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Abstract

The instanton partition function of N = 2, D = 4 SU(2) gauge
theory is obtained by taking the field theory limit of the topological
open string partition function, given by a Chern-Simons theory, of a
CY3-fold. The CY3-fold on the open string side is obtained by geo-
metric transition from local IP1 × IP1 which is used in the geometric
engineering of the SU(2) theory. The partition function obtained from
the Chern-Simons theory agrees with the closed topological string par-
tition function of local IP1 × IP1 proposed recently by Nekrasov. We
also obtain the partition functions for local F1 and F2 CY3-folds and
show that the topological string amplitudes of all three local Hirze-
bruch surfaces give rise to the same field theory limit. It is shown
that a generalization of the topological closed string partition function
whose field theory limit is the generalization of the instanton partition
function, proposed by Nekrasov, can be determined easily from the
Chern-Simons theory.
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1 Introduction

Large N dualities in the context of closed and open topological strings on
different CY3-fold backgrounds have been the source of much excitement
recently [1, 2]. These dualities have interesting consequences for both N = 2
and N = 1 D=4 field theories which can be geometrically engineered using
the type II strings and D-branes on the CY3-folds [3, 4, 5, 6]. One example
of large N duality, which will be relevant for our purpose, is the calculation of
the partition function of A-model topological closed strings propagating on a
CY3-fold from the partition function of topological open strings on a different
CY3-fold [7, 8, 9]. The CY3-fold on which the open strings propagate is
obtained from the CY3-fold which is the background of the closed topological
strings by multiple conifold-like transitions on the exceptional curves [7]. The
open string theory on the dual CY3-fold reduces to a Chern-Simons theory
on each of the S3’s [10], obtained by the transition from exceptional curves,
plus corrections coming from holomorphic curves with boundaries on the
3-cycles [8, 9].

The A-model topological string amplitude (the log of the topological
closed string partition function) is the generating function of Gromow-Witten
invariants of all genera and therefore is the answer to an enumerative prob-
lem [11]. It also has a physically interesting interpretation in the N = 2
D=4 theory obtained by compactifying type IIA strings on a CY3-fold: the
topological string amplitude gives certain holomorphic corrections to the ef-
fective action of the four dimensional theory [11]. In the context of geometric
engineering of gauge theories the genus zero amplitude, in a certain limit,
computes both the perturbative and instanton corrections to the prepoten-
tial of the N = 2 gauge theory [3, 4].

In this paper we show that it is possible to obtain the exact instanton
partition function [14, 15, 16, 17] 1 of the N = 2 SU(2) SYM [12, 13] by
taking the field theory limit of an open string partition function. The topo-
logical open strings propagate on a CY3-fold which is obtained by multiple
geometric transitions from the local Fm CY3-folds used in the geometric
engineering of the N = 2 SU(2) SYM theory [4, 3]. The instanton parti-
tion function obtained in this way agrees exactly with the partition function
proposed recently by Nekrasov [15] and calculated in [17]. Moreover, the
complete open string partition function agrees with the A-model partition
function of local F0 obtained by Nekrasov from an index calculation [15].

1By instanton partition function, Z(~), we mean the field theory limit (see section 2)
of the topological string partition function

P

g2g−2
s Fg such that the prepotential of the

field theory is given by lim~→0 ~
2 logZ(~). An intrinsic field theory definition of this is

given in terms of the topological twisted four dimensional theory [15].
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A more general partition function can be obtained by taking the Chern-
Simons coupling constant to be different for different 3-cycles as opposed
to the usual identification of the Chern-Simons coupling constants with the
string coupling constant, 2π

ki+Ni
= gs. The field theory limit of this partition

function agrees with the generalized instanton partition functions proposed
by Nekrasov [15, 16].

The paper is organized as follows. In section two we briefly review the
geometric engineering of N = 2 SU(2) SYM theory from local Fm CY3-
folds. In section three, we review the geometric transitions at the heart
of the open-closed large N-duality [8]. We consider the case of local IP2 in
detail, and use these results to motivate the expected transitions for local Fm

3-folds. In section four, we evaluate the Chern-Simons partition functions
for the local Hirzebruch surfaces. We obtain the partition function in a form
that is well-suited for taking the field theory limit. In section five, we show
that the field theory limit of the partition function gives an exact expression
for the instanton partition function which agrees with the expression given
by Nekrasov and is the same for all local Fm. We also show that the full
partition function, after some rearrangement of the factors, is exactly equal
to the A-model expression given by Nekrasov [15]. In the appendix, we fill in
some details on the geometric transition in the case of local IP2 and give some
curve counting functions which can be used to determine integer invariants
of three and four instanton contribution to higher genus corrections.
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2 Geometrical engineering of pure N = 2 SU(2)
theory

