�)/2

(q; q)L(q; q)L+r

×
k
∑

i=0
i≡r (mod 2)

X
(1,k+2)
1,i+1 (n, � + 1; q−1)X(1,k+2)

1,i+1 (2L + r, 1; q).

(1.27)

Our proof of (1.13) basically amounts to showing that (1.27) is
compatible with both (1.18) and (1.21). In the case of (1.21), this requires a
combinatorial (subtractionless or fermionic) method for computing the sum
over products of one-dimensional configuration sums, whereas in the case
of (1.18) our approach will be analytic in nature. Once the compatibility
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of (1.27) with (1.18) and (1.21) is established, we have achieved the desired
equality χB

�,r(q) = χS
�,r(q).

Showing the remaining

χS
�,r(q) = χF

�,r(q)

does not rely on (1.27), but closely follows the approach of [29] for proving

χ̂S
�,r(q) = χ̂F

�,r(q)

in the case of non-graded parafermions.

Given that the bosonic formula (1.18) significantly simplifies in the large
k limit, it is of interest to look for an entirely analytic derivation of the
equivalence of χB

�,r(q) and χF
�,r(q) in this limit. This will be the content of

Section 4.

2 Graded parafermions and ôsp(1,2)k characters

2.1 Graded parafermions

The graded parafermion conformal theory is defined by an algebra that
generalizes the usual Zk parafermionic algebra (i.e., ψn × ψm ∼ ψn+m with
ψk ∼ I), by the addition of a Z2 grading ψ1/2 × ψ1/2 ∼ ψ1 [7]. The new
parafermion ψ1/2 has conformal dimension 1 − 1/(4k). Associativity of
the operator product algebra fixes the central charge as in (1.14). The
parafermionic primary fields φ� are labeled by an integer � such that
0 ≤ � ≤ k. If we denote the corresponding highest-weight state by |φ�〉, then
modules over |φ�〉 can be decomposed into a finite sum of modules with spe-
cific charge. The latter is normalized by setting the charge of ψ1/2 equal to
one, and is in fact defined modulo 2k only, since (ψ1/2)2k ∼ I. The highest-
weight state of relative charge r in the highest-weight module labeled by
�, has dimension

h
(r)
� =

�(2k − 3�)
4k(2k + 3)

− r(2� + r)
4k

+ max{0, �(r + 1)/2�}, (2.1)

where h
(0)
� will be simply denoted as h�.

In terms of the coset description (1.15), the label � is the finite Dynkin
label of ôsp(1, 2)k and r is related to the u(1) charge m by

r = m − �.
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With this identification, the dimension h
(r)
� can be rewritten as

h
(m−�)
� =

�(� + 1)
2(2k + 3)

− m2

4k
+ max{0, �(m − � + 1)/2�},

which can be recognized as the difference (modulo integers) between the
dimension of the ôsp(1, 2)k primary field with spin �/2 and that of the û(1)
field of charge m.

In order to specify the highest-weight conditions, let us recall that when
acting on a generic state of charge t, denoted by |t〉, the parafermionic modes
Bn are defined as

ψ 1
2
(z)|t〉 =

∞
∑

m=−∞
z−t/(2k)−m−1B(1+2t)/(4k)+m|t〉,

ψ†
1
2
(z)|t〉 =

∞
∑

m=−∞
zt/(2k)−m−1B†

(1−2t)/(4k)+m|t〉.

In the following, we use the more compact notation

Bn|t〉 := Bn+(1+2t)/(4k)|t〉, B†
n|t〉 := B†

n+(1−2t)/(4k)|t〉.

Then the defining relations for the highest-weight states |φ�〉 are

Bn|φ�〉 = 0 = B†
n+1|φ�〉, n ≥ 0.

The dimension h� of the highest-weight state |φ�〉 follows directly from these
constraints together with the generalized commutation relations induced by
the operator product algebra. The dimension h

(r)
� , in turn, is h� plus the

dimension of (B−1)r for r > 0 or (B†
0)

−r for r < 0 [20].

2.2 The Verma characters

The free module over the highest-weight state |φ�〉 can be decomposed into a
direct sum of modules with fixed relative charge r. The states of the module
of charge r ≥ 0 are of the form

B−λ1B−λ2 · · · B−λpB
†
−μ1

B†
−μ2

· · · B†
−μp′ |φ�〉, (2.2)

where
p − p′ = r (2.3)

and

λi ≥ λi+1 − 1, λi ≥ λi+2, λp ≥ 1, (2.4a)

μi ≥ μi+1 − 1, μi ≥ μi+2, μi ≥ 0. (2.4b)
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Adopting the terminology of [20], we refer to the sequence λ = (λ1, . . . , λp)
as a jagged partition of length p and weight λ1 + · · · + λp. Clearly, the
sequence μ = (μ1, . . . , μp′) then corresponds to a jagged partition of length
at most p′.

In order to compute the character Vr(q) of the free module of relative
charge r — Verma character for short — we denote by Jp,k and J̄p′,k =
∑p′

p=0 Jp,k the number of jagged partitions of length p and weight k and
the number of jagged partitions of length at most p′ and weight k. For
example, the four jagged partitions of length 4 and weight 5 are (3, 1, 0, 1),
(2, 2, 0, 1), (2, 1, 1, 1), and (1, 2, 1, 1), so that J4,5 = 4. We further introduce
the generating functions

J(z; q) =
∞
∑

p=0

Jp(q)zp =
∞
∑

p,k=0

Jp,kz
pqk,

J̄(z; q) =
∞
∑

p=0

J̄p(q)zp =
∞
∑

p,k=0

J̄p,kz
pqk,

so that Jp(q) and J̄p(q) are the generating functions of jagged partitions of
length p and of length at most p, respectively. Since Jp,k = J̄p,k − J̄p−1,k we
immediately infer that

J(z; q) = (1 − z)J̄(z; q). (2.5)

According to (2.3) and (2.4), the Verma character is expressed in terms
of the above generating functions as

Vr(q) =
∞
∑

p,p′=0
p−p′=r

Jp(q)J̄p′(q). (2.6)

To obtain a closed form expression for Vr(q), we need some standard q-series
notation. Let (a; q)0 = 1,

(a; q)n =
n−1
∏

k=0

(1 − aqk) (2.7)

for n, a positive integer and

(a; q)∞ =
∞
∏

k=0

(1 − aqk), |q| < 1.

Using that (a; q)n = (a; q)∞/(aqn; q)∞, one can extend the definition (2.7)
to all integers n. In particular, this implies that 1/(q; q)−n = 0 for n, a
positive integer.
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Returning to our calculation of the Verma character, we recall that [4, 14]

J(z; q) =
(−zq; q)∞
(z2q; q)∞

. (2.8)

By Euler’s two formulae [15, Equations (II.1) and (II.2)]

(z; q)∞ =
∞
∑

j=0

(−z)jq(
j
2)

(q; q)j
, (2.9a)

1
(z; q)∞

=
∞
∑

j=0

zj

(q; q)j
, (2.9b)

it thus follows that

Jp(q) =
∞
∑

j=0

q(
p−2j+1

2 )+j

(q; q)p−2j(q; q)j
. (2.10)

From (2.5) and (2.8) we find that

J̄(z; q) =
1

1 − z

(−zq; q)∞
(z2q; q)∞

=
(−z; q)∞
(z2; q)∞

.

Again using the Euler formulae this implies a companion to (2.10) as follows:

J̄p′(q) =
∞
∑

j=0

q(
p′−2j

2 )

(q; q)p′−2j(q; q)j
. (2.11)

An alternative derivation of (2.11) follows from Lemma 17 and Equations
(56) and (58) of [13].

Substituting (2.10) and (2.11) in (2.6) results

Vr(q) =
∞
∑

p,i,j=0

q(
p−2j+1

2 )+(p−r−2i
2 )+j

(q; q)p−r−2i(q; q)i(q; q)p−2j(q; q)j
.

Shifting p → p + 2j and then summing over p using the Durfee rectangle
identity [15, Equation (II.8)]

∞
∑

k=0

qk(k+a)

(q; q)k(q; q)k+a
=

1
(q; q)∞

, a ∈ Z, (2.12)

yields the expression for the Verma character of relative charge r given in
(1.17). This should be compared with the quadruple sum representation for
Vr(q) of [4].