The Calabi-Yau threefold compactification of type IIA strings provides a
very powerful way of studying N = 2 D=4 quantum field theories [3, 4]. The
prepotential of the D=4 theory is given by the genus zero topological string
amplitude of the corresponding Calabi-Yau threefold. The gauge symmetry
in the field theory arises from D2-branes wrapping collapsing curves in the
CY3-fold. Thus to get a particular gauge symmetry one has to study a CY3-
fold with the appropriate singularity. We will restrict ourselves to the case
of SU(2) gauge symmetry and only discuss the relevant CY3-folds for this
case.

Geometrical engineering of pure N = 2 theories with SU(2) gauge sym-
metry was studied in [3, 4]. The relevant singularity is of A1 type, i.e. of
the form C

2/Z2. The local CY2-fold T ∗IP1 develops this type of singularity
as we take the area of the base to zero. To obtain an effective 4 dimensional
theory, we need to fiber this space over an additional IP1. We hence choose
a Hirzebruch surface Fm as the compact base of the local CY3-fold. The line
bundle over this base which leads to a total space of vanishing first Chern
class is the canonical line bundle. For m > 2, the total space of the canonical
line bundle contains additional compact 4-cycles, aside from Fm. Although
for this reason we will restrict attention to F0, F1 and F2, our results hold
for general m as well. For m > 2, the partition function derived in the next
section allows us to obtain the invariants of those curves lying in Fm.

Let us now briefly review the field theory limit. To obtain this limit, we
push the string scale to infinity. By asymptotic freedom of the 4 dimensional
gauge theory, the gauge coupling hence goes to zero. Since the 6 dimensional
and the 4 dimensional gauge coupling are related via the area of the base IP1

of the Hirzebruch surface, the field theory limit requires large base size. At
the same time, to keep the mass of the W-bosons, given by the area of the
fiber (remember that the gauge symmetry enhancement occurs when this
area shrinks to zero), finite in the limit in which the string scale is taken to
infinity, we must consider the small area limit of the fiber. Since the running
of the gauge coupling is dominated at weak coupling by the logarithm of the
W-boson mass, these two limits are related as TB ∼ − log TF , where TB and
TF denote the Kähler parameters corresponding to the base and the fiber of
the Hirzebruch surface.2 In fact, by invoking the discrete symmetry of the

2Here TB , TF are the quantum corrected Kähler parameters i.e., they are solutions of
the relevant Picard-Fuchs equations that go like Tb,f = tb,f +

P

n,m
cn,me−ntb−mtf , where

tb,f are the Kähler parameters occurring in the linear sigma model description of local Fm.
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gauge theory (left over from the anomalous U(1) R-charge), we know that

the n-instanton contribution ∼ e
− n

g2 is accompanied by a factor ( 1
a )4n [18],

where a parametrizes the VEV of the scalar field breaking the SU(2) gauge
symmetry, a ∼ TF . Retaining all instanton contributions in the field theory
limit hence requires scaling the Kähler parameters as

QB := e−TB = (
βΛ

2
)4 , QF := e−TF = e−2βa . (1)

Here, Λ is the quantum scale in four dimensions, and the parameter β is
introduced such that the field theory limit corresponds to β → 0. In section
5, we will be taking the field theory limit of the topological partition function∑

g2g−2
s Fg. It turns out that we obtain finite contributions from all genera

if we scale the string coupling such that q := eigs = eβ~. ~ will serve to
distinguish between the contributions at different gs (the notation is chosen
in accordance with [15]).

The prepotential of the theory has both 1-loop perturbative and non-
perturbative (instanton) contributions,

F = Fclassical + F1−loop + a2
∞∑

k=1

ck(
Λ

a
)4k . (2)

The k-instanton contribution to the prepotential, ck(
Λ
a )4k, comes from world-

sheet instantons wrapping the curves {kB + mF | m = 0, 1, 2, · · · } and is
therefore captured by the field theory limit of the genus zero topological
string amplitude [4]. From the expansion of the genus zero topological string
amplitude

F0(TB , TF ) = P3(TB , TF ) +
∑

(k,m)6=(0,0)

∞∑

n=1

N0
(k,m)

n3
e−nkTB−nmTF , (3)

(here P3(TB , TF ) is a cubic polynomial from which one gets the classical
contribution to the prepotential) it is clear that the k-instanton contribution
is proportional to the regularized sum

∑
m N0

(k,m), where N 0
(k,m) is (up to a

sign) the Euler characteristic of the moduli space of the D-brane wrapped on
the curve kB + mF . In section 5, we will see that these sums can be easily
obtained from the Chern-Simons theory arising in the open string geometry
dual to the closed string geometry of the CY3-fold used in the geometric
engineering of the SU(2) theory.