The Verma character is the character of a generic highest-weight mod-
ule not containing singular vectors. Modules over |φ�〉 are highly reducible.
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A closed-form expression can be obtained for the singular vectors, from
which their dimension and charge are easily read off. The irreducible mod-
ules are thus obtained by factoring these vectors using an exclusion-inclusion
process. As a result, the characters of an irreducible module of relative
charge r are expressed as the alternating sum of Verma characters given
in (1.18).

2.3 The ôsp(1,2)k/û(1) branching functions

In this section, we rederive (1.18) through a direct computation of the
branching functions (1.15). This derivation is analogous to the one pre-
sented in the appendix for (1.10).

The character of the ôsp(1, 2)k integrable module indexed by the integer
Dynkin label 0 ≤ � ≤ k is [10, Appendix A]1

χ�(x; q) =
Θ(k+3/2)

�+1/2 (x; q) − Θ(k+3/2)
−�−1/2 (x; q)

Θ(3/2)
1/2 (x; q) − Θ(3/2)

−1/2(x; q)
. (2.13)

Here Θ(k)
m is the theta function

Θ(k)
m (x; q) =

∞
∑

n=−∞
qk
(

n+m/(2k)
)2

x−k
(

n+m/(2k)
)

. (2.14)

The û(1) character for a module with u(1) charge m is

Km(x; q) =
Θ(k)

m (x; q)
η(q)

.

This form manifests the symmetry

Km(x; q) = Km+2k(x; q).

The claim that the graded parafermion characters arise as the branching
functions of the ôsp(1, 2)k/û(1) coset translates into the identity (1.16). The
aim of this section is to show that this is in accordance with the bosonic
representation of χ�,r(q) as given in (1.18).

1Recall that for osp(1,2), the dual Coxeter number is 3/2 and the Weyl vector is
ρ = ω1/2 where ω1 is the su(2) fundamental weight.
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In passing, we note that the ôsp(1, 2)k string functions are defined by the
decomposition

χ�(x; q) =
k
∑

m=1−k

c�
m(q)Θ(k)

m (x; q),

so that (1.16) is equivalent to

χ�,m−�(q) = η(q)c�
m(q).

Now, to obtain a formal expansion for the character χ�(x; q), we use the
quintuple product identity [15, Example 5.6]

∞
∑

n=−∞
qn(3n−1)/2x3n(1 − xqn) = (x, q/x, q; q)∞(qx2, q/x2; q2)∞, x �= 0,

where (a1, a2, . . . , ak; q)n = (a1; q)n(a2; q)n · · · (ak; q)n, to rewrite the denom-
inator of (2.13) (where we have set x = y2) as

Θ(3/2)
1/2 (y2; q) − Θ(3/2)

−1/2(y
2; q) = q1/24 y−1/2

∞
∑

n=−∞
qn(3n−1)/2y3n(1 − yqn)

= q1/24 y−1/2(y, q/y, q; q)∞(qy2, q/y2; q2)∞

= q1/24 y−1/2 (y2, q/y2, q; q)∞
(−y, −q/y; q)∞

.

By a double use of (2.9b), we obtain

1
(x, q/x; q)∞

=
∞
∑

i,j=0

qjxi−j

(q; q)i(q; q)j
, |q| < |x| < 1. (2.15)

This and the Jacobi triple product identity [15, Equation (II.28)]
∞
∑

n=−∞
q(

n
2)xn = (−x,−q/x, q; q)∞, x �= 0, (2.16)

imply that

(−y, −q/y; q)∞
(y2, q/y2, q; q)∞

=
1

(q; q)2∞

∞
∑

n=−∞

∞
∑

i,j=0

yn+2i−2jq(
n
2)+j

(q; q)i(q; q)j

=
1

(q; q)2∞

∞
∑

n=−∞

∞
∑

i,j=0

y−nq(
2j−2i−n

2 )+j

(q; q)i(q; q)j

=
1

(q; q)∞

∞
∑

n=−∞
y−nVn(q), |q| < |y|2 < 1,
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where the last equality follows from (1.17). We thus arrive at the following
expansion of the denominator of (2.13) in terms of Verma characters:

1
∑

σ∈{±1}
σΘ(3/2)

σ/2 (x; q)
=

x1/4

η(q)

∞
∑

n=−∞
x−n/2Vn(q).

Multiplying the above expression by the numerator of (2.13) yields

χ�(x; q) =
1

η(q)

∑

σ∈{±1}
σ

∞
∑

j,n=−∞
x−n/2+j(2k+3)/2+σ(�+1/2)/2+1/4

× q
(1/2)(2k+3)

(

σj+ 2�+1
2(2k+3)

)2

Vn(q).

We now arrange the x dependence into sums over the û(1) characters.
Shifting n → n − (2k + 3)j − σ(� + 1/2) + 1/2 and replacing j by σj, this is
achieved as

χ�(x; q) =
1

η(q)

∞
∑

n=−∞
x−n/2

∞
∑

j=−∞
q(1/2)(2k+3)

(

j+(2�+1)/(2(2k+3))
)2

×
∑

σ∈{±1}
σVn−σ(2k+3)j−σ(�+1)/2+1/2(q)

=
1

η(q)

∞
∑

n=−∞
x−n/2qn2/(4k)χ�,n−�(q).

with χ�,r(q) given by (1.18). To complete the decomposition of the ôsp(1, 2)k

character, we set n = 2kj + m with 1 − k ≤ m ≤ k and use the symmetry
χ�,m(q) = χ�,m+2kj(q). This gives

χ�(x; q) =
k
∑

m=1−k

χ�,m−�(q)
∞
∑

j=−∞

qk(j+m/(2k))2x−k(j+m/(2k))

η(q)

=
k
∑

m=1−k

χ�,m−�(q)Km(x; q)

in agreement with (1.18) and (1.16).

2.4 Fermionic parafermion characters

Fermionic forms for the characters of the graded parafermion models were
first constructed in [4]. Correcting a minor misprint, the result of [4] states
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that

χF
�,r(q) = qh�−c/24

∞
∑

n0,...,nk−1=0
n0+2N≡r (mod 2k)

× q(
n0+1

2 )+N2
1 +···+N2

k−1+Nk−�+1+···+Nk−1−(n0+2N)(n0+2N+2�)/(4k)

(q; q)n0 · · · (q; q)nk−1

,

(2.17)

with Ni = ni + · · · + nk−1, N = N1 + · · · + Nk−1 and Nk = Nk+1 = 0.

The above fermionic form encodes the combinatorics of the graded parafer-
mionic quasiparticle basis constructed in [20]. This basis is described by
states of the form

B−λ1B−λ2 · · · B−λp |φ�〉
for p = mk + r. Here the λi are again subject to (2.4) with λp ≥ 1,
but — in the case of strictly positive k — are further constrained by

λj ≥ λj+2k−1 + 1 or λj = λj+1 − 1 = λj+2k−2 + 1 = λj+2k−1,

for all j ≤ p − 2k + 1.

In the derivation of (2.17), it is understood that r ≥ 0 (that is, we act
with r modes modulo k on the highest-weight state). We shall later show,
however, that the expression (2.17) obeys the formal symmetry relation

χ�,r(q) = χ�,−r−2�(q). (2.18)

This will allow us to interpret χ�,r(q) for all integers r.

To connect with the fermionic form for the characters stated in (1.19),
we first need to replace ni → nk−i for 1 ≤ i ≤ k − 1 and use the symmetry
(2.18). Then introducing the vector notation

wAv =
k−1
∑

i,j=1

wiAijvj and (Av)i =
k−1
∑

j=1

Aijvj

for w, v ∈ Z
k−1 and A, a square matrix of dimension k − 1, we get (1.19)

with C the Ak−1 Cartan matrix:

C−1
ij = min{i, j} − ij

k
, (2.19)

ei the ith standard unit vector in Z
k−1 (with e0 = ek the zero vector) and

n = (n1, . . . , nk−1).

We note that since the entries of C−1 are integer multiples of 1/k, the
restriction imposed on the sum over the ni in (1.19) implies that the sum-
mand vanishes unless n0 − r is even.
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3 Proof of B = S = F for graded parafermions

This section, in which we prove the equivalence of the bosonic, fermionic,
and spinon forms of the graded parafermion characters, forms the core of
the paper.

3.1 Main results

Normalizing the characters in (1.13) we set out to prove the following theo-
rem. Let

[

n

k

]

q

=
[

n

k

]

=

⎧

⎪

⎨

⎪

⎩

(q; q)n

(q; q)k(q; q)n−k
k ∈ {0, 1, . . . , n},

0 otherwise,
(3.1)

be a q-binomial coefficient, and assume the vector notation introduced in
Section 2.4.

Theorem 3.1. Let k be a positive integer. For � ∈ {0, . . . , k} and r ∈ Z

there holds
∞
∑

j=−∞
qj((2k+3)j+2�+1)/2

{

Vr−�−(2k+3)j(q) − Vr+�+1+(2k+3)j(q)
}

= (q; q)∞

∞
∑

L,n0,...,nk−1=0
(2L+r+�+n0)/(2k)+(C−1n)1∈Z

qL(L+r)/k+(r−�−n0)(r+�+n0)/(4k)+(n0+1
2 )

× qnC−1(n−n0e1−e�)

(q; q)L(q; q)L+r(q; q)n0

k−1
∏

i=1

[

ni + mi

ni

]

=
∞
∑

n0,...,nk−1=0
(r+�+n0)/(2k)+(C−1n)1∈Z

q(r−�−n0)(r+�+n0)/(4k)+(n0+1
2 )+nC−1(n−n0e1−e�)

(q; q)n0 · · · (q; q)nk−1

.

(3.2)

Here the mi in the expression after the first equality follow from

m = C−1
[

(2L + r + n0)e1 + e� − 2n
]

. (3.3)

Similar to our earlier comment, we remark that the summands of the two
multiple sums on the right vanish when n0 + r + � �≡ 0 (mod 2).
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For the sake of brevity, we write the statement of Theorem 3.1 as

ψB
�,r(q) = ψS

�,r(q) = ψF
�,r(q). (3.4)

Comparison with (1.18), (1.19), and (1.21) shows that

χ�,r−�(q) = qh�−(r−�)(r+�)/(4k)−c/24ψ�,r(q) (3.5)

so that (3.4) implies (1.13).

The remainder of this section will be devoted to a proof of Theorem 3.1,
partially by analytic and partially by combinatorial means. Because of the
length and complexity of the proof, we will state the main intermediate
results leading to the theorem in the form of three propositions. Section 3.2
will provide some further insight into the origin of the first proposition
(which essentially is a restatement of (1.27)). Then, in Sections 3.3–3.5,
each of the propositions will be proved.

Before we can state our first proposition, we need to recall the definition
of the one-dimensional configuration sums of the Andrews–Baxter–Forrester
model, given by [2, 12]

X(p,p′)
r,s (L, b; q) =

∞
∑

j=−∞

{

qj(pp′j+p′r−ps)
[

L

(L + s − b)/2 − p′j

]

− q(pj+r)(p′j+s)
[

L

(L − s − b)/2 − p′j

]}

. (3.6)

Here p, p′, r, s, b, and L are integers such that 1 ≤ p ≤ p′, 1 ≤ b, s ≤ p′ − 1,
0 ≤ r ≤ p, and L + s + b ≡ 0 (mod 2).

Our first proposition allows for the rewriting of the left-hand side of (3.4)
in terms of one-dimensional configuration sums, and may be recognized as
a normalized version of (1.27).

Proposition 3.1. For r an integer and � ∈ {0, . . . , k} there holds

ψB
�,r(q) = (q; q)∞

∞
∑

n=0
n≡r+� (mod 2)

qn2/2

(q; q)n

∞
∑

L=0

q(2L+r−�)/2

(q; q)L(q; q)L+r

×
k
∑

i=0
i≡r (mod 2)

X
(1,k+2)
1,i+1 (n, � + 1; q−1)X(1,k+2)

1,i+1 (2L + r, 1; q).

Since 1/(q; q)−n = 0 for n a positive integer, the lower bound in the sum
over L may be replaced by max{0,−r}. By shifting the summation index
L → L − r it thus follows that ψ�,r(q) = ψ�,−r(q). By (3.5) this implies
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χ�,r−�(q) = χ�,−r−�(q) thereby establishing the previously claimed symmetry
(2.18).

The next proposition provides a fermionic representation for the second
line in the above expression.

Proposition 3.2. For L, M integers and � ∈ {0, . . . , k} such that

L + M + � ≡ 0 (mod 2) (3.7a)

there holds
k
∑

i=0
i≡L (mod 2)

X
(1,k+2)
1,i+1 (M, � + 1; q−1)X(1,k+2)

1,i+1 (L, 1; q)

= q(L2−(M+�)2)/(4k)−(L−M−�)/2

×
∑

n∈Z
k−1

(L+M+�)/(2k)+(C−1n)1∈Z

qnC−1(n−Me1−e�)
k−1
∏

i=1

[

ni + mi

ni

]

. (3.7b)

Here the mi follow from

m = C−1
[

(L + M)e1 + e� − 2n
]

. (3.7c)

Clearly, combining Proposition 3.1 (with n → n0) and Proposition 3.2
(with M → n0 and L → 2L + r) results in

ψB
�,r(q) = ψS

�,r(q).

Our third and final proposition is essentially a formula from [28].

Proposition 3.3. For r, n0 integers and � = {0, . . . , k} such that

n0 + r + � ≡ 0 (mod 2)

there holds
∞
∑

L=0

qL(L+r)/k

(q; q)L(q; q)L+r

∑

n∈Z
k−1

(2L+r+�+n0)/(2k)+(C−1n)1∈Z

qnC−1(n−n0e1−e�)
k−1
∏

i=1

[

ni + mi

ni

]

=
1

(q; q)∞

∑

n∈Z
k−1

(r+�+n0)/(2k)+(C−1n)1∈Z

qnC−1(n−n0e1−e�)

(q; q)n1 · · · (q; q)nk−1

,

with the mi determined by (3.3).
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Applying the above to the first expression on the right of (3.2), i.e., to
ψS

�,r(q), yields

ψS
�,r(q) = ψF

�,r(q).

3.2 From (1.26) to (1.27)

In this preliminary section, which is not part of the proof of Theorem 3.1, we
complete our earlier discussion and show how the coset decomposition (1.22)
naturally gives rise to the character expression (1.27). This, in particular,
motivates Proposition 3.1 and, to a lesser extend, Proposition 3.2.

We already sketched (no actual proof of (1.25) has been given) how (1.22)
leads to (1.26). To transform this into (1.27), we need to express both char-
acters in the summand on the right in terms of one-dimensional configuration
sums.

In the case of the Virasoro characters χ̃
(p,p′)
r,s (q) this is not difficult. Of

course the simplest connection between Virasoro characters and configura-
tion sums follows by taking the large L limit in the latter.

χ(p,p′)
r,s (q) = lim

L→∞
X(p,p′)

r,s (L, b; q) =
∞
∑

j=−∞

{

qj(pp′j+p′r−ps) − q(pj+r)(p′j+s)
}

.

Here χ
(p,p′)
r,s (q) = 1 + O(q) is the normalized character

χ̃(p,p′)
r,s (q) = qh

(p,p′)
r,s −c(p,p′)/24χ(p,p′)

r,s (q), (3.8)

with

c(p,p′) = 1 − 6(p − p′)2

pp′

h(p,p)
r,s =

(p′r − ps)2 − (p′ − p)2

4pp′

the central charge and conformal weights of the minimal model M(p, p′).

There is, however, another way in which the Virasoro characters fol-
low from the configuration sums, and by a straightforward application of
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(2.12) and
[

n

k

]

q−1
= q−k(n−k)

[

n

k

]

q

one finds

χ
(p′,2p′−p)
s,2b−r (q) = q−(s−b)2/2

∞
∑

n=0
n≡s+b (mod 2)

qn2/2

(q; q)n
X(p,p′)

r,s (n, b; q−1). (3.9)

The problem of expressing the parafermion character χ̂�,r(q) in terms
of configuration sums is a lot more difficult, but has been fully resolved in
[29, Corollary 4.2]. Using this result with p = 1 and p′ = k + 2, we find

b̂i,r(q) = (q; q)∞qΔi+(i2−r2)/(4k)
∞
∑

L=0

X
(p,p′)
0,i+1(2L + r, 1; q)
(q; q)L(q; q)L+r

with Δi given by (1.7). Also using [29, Equation (2.9)]

X
(p,p′)
0,s (L, 1; q) = q(L−s+1)/2X

(p,p′)
1,s (L, 1; q) (3.10)

and (1.3) this yields

χ̂i,(r−i/2)(q) = (q; q)∞qΔi+(i2−r2)/(4k)
∞
∑

L=0

q(2L+r−i)/2X
(1,k+2)
1,i+1 (2L + r, 1; q)

(q; q)L(q; q)L+r
.

Substituting this as well as (3.9) (with p = 1, p′ = k + 2, r = 1, s = i + 1
and b = � + 1) into (1.26) (to this end we also need (3.8)) results in (1.27)
since

h
(k+2,2k+3)
i+1,2�+1 − 1

24
c(k+2,2k+3) + Δi +

i2

4k
−
(

� − i

2

)

= h� +
�2

4k
− c

24
.

3.3 Proof of Proposition 3.1

By (3.9) and (3.10), Proposition 3.1 can be simplified to

ψB
�,r(q) = (q; q)∞

∞
∑

L=0

1
(q; q)L(q; q)L+r

×
k
∑

i=0
i≡r (mod 2)

q(
�−i
2 )χ(k+2,2k+3)

i+1,2�+1 (q)X(1,k+2)
0,i+1 (2L + r, 1; q).

Next we apply the following lemma with p = 1 and p′ = k + 2.
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Lemma 3.1. For P = p′ and P ′ = 2p′ − p,
p′−2
∑

i=0
i≡r (mod 2)

q(
�−i
2 )χ(P,P ′)

i+1,2�+1(q)X
(p,p′)
0,i+1(2L + r, 1; q)

=
1

(q; q)∞

∞
∑

j,n=−∞
qpj(P ′j+2�+1)/2+(2n+�−r+P ′j

2 )
{[

2L + r

L + n

]

−
[

2L + r

L + n − 1

]}

.

(3.11)

Hence,

ψB
�,r(q) =

∞
∑

j,n=−∞
qj((2k+3)j+2�+1)/2+(2n+�−r+(2k+3)j

2 )

×
∞
∑

L=0

1
(q; q)L(q; q)L+r

{[

2L + r

L + n

]

−
[

2L + r

L + n − 1

]}

.

This can be further transformed by yet another lemma.

Lemma 3.2. For n and r integers,
∞
∑

L=0

1
(q; q)L(q; q)L+r

{[

2L + r

L + n

]

−
[

2L + r

L + n − 1

]}

=
1

(q; q)∞

∞
∑

j=0

{

qj

(q; q)j(q; q)j−n
− qj

(q; q)j(q; q)j+n−r−1

}

.

Thanks to this second lemma we are left with

ψB
�,r(q) =

1
(q; q)∞

∞
∑

j=−∞
qj((2k+3)j+2�+1)/2

∞
∑

m=0

∞
∑

n=−∞
q(

2n+�−r+(2k+3)j
2 )

×
{

qm

(q; q)m(q; q)m−n
− qm

(q; q)m(q; q)m+n−r−1

}

.

Finally, replacing n → m − n and n → n − m + r + 1, respectively, in the
two sums over n on the right, and recalling (1.17), we find

ψB
�,r(q) =

1
(q; q)∞

∞
∑

j=−∞
qj((2k+3)j+2�+1)/2

×
{

Vr−�−(2k+3)j(q) − Vr+�+1+(2k+3)j(q)
}

in accordance with the left-hand side of (3.2).

Of course we still need to prove Lemmas 3.1 and 3.2.
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Proof of Lemma 3.1. The proof of (3.11) is rather simple. In the double
sum on the right, we replace n → p′n + (r − i)/2 followed by j → j − n.
Hence, since p′ = P ,

RHS(3.11) =
1

(q; q)∞

2p′−2
∑

i=0
i≡r (mod 2)

q(
�−i
2 )

∞
∑

j=−∞
qj(PP ′j+P (2�+1)−P ′(i+1))

×
∞
∑

n=−∞

{

qpn(p′n−i−1)
{[

2L + r

(2L + r − i)/2 + p′n

]

−
[

2L + r

(2L + r − i − 2)/2 + p′n

]}

=
1

(q; q)∞

2p′−2
∑

i=0
i≡r (mod 2)

q(
�−i
2 )X(p,p′)

0,i+1(2L + r, 1; q)

×
∞
∑

j=−∞
qj(PP ′j+P (2�+1)−P ′(i+1)).

Next we use
2p′−2
∑

i=0
i≡r (mod 2)

fi+1 =
p′−2
∑

i=0
i≡r (mod 2)

(fi+1 + f2p′−i−1)

provided that fp′ = 0. Since

X
(p,p′)
0,p′ (L, 1; q) = 0 (3.12)

this may be applied to the sum over i. Also using

X
(p,p′)
0,i+1(L, 1; q) = −qp(p′−i−1)X

(p,p′)
0,2p′−i−1(L, 1; q)

(this in fact implies (3.12)) yields

RHS(3.11) =
1

(q; q)∞

p′−2
∑

i=0
i≡r (mod 2)

q(
�−i
2 )X(p,p′)

0,i+1(2L + r, 1; q)

×
∞
∑

j=−∞

{

qj(PP ′j+P (2�+1)−P ′(i+1)) − q(P (j−1)+i+1)(P ′(j−1)+2�+1)
}

.

Replacing j → j + 1 in the second term in the sum over j completes the
proof. �
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Proof of Lemma 3.2. We will show that

(a − b)
∞
∑

j=0

(ab; q)2j qj

(q, aq, bq, ab; q)j

=
∞
∑

j=0

qj

{

a

(q, aq; q)j(bq; q)∞
− b

(q, bq; q)j(aq; q)∞

}

. (3.13)

Letting a → aqn, b → bqr−n+1 this gives
∞
∑

j=0

(abq; q)2j+r(aqj+n − bqj+r−n+1)
(q; q)j(abq; q)j+r(aq; q)j+n(bq; q)j+r−n+1

=
∞
∑

j=0

{

aqj+n

(q; q)j(aq; q)j+n(bq; q)∞
− bqj+r−n+1

(q; q)j(bq; q)j+r−n+1(aq; q)∞

}

.

Shifting j → j − n and j → j − r + n − 1 in the two terms on the right and
putting a = b = 1 yields the claim of the lemma since

(qj+n − qj+r−n+1)(q; q)2j+r

(q; q)j+n(q; q)j+r−n+1
=
[

2j + r

j + n

]

−
[

2j + r

j + n − 1

]

.

Equation (3.13) is similar to [29, Equation (4.3)] and [32, Theorem 1.5]
and the proof proceeds accordingly. First, we multiply both sides of (3.13)
by (aq, bq; q)∞ and use (a; q)∞/(a; q)n = (aqn; q)∞ to obtain

(a − b)
∞
∑

j=0

qj(abqj ; q)j(aqj+1, bqj+1; q)∞
(q; q)j

=
∞
∑

j=0

qj

{

a(aqj+1; q)∞
(q; q)j

− b(bqj+1; q)∞
(q; q)j

}

.

Next, we expand each of the q-shifted factorials depending on a and/or b by
(2.9a) or the q-binomial theorem [1, Equation (3.3.6)]

∞
∑

n=0

(−1)nanq(
n
2)
[

M

n

]

= (a; q)M .

This results in
∞
∑

j,k,l,n=0

(−1)k+l+nak+nbl+nq(
k+1
2 )+(l+1

2 )+(n
2)+j(k+l+n+1)

(q; q)n(q; q)j−n(q; q)k(q; q)l

=
∞
∑

j,k=0

ak+1 − bk+1

a − b

(−1)kq(
k+1
2 )+j(k+1)

(q; q)j(q; q)k
.
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After the shift j → j + n on the left, both sums over j can be carried out
by (2.9b), leading to

∞
∑

k,l,n=0

(−1)k+l+nak+nbl+nq(
k+1
2 )+(l+1

2 )+(n
2)+n(k+l+n+1)(q; q)k+l+n

(q; q)n(q; q)k(q; q)l

=
∞
∑

k=0

ak+1 − bk+1

a − b
(−1)kq(

k+1
2 ).

Equating coefficients of akbl and performing some standard manipulations
yields

2φ1(q−k, q−l; q−k−l; q, 1) = qkl (q; q)k(q; q)l

(q; q)k+l
.

Here

r+1φr

[

a1, . . . , ar+1

b1, . . . , br
; q, z

]

= r+1φr(a1, . . . , ar+1; b1, . . . , br; q, z)

=
∞
∑

n=0

(a1, . . . , ar+1; q)n

(b1, . . . , br, q; q)n
zn

is a basic hypergeometric series, see [15]. Summing the 2φ1 series using the
q-Chu–Vandermonde sum [15, Equation (II.7)]

2φ1(a, q−n; c; q, cqn/a) =
(c/a; q)n

(c; q)n

completes the proof. �

It is interesting to note that (3.13) admits the following bounded analogue

(a − b)
M
∑

j=0

qj

[

M

j

]

(ab; q)2j

(aq, bq, ab; q)j

=
M
∑

j=0

qj

[

M

j

]{

a

(aq; q)j(bq; q)M−j
− b

(bq; q)j(aq; q)M−j

}

.

We leave its proof (which is surprisingly difficult) to the reader.
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3.4 Proof of Proposition 3.2

In [30, 31], a combinatorial technique was developed to obtain fermionic
representations for the one-dimensional configuration sums

X(p,p+1)
r,s (L, b; q).

Combining this technique with the work of Berkovich and Paule [5] on gener-
alizations of the Andrews–Gordon identities results in Proposition 3.2. More
precisely, we will first show — following the method of [5] — that (after a
simple rewriting) the left-hand side of (3.7b) may be interpreted as the gen-
erating function of a particular set of lattice paths. We will then use the
method of [30, 31] to show that this generating function permits a fermionic
form in accordance with the right-hand side of (3.7b). The details of the
proof marginally differ according to whether � = 0 or � ∈ {1, . . . , k}. We
will first treat the � = 0 case in full detail and then point out the relevant
differences with � ∈ {1, . . . , k}.

Our initial step is to take (3.7b) with � = 0 and use [29, Equation (2.3)]

X(p,p′)
r,s (L, b; q) = q(L2−(b−s)2)/4X

(p′−p,p′)
b−r,s (L, b; q−1) (3.14)

followed by (3.10) to transform the left-hand side. On the right-hand side,
we use (3.7c) to eliminate n in the exponent of q in favor of m. As a result,
we obtain the � = 0 instance of the more general identity

k
∑

i=0
i≡L (mod 2)

q�(�−2i+1)/4X
(k+1,k+2)
�+1,i+1 (M, � + 1; q)X(k+1,k+2)

1,i+1 (L, 1; q−1)

=
∑

n∈Z
k−1

(L+M−�)/(2k)+(C−1n)1∈Z

qmCm/4−Lm1/2
k−1
∏

i=1

[

ni + mi

ni

]

, (3.15a)

where
m = C−1

[

(L + M)e1 + ek−� − 2n
]

(3.15b)

and
L + M + � ≡ 0 (mod 2) (3.15c)

and
� ∈ {0, . . . , k − 1}. (3.15d)

What we will set out to do is to compute the generating function of
lattice paths contained in a strip of height k starting in (−L, 0) and termi-
nating with a step from (M, �) to (M + 1, � + 1). More precisely, starting
from (−L, 0) we carry out a sequence of north-east (up or +) and south-east
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Figure 1: Example of path P with k ≥ 4, L = 3, M = 16, and � = 3.

(down or −) steps (an up step is from (x, y) to (x + 1, y + 1) and a down step
is from (x, y) to (x + 1, y − 1), with x, y integers) such that the y coordinate
of each vertex along the path is always non-negative and never exceeds k,
and such that the last step is in the north-east direction and terminates in
(M + 1, � + 1). An example of such a lattice path is shown in figure 1. Obvi-
ously there are no admissible paths unless (3.15c) and (3.15d) are satisfied.
The shape of a path is given by its sequence of consecutive steps, ignoring
the actual positions of the path’s starting and ending vertices. The shape
of the path of figure 1 is

(+,−, +, +,−, +, +, +,−,−,−,−, +, +, +, +,−,−, +, +).

To a path P , we assign a weight (or statistic) W (P ) given by the sum of
the x-coordinates of vertices of the type shown in figure 2. For example, the
weight P of the path of figure 1 is given by

0 + 3 + 4 + 6 + 7 + 8 + 10 + 11 + 12 + 14 + 16.

The aim is to compute the generating function

G�(L, M ; q) =
∑

P

qW (P )/2,

where the sum is over all admissible paths P . The rationale behind the half
in the exponent on the right is the fact that W (P ) ≡

(

�+1
2

)

− �L(mod 2) so
that, up to a possible overall factor q1/2, G�(L, M ; q) is a Laurent polynomial
in q.

Figure 2: Vertices of weight x.
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Our first method of computing G�(L, M ; q) closely follows [5], and, as we
shall see shortly, gives the left-hand side of (3.15a). First, let us introduce
the analogous problem of computing lattice paths in the strip with the same
bounds on the y-coordinates, but with initial vertex (0, i) and final two ver-
tices (L, �), (L + 1, � + 1). Defining the same statistic as before, we denote
the generating function of such paths by Gi,�(L; q).

After L-steps, a path P from (−L, 0) to (M, �), (M + 1, � + 1) crosses the
nonnegative y-axis at some vertex (0, i), where 0 ≤ i ≤ k and i ≡ L(mod 2).
Because this vertex has x-coordinate equal to zero, the “local shape” (i.e.,
(+, +), (+,−), (−, +), or (−,−)) of the paths when crossing the y-axis
will not affect the weight W (P ). Consequently, one may view P as the
concatenation of two lattice paths P+ and P−, the former starting at (0, i),
pointing in the positive x-direction and terminating in (M, �), (M + 1, � + 1)
and the latter starting at (0, i), pointing in the negative x-direction, and
terminating in (−L, 0), (−L − 1, 1). (The addition of the final up-step from
(−L, 0) to (−L − 1, 1) is permitted since it will not change the weight of
P−. Indeed, the final two steps of P− will now be (−, +)). The path P−
may be reflected in the y-axis so that it becomes a path pointing in the
positive x-direction, starting at (0, i) and terminating in (L, 0) to (L + 1, 1).
Since the reflection negates the weight of P−, we need to replace q by q−1

in the corresponding generating function of P− type paths. At the level of
the generating function, the above decomposition thus becomes

G�(L, M ; q) =
k
∑

i=0
i≡L (mod 2)

Gi,�(M ; q)Gi,0(L; q−1).

Since Gi,�(0; q) = δi,� this includes the obvious relations

G�(0, M ; q) = G0,�(M ; q) and G�(L, 0; q) = G�,0(L; q−1).

The Gi,�(L; q) may be computed from a simple recursion, and quoting the
result of [2] we have

Gi,�(L; q) = q(i−�)(i−�−1)/4X
(k+1,k+2)
�+1,i+1 (L, � + 1; q). (3.16)

The generating function G�(L, M ; q) is thus found to be

G�(L, M ; q)

=
k
∑

i=0
i≡L (mod 2)

q�(�−2i+1)/4X
(k+1,k+2)
�+1,i+1 (M, � + 1; q)X(k+1,k+2)

1,i+1 (L, 1; q−1)

in accordance with the left-hand side of (3.15a).
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The second method of computing G�(L, M ; q) closely follows [30, 31]
where it was used to find fermionic representations for the generating func-
tion Gi,�(L; q). The method amounts to interpreting an admissible path as
a collection of charged particles with charges taken from the set {1, . . . , k}
(the charge being the effective height of a particle). Hence each admissible
path P may be assigned a sequence of integers (n1, . . . , nk), where nj is
the number of particles of charge j in P . For example, the decomposition
into particles of the path in figure 3 is indicated by the dotted lines, and
this particular path has n1 = 2, n2 = 5, and n4 = 1 and all other nj = 0.
Because a path has fixed initial and final vertices, the nj are subject to the
constraint

2
k
∑

j=1

jnj = L − i − �.

The important point of the combinatorial method is that the gener-
ating function of paths with fixed sequence (n1, . . . , nk), i.e., with fixed
particle content may easily be computed, and as a special case we quote
[31, Proposition 3]

G0,�(L; n1, . . . , nk; q) = qmCm/4
k−1
∏

j=1

[

nj + mj

nj

]

, (3.17)

where the mj follow from

m = C−1
[

Le1 + ek−� − 2n
]

(3.18)

and where the nj are subject to

2
k
∑

j=1

jnj = L − �. (3.19)

The term mCm/4 in the above summand is the weight of the “minimal
path of content (n1, . . . , nk)” corresponding to the special type of path shown
in figure 4. All other paths with the same content have a weight of the form

Figure 3: Example of path P with particle content (n1, n2, n3, n4, . . .) =
(2, 5, 0, 1, 0, 0, . . .).
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Figure 4: Minimal path corresponding to the path of figure 3 with k = 6.
All particles are moved to the right as much as possible and arranged in
decreasing order with respect to charge such that the maximal height of the
path does not exceed k and such that the final step remains upwards.

mCm/4 + N , where N is a positive integer, and together they generate the
product of q-binomials in (3.17). The value of N for a non-minimal path P
is given by the number of “elementary” moves required to obtain P from its
corresponding minimal path Pmin, and, importantly, only depends on the
shape of a path. We refer the reader to [30, 31] for the precise details.

Let us now return to the problem of computing the generating function
G�(L, M ; q). Since we can again make a particle decomposition of admissible
paths, we may first try to compute G�(L, M ; n1, . . . , nk; q). This follows from
G0,�(L; n1, . . . , nk; q) by carrying out the following two transformations, the
first acting on the generating function and the second acting on the actual
paths.

(1) Replace L by L + M in G0,�(L; n1, . . . , nk; q), so that we are counting
paths from (0, 0) to (L + M, �), (L + M + 1, � + 1).

(2) Translate each path counted by G0,�(L + M ; n1, . . . , nk; q) exactly L
units to the left.

The first transformation simply means that (3.18) and (3.19) need to be
replaced by (3.15b) and

2
k
∑

j=1

jnj = L + M − �. (3.20)

The second transformation has a more subtle effect. The weight of a path is
computed by summing up the x-coordinates of (+, +) and (−,−) sequences
of steps, and it is non-trivial to relate the weight of a left-translated path
to its weight before translation. However, the crucial observation is that
the weights of all paths with the same content (n1, . . . , nk) are rescaled
identically. Specifically, if the weight of the minimal path changes as

K → K + ΔK
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as a result of the translation, then a non-minimal path of the same particle
content changes as

K + N → K + N + ΔK.

This follows from the previously-mentioned facts that (i) the weight of a
non-minimal path P is obtained from its minimal path Pmin by counting the
number, N , of elementary moves required to obtain P from Pmin, and (ii)
N only depends on the shape of P , and is thus invariant under translations.

So, all we have to do is (re)calculate the weight of the minimal path of
content (n1, . . . , nk) after its translation to the left. This is given by E with

E =
k
∑

j=1

j(j − 1)n2
j + 2

k
∑

j=1

k
∑

l=j+1

(j − 1)lnjnl + �

k
∑

j=1

(j − 1)nj

+
k
∑

j=k−�+1

(� − k + j)nj +
1
4
�(� + 1) − L

⎡

⎣

k
∑

j=1

(j − 1)nj − 1
2
�

⎤

⎦ .

When L = 0 (no left-translation) this is the weight of the minimal paths
computed in [31, Equation (3.13)]. Eliminating nk using the restriction
(3.20), and then writing the result in terms of the mj instead of nj using
(3.15b), yields

E =
1
4
mCm − 1

2
Lm1.

We therefore conclude that

G�(L, M ; n1, . . . , nk; q) = qmCm/4−Lm1/2
k−1
∏

j=1

[

nj + mj

nj

]

, (3.21)

where the mj follow from (3.15b) and where the nj must satisfy (3.20).
To obtain the full generating function, all we need to do is sum over all
admissible sequences (n1, . . . , nk). Now (3.20) may be rewritten as

L + M − �

2k
+ (C−1n)1 = n1 + n2 + · · · + nk

with n = (n1, . . . , nk−1). Since the right-hand side of (3.21) has no explicit
dependence on nk, summing over admissible sequences simply corresponds
to summing over n ∈ Z

k−1 such that

L + M − �

2k
+ (C−1n)1 ∈ Z.

In conclusion, G�(L, M ; q) is given by the right-hand side of (3.15a)
completing the proof of (3.15).
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Finally, we need to return to (3.7b) with � ∈ {1, . . . , k}. Using (3.10),
(3.14) and

X(p,p′)
r,s (L, b; q) = X

(p,p′)
p−r,p′−s(L, p′ − b; q)

on the left-hand side and eliminating n in the exponent of q on the right-
hand side, we find the following variation on (3.15a):

k
∑

i=0
i≡L (mod 2)

q(�−1)(�−2i)/4X
(k+1,k+2)
k−�+1,k−i+1(M, k − � + 1; q)X(k+1,k+2)

k,k−i+1 (L, k + 1; q−1)

=
∑

n∈Z
k−1

(L+M+�)/(2k)+(C−1n)1∈Z

qmCm/4−Lm1/2
k−1
∏

i=1

[

ni + mi

ni

]

, (3.22)

subject to (3.7a) and (3.7c).

This time both sides of (3.22) may be interpreted as the generating
function H�(L, M ; q) of lattice paths confined to the strip with weight func-
tion as before, but with initial vertex (−L, k) and final two vertices (M, k −
�), (M + 1, k − � + 1). Obviously there are no admissible paths unless (3.7a)
and (3.7c) are satisfied.

Previously, we defined the generating function Gi,�(L; q) of paths in the
strip with initial vertex (0, i) and final two vertices (L, �), (L + 1, � + 1). Let
us now also define Hi,�(L; q) as the generating function of paths in the strip
with initial vertex (0, i) and final two vertices (L, �), (L + 1, � − 1).

Again a path P counted by H�(L, M ; q) may be seen as the concatenation
of a left-pointing path P− from (0, k − i) to (−L, k) and a right-pointing path
P+ from (0, k − i) to (M, k − �), (M + 1, k − � + 1), where k ∈ {0, . . . , �}
and i ≡ L (mod 2). This time we may add a down step from (−L, k) to
(−L − 1, k − 1) to P− without changing its weight (so that P− terminates
with a (+,−) pair of steps). Reflecting P− in the y-axis, we thus find

H�(L, M ; q) =
k
∑

i=0
i≡L (mod 2)

Gk−i,k−�(M ; q)Hk−i,k(L; q−1).

This includes the trivial relations

H�(0, M ; q) = Gk,k−�(M ; q) and H�(L, 0; q) = Hk−�,k(L; q−1).

Once more using (3.16) as well as [2]

Hi,�(L; q) = q(i−�)(i−�+1)/4X
(k+1,k+2)
�,i+1 (L, � + 1; q),
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yields

H�(L, M ; q) =
k
∑

i=0
i≡L (mod 2)

q(�−1)(�−2i)/4X
(k+1,k+2)
k−�+1,k−i+1(M, k − � + 1; q)

× X
(k+1,k+2)
k,k−i+1 (L, k + 1; q−1),

in accordance with the left-hand side of (3.22).

To obtain a fermionic evaluation of H�(L, M ; q) we need [31,
Proposition 3]

Gk,k−�(L; n1, . . . , nk; q) = qmCm/4
k−1
∏

j=1

[

nj + mj

nj

]

,

where the mj follow from

m = C−1
[

Le1 + e� − 2n
]

(3.23)

and the nj are constraint by

2
k
∑

j=1

jnj = L + � − 2k. (3.24)

Again the mCm/4 in the above summand is the weight of the “minimal
path of content (n1, . . . , nk)”.

To obtain H�(L, M ; q), we again replace L → L + M in the expression for
Gk,k−�(L; n1, . . . , nk; q) and then translate all paths by L units to the left.
As before, the weight E of the minimal path of content (n1, . . . , nk) needs
to be recalculated, yielding

E =
k
∑

j=1

j(j − 1)n2
j + 2

k
∑

j=1

k
∑

l=j+1

(j − 1)lnl + (2k − �)
k
∑

j=1

(j − 1)nj

+
k
∑

j=�+1

(j − �)nj +
1
4
k(k − 1) +

1
4
(k − �)(3k − � + 1)

− L

⎡

⎣

k
∑

j=1

(j − 1)nj − 1
2
(� + 1)

⎤

⎦ .

By (3.23) and (3.24) with L → L + M this yields

E =
1
4
mCm − 1

2
Lm1,
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so that

H�(L, M ; n1, . . . , nk; q) = qmCm/4−Lm1/2
k−1
∏

j=1

[

nj + mj

nj

]

, (3.25)

where mj follow from (3.7c) and nj must satisfy

2
k
∑

j=1

jnj = L + M + � − 2k. (3.26)

Once again, to obtain the full generating function we need to sum over all
admissible sequences (n1, . . . , nk). Since (3.25) has not explicit nk depen-
dence and since (3.26) may be rewritten as

L + M + �

2k
+ (C−1n)1 = 1 + n1 + n2 + · · · + nk

with n = (n1, . . . , nk−1), this results in the right-hand side of (3.22).

3.5 Proof of Proposition 3.3

Let λ = (λ1, λ2, . . .) be a partition, i.e., λ1 ≥ λ2 ≥ · · · ≥ 0 with finitely many
λi unequal to zero. The non-zero λi are called the parts of λ. The weight
|λ| of λ is the sum of its parts. If mi(λ) = mi is the multiplicity of the part
i in λ we will also write λ = (1m1 , 2m2 , . . .). Given a partition λ with largest
part at most k − 1, we define

eλ = eλ1 + eλ2 + · · · =
k−1
∑

i=1

mi(λ)ei.

For r an integer, σ ∈ {0, 1} and λ a partition with largest part at most
k − 1 the following identity was proved in [28, Corollary 4.1]:

∞
∑

L=0

qL(L+r)/k

(q; q)L(q; q)L+r

∑

n∈Z
k−1

(2L+r−|λ|+kσ)/(2k)−(C−1n)1∈Z

qnC−1(n−eλ)
k−1
∏

i=1

[

ni + mi

ni

]

=
1

(q; q)∞

∑

n∈Z
k−1

(r−|λ|+kσ)/(2k)−(C−1n)1∈Z

qnC−1(n−eλ)

(q; q)n1 · · · (q; q)nk−1

, (3.27a)

where
m = C−1

[

(2L + r)ek−1 + eλ − 2n
]

(3.27b)

and
r + |λ| + σk ≡ 0 (mod 2). (3.27c)
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Note that σ is fixed if k is odd, but can be either 0 or 1 when k is even.

If we choose λ and σ as

λ = (k − �, (k − 1)n0) and σ ≡ n0 + 1 (mod 2)

with � ∈ {1, . . . , k} (when � = 1 or � = k the above should read λ =
((k − 1)n0+1) or λ = ((k − 1)n0), respectively), then (3.27) becomes

∞
∑

L=0

qL(L+r)/k

(q; q)L(q; q)L+r

×
∑

n∈Z
k−1

(2L+r+n0+�)/(2k)−(C−1n)1∈Z

qnC−1(n−n0ek−1−ek−�)
k−1
∏

i=1

[

ni + mi

ni

]

=
1

(q; q)∞

∑

n∈Z
k−1

(r+n0+�)/(2k)−(C−1n)1∈Z

qnC−1(n−n0ek−1−ek−�)

(q; q)n1 · · · (q; q)nk−1

, (3.28a)

where

m = C−1
[

(2L + r + n0)ek−1 + ek−� − 2n
]

(3.28b)

and

n0 + r + � ≡ 0 (mod 2). (3.28c)

So far, we have assumed that � ∈ {1, . . . , k}. If in (3.27) we choose

λ = ((k − 1)n0) and σ ≡ n0 (mod 2)

it easily follows that we obtain the � = 0 instance of (3.28).

The final step in our proof consists of changing the summation indices
ni to nk−i on both sides of (3.28a) (on the left-hand side we of course also
change mi → mk−i). Since

(C−1n)1 + (C−1n)k−1 ∈ Z

this yields Proposition 3.3.

4 B = F in the large k limit

In the large k limit, our proof that B = S = F can be considerably simplified
and made purely analytic, as will be demonstrated below.
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In fact, since the equivalence between the spinon and the fermionic forms
of the graded characters rests on Proposition 3.3 which does not significantly
simplify in the large k limit, we will only consider the B = F correspondence
here.

When k tends to infinity the bosonic character χB
�,r(q) of (1.18) trivial-

izes to

Vr(q) − Vr+2�+1(q)

since only the singular vector of lowest conformal dimension yields a non-
vanishing contribution. This should equate with the large k limit of the
fermionic character χF

�,r(q) of (1.19).

Theorem 4.1. Let � to be a positive integer and r be any integer. Then

lim
k→∞

∞
∑

n0,...,nk−1=0
(n0−r)/(2k)+(C−1n)1∈Z

q(r−n0)(r+n0+2�)/(4k)+(n0+1
2 )+nC−1(n−n0e1−e�)

(q; q)n0 · · · (q; q)nk−1

= Vr(q) − Vr+2�+1(q). (4.1)

We note that for later convenience, we have used that χ�,r(q) = χ�,−r−2�(q)
on the left-hand side. Hence the restriction on the sum does not exactly
match that of (3.2). We also remark that the summand on the left only
makes sense for k ≥ �. Since we consider the large k limit for fixed � this is
of course not a significant issue.

Before proving the above theorem, we first introduce some more notation
relating to partitions (see Section 3.5). The length l(λ) of a partition λ is
the number of parts (non-zero λi). If the weight of λ is n, i.e., |λ| = n,
we write λ � n and say that λ is a partition of n. We identify a partition
with its Ferrers graph, defined by the set of points in (i, j) ∈ Z

2 such that
1 ≤ j ≤ λi. The conjugate λ′ of λ is the partition obtained by reflecting the
diagram of λ in the main diagonal, so that, in particular, mi(λ) = λ′

i − λ′
i+1.

Given a partition, we set

n(λ) =
∑

i≥1

(i − 1)λi =
∑

i≥1

(

λ′
i

2

)

and

bλ(q) =
∏

i≥1

(q; q)mi(λ) =
∏

i≥1

(q; q)λ′
i−λ′

i+1
.
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In order to take the limit in (4.1), we introduce two partitions λ and μ
such that l(λ) ≤ �k/2� and l(μ) ≤ �(k − 1)/2� as follows

λi = ni + ni+1 · · · + n	k/2
,

μi = nk−i + nk−i−1 · · · + n1+	k/2
.

For example, when k = 7, λ = (n1 + n2 + n3, n2 + n3, n3), μ= (n4 + n5 + n6,
n4 + n5, n4) and conversely, n = (λ1 − λ2, λ2 − λ3, λ3, μ3, μ2 − μ3, μ1 − μ2).

A simple calculation shows that for � ∈ {0, . . . , �k/2�},

nC−1(n − n0e1 − e�) =
∑

i≥1

(λ2
i + μ2

i ) − n0λ1 − (λ1 + · · · + λ�)

− (|λ| + |μ|)(|λ| + |μ| + n0 + �)/k

= 2n(λ′) + 2n(μ′) + |λ| + |μ| − n0λ1 − (λ1 + · · · + λ�)

− (|λ| + |μ|)(|λ| + |μ| + n0 + �)/k.

Also,

(C−1n)1 =
1
k
(|μ| − |λ|) + λ1.

Using these two results, the large k limit can easily be taken leading to

LHS(4.1) =
∑

n0=0
n0≡r (mod 2)

∑

λ,μ
|λ|−|μ|= 1

2 (n0−r)

× q(
n0+1

2 )−n0λ1+2n(λ′)+2n(μ′)+|λ|+|μ|−(λ1+···+λ�)

(q; q)n0 bλ′(q)bμ′(q)
.

To further simplify this, we invoke Hall’s identity [16] (see also [24])

∑

λ�j

q2n(λ)

bλ(q)
=

1
(q; q)j

(4.2)

(with λ → μ′) to find

LHS(4.1) =
∞
∑

j=0

∞
∑

m=0
m≡r (mod 2)

∑

λ�j+ 1
2 (m−r)

qj+(m+1
2 )−mλ1+2n(λ′)+|λ|−(λ1+···+λ�)

(q; q)j(q; q)mbλ′(q)
,
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where we have also replaced n0 by m. Key to showing that this is equal to
the right-hand side of (4.1) is the identity

∞
∑

m=0
m≡j (mod 2)

∑

λ� 1
2 (j+m)

q(
m+1

2 )−mλ1+2n(λ′)+|λ|−(λ1+···+λ�)

(q; q)mbλ′(q)

=
1

(q; q)∞

∞
∑

i=0

q(
j−2i

2 ) − q(
j−2i−2�−1

2 )

(q; q)i
, (4.3)

where j and � are integers such that � ≥ 0. Utilizing this with j → 2j − r
leads to

LHS(4.1) =
1

(q; q)∞

∞
∑

i,j=0

q(
2j−2i−r

2 )+j − q(
2j−2i−2�−r−1

2 )+j

(q; q)i(q; q)j

= Vr(q) − Vr+2�+1(q)

= RHS(4.1)

as desired.

The rest of this section is devoted to proving (4.3). First we change the
summation index m to 2m − j, cancel a common factor q(

j
2) and use

∞
∑

m=0

∑

λ�m

fm,λ −→
∑

λ

f|λ|,λ.

We are then left with the a = q−j instance of

∑

λ

a2|λ|−λ1q(
2|λ|+1

2 )−2|λ|λ1+2n(λ′)+|λ|−(λ1+···+λ�)

(aq; q)2|λ| bλ′(q)

=
1

(aq; q)∞

∞
∑

i=0

a2iq(
2i+1

2 ) − a2i+2�+1q(
2i+2�+2

2 )

(q; q)i
. (4.4)

Our next step is to rename λ1 as k and to let μ be the partition μ =
(λ2, λ3, . . .). Also denoting |μ| by j this gives

LHS(4.4) =
∞
∑

j,k=0

∑

μ�j

a2j+kqj(2j+2k+1)+k2+kδ�,0+2n(μ′)+|μ|−(μ1+···+μ�−1)

(aq; q)2j+2k(q; q)k−μ1 bμ′(q)

The sum over μ can now be performed by the following identity from [33]:

∑

λ�j

q2n(λ′)+|λ|−
∑m

i=1 λi(q; q)k

(q; q)k−λ1bλ′(q)
=
[

k + j − 1
j

]

− (1 − qk)
[

k + j − m − 1
j − m − 1

]

,

(4.5)
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for m ∈ {0, . . . , j}. We should remark that the above assumes a slightly
different definition of the q-binomial coefficient than given in (3.1), namely

[

n + j

j

]

=

⎧

⎪

⎨

⎪

⎩

(qn+1; q)j

(q; q)j
j ∈ {0, 1, 2, . . .}

0 otherwise.

By (4.5), the μ-sum times (q; q)k gives
[

k + j − 1
j

]

− (1 − qk)
[

k + j − �

j − �

]

for � > 0 and
[

k + j − 1
j

]

− (1 − qk)
[

k + j − 1
j − 1

]

= q−k

[

k + j − 1
j

]

− q−k(1 − qk)
[

k + j

j

]

for � = 0. Combining the above two expressions we therefore find that

LHS(4.4) =
∞
∑

j,k=0

a2j+kqj(2j+2k+1)+k2

(aq; q)2j+2k(q; q)k

{[

k + j − 1
j

]

− (1 − qk)
[

k + j − �

j − �

]}

.

This should be equated with the right-hand side of (4.4). In fact, as we shall
see, the following dissection takes place:

∞
∑

j,k=0

a2j+kqj(2j+2k+1)+k2

(aq; q)2j+2k(q; q)k

[

k + j − 1
j

]

=
1

(aq; q)∞

∞
∑

i=0

a2iq(
2i+1

2 )

(q; q)i

and
∞
∑

j,k=0

a2j+kqj(2j+2k+1)+k2

(aq; q)2j+2k(q; q)k−1

[

k + j − �

j − �

]

=
1

(aq; q)∞

∞
∑

i=0

a2i+2�+1q(
2i+2�+2

2 )

(q; q)i
.

(4.6)
Replacing j → j + �, k → k + 1 and a → aq−2�−1 this last identity may also
be stated as

∞
∑

j,k=0

a2j+kqj(2j+2k+1)+k2+k

(aq; q)2j+2k+1(q; q)k

[

k + j + 1
j

]

=
1

(aq; q)∞

∞
∑

i=0

a2iq(
2i+1

2 )

(q; q)i
(4.7)

independent of �. Both (4.6) and (4.7) are special cases of the more general
∞
∑

j,k=0

a2jbkqj(j+1)+(j+k)2

(bq; q)2j+2k(q; q)k

(b2qk/a2; q)j

(q; q)j
=

1
(bq; q)∞

∞
∑

i=0

a2iq(
2i+1

2 )

(q; q)i
. (4.8)

To prove this, we shift the summation index k → k − j and employ basic
hypergeometric notation to get

LHS(4.8) =
∞
∑

k=0

bkqk2

(q; q)k(bq; q)2k
2φ1

[

a2q1−k/b2, q−k

0
; q, bq2k+1

]

.
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By Heine’s transformation [15, Equation (III.2)]

2φ1(a, b; c; q, z) =
(c/b, bz; q)∞

(c, z; q)∞
2φ1(abz/c, b; bz; q, c/b)

this may be rewritten as

LHS(4.8) =
∞
∑

k=0

bkqk2

(q, bq; q)k
lim
γ→0

2φ1

[

a2q2/(bγ), q−k

bqk+1 ; q, γqk

]

=
∞
∑

k=0

k
∑

j=0

a2jbk−jqj2+j+k2

(q; q)j(q; q)k−j(bq; q)j+k
.

Changing the order of the two sums and shifting k → k + j this becomes

LHS(4.8) =
∞
∑

j=0

a2jq2j2+j

(q; q)j(bq; q)2j
lim

γ,δ→∞
2φ1

[

γ, δ

bq2j+1 ; q,
bq2j+1

γδ

]

=
1

(bq; q)∞

∞
∑

j=0

a2jq2j2+j

(q; q)j

in accordance with the right-hand side of (4.8). To obtain the final expres-
sion on the right, we have employed the q-Gauss sum [15, Equation (II.8)]

2φ1(a, b; c; q, c/ab) =
(c/a, c/b; q)∞
(c, c/ab; q)∞

.

Appendix A The identity (1.12)

Up to trivial manipulations, the difference between (1.5) and (1.10) is due
to a different representation of the Verma character V̂t(q).

Indeed, we note that (1.9) can be written in q-hypergeometric notation as

V̂t(q) =
qmax{0,t}

(q; q)|t|
2φ1

(

0, 0; q|t|+1; q, q
)

By Heine’s transformation [15, Equation (III.1)]

2φ1(a, b; c; q, z) =
(b, az; q)∞
(c, z; q)∞

2φ1(c/b, z; az; q, b)

this yields

V̂t(q) =
qmax{0,t}

(q; q)2∞

∞
∑

i=0

(−1)iq(
i+1
2 )+i|t|.
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Since
∞
∑

i=0

(−1)iq(
i+1
2 )+it = 0 (A.1)

for t ∈ Z this may be simplified to

V̂t(q) =
1

(q; q)2∞

∞
∑

i=0

(−1)iq(
i+1
2 )−it. (A.2)

It is this “bosonic” form for the Verma character that is responsible for those
minus signs in (1.5) that are not due to the usual addition and subtraction
of singular vectors.

Substituting (A.2) in (1.10) and using that 2r = m − � we obtain

χ̂�,r(q) =
1

η2(q)

∞
∑

j=−∞

∞
∑

i=0

(−1)iq−(m+ik)2/(4k)

×
{

q

(

�+1+(i+2j)(k+2)
)2

/(4(k+2)) − q

(

�+1−(i−2j)(k+2)
)2

/(4(k+2))
}

.

(A.3)

Replacing j → −j in the sum corresponding to the second term in the
summand and then splitting the sum over j and using (A.1) in the form
∑

i≥0 · · · = −
∑

i<0 · · · completes the proof of (1.12).

We should remark that a similar kind of rewriting of the graded Verma
character (1.17) may be carried out to yield the bosonic form

Vt(q) =
1

(q; q)3∞

∞
∑

j=−∞

∞
∑

i=0

(−1)iq(
2j−t

2 )+(i+1
2 )+j(i+1).

An alternative — albeit somewhat indirect — demonstration of (1.12)
is to show that (1.10) follows from (1.2) and (1.3). This is easily achieved
as follows. By the Jacobi triple product identity (2.16) and the expansion
(2.15) the denominator of (1.4) may be put as

1
∑

σ∈{±1}
σΘ(2)

σ (x; q)
=

q−1/12x1/2

η(q)

∞
∑

n=−∞
x−nV̂n(q),

with V̂n(q) the character (1.9).
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Multiplying the above expression by the numerator of (1.4) yields

χ̂�(x; q) =
q−1/12

η(q)

∑

σ∈{±1}
σ

×
∞
∑

j,n=−∞
x−n−j(k+2)−σ(�+1)/2+1/2q(k+2)

(

σj+(�+1)/(2(k+2))
)2

V̂n(q).

Shifting n → n − (k + 2)j − (σ − 1)(� + 1)/2 and replacing j by σj leads to

χ̂�(x; q) =
1

η(q)

∞
∑

n=−∞
x−n−�/2q(n+�/2)2/kχ̂B′

�,n(q)

with χ̂B′
�,r(q) given by (1.10). Finally, setting n = kj + (m − �)/2 with

1 − k ≤ m ≤ k and using the symmetry χ̂�,r(q) = χ̂�,r+jk(q) yields

χ̂�(x; q) =
k
∑

m=1−k
m−� even

χ̂B′

�,(m−�)/(2)(q)Km(x; q).
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