There are various ways of obtaining the closed topological string ampli-
tudes: localization, B-model calculations, or large N duality with topological
open strings. Direct localization calculations are difficult since we want to
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sum up the contribution of all curves kB +mF for a fixed k, B-model calcu-
lations can sum up the contribution of all curves to the k-th instanton sector,
as was discussed in detail in [19], but become more difficult for large k and
for higher genus. We will therefore use the large N duality with topological
open strings on a deformed CY3-fold background to determine the exact
instanton partition function. This method yields all higher genus contribu-
tions to the closed string partition function simultaneously. More precisely,
the all genus closed string free energy was shown in [20] to have the following
integrality structure

Fclosed(ω) :=
∞∑

g=0

g2g−2
s Fg(ω) =

∑

Σ∈H2(X)

∞∑

g=0

∞∑

n=1

Ng
Σ

n
(2 sin(n

gs

2
))2g−2 e−nΣ·ω . (4)

The Chern-Simons calculation yields all Gopakumar-Vafa invariants N g
Σ up

to a given degree in Σ.

3 Closed to open transition

Open topological string theory on a local CY X is related to CS-theory in
the following way [10]: a CS theory lives on every Lagrangian submanifold
of X on which open strings can end. In addition, contributions from strings
wrapping compact holomorphic curves in X and ending on these subman-
ifolds are captured in the CS theory by insertions of Wilson lines: these
compute the holonomy of the CS-connection around the boundaries of the
holomorphic curves. Since the U(N) gauge bundles over the Lagrangian
submanifolds are required to be flat, these Wilson lines calculate invariants
of the homotopy class of the curves.

Enumerating the compact holomorphic curves of a complex manifold is
usually a very difficult problem. The crucial ingredient in calculating closed
world-sheet instantons using Chern-Simons theory following the methods of
[8] consists in deforming the local Calabi-Yau which is the target space of the
closed topological string to obtain a geometry in which the compact holo-
morphic curves are under strict control: they are isolated cylinders and their
multicovers, stretching between certain of the Lagrangian submanifolds. The
basic local model for this deformation is the conifold transition, which we
briefly review.

On the closed string side, one considers the bundle O(−1)⊕O(−1) → IP1.
Taking the volume of the IP1 to 0 yields the singular geometry of the conifold.
This space is described by the equation xy = uv in C

4. String theory on
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this space is not singular if we turn on the NS-NS 2-form. This setup is
described by a purely imaginary complexified Kähler parameter t of the IP1,
t = 2πiN

k+N (this choice will not be a limitation on what we can compute on the
closed string side, as the partition functions are holomorphic in t, i.e. can
be obtained for arbitrary value of t by analytic continuation). The singular
geometry allows a deformation, described by xy = uv + µ, µ ∈ C, which
replaces the singular locus of the conifold by an S3 with volume µ. Since µ
is a complex structure moduli, the A-model amplitudes we are considering
do not depend on it.

If we introduce an additional C valued variable z, s.t. z = xy and
z = uv + µ, we can visualize the deformed geometry as a R

2 × T 2 fibration
over C as follows. At each value of z, we have a real plane. One real axis is
parametrized by gluing the two half-lines |x| ∈ [

√
|z|,∞) and |y| ∈ [

√
|z|,∞)

at |x| = |y| =
√
|z|, the other analogously for u and v. As far as these real

planes are concerned, nothing special happens at z = 0 and z = µ. This
is not true for the T 2 factor of the fiber. The compact T 2 is coordinatized
by the phases of x, y and u, v, with the transition functions φx = −φy,
φu = −φv on the overlaps at |x| = |y|, |u| = |v| respectively. We see that
a cycle degenerates along a line in the real plane at the values z = 0 and
z = µ. This geometry is encoded in Fig. 2.

The S3 of the deformed conifold is given by the T 2 fibration over the real
line z = t, x = y =

√
t, u = v =

√
t − µ for t ∈ [0, µ] which connects the two

degeneration loci. Note that the only holomorphic curves in this geometry
ending on S3, i.e. intersecting the S3 along a circle, have constant z value.
This will be an important constraint in finding the compact holomorphic
curves in related geometries with several Lagrangian 3-manifolds, to which
we now turn.

3.1 Local IP2

As a concrete example, consider O(−3) → IP2. Though the base contains
three IP1s invariant under the torus action (these are given by (a : b : 0), (a :
0 : b), (0 : a : b)), they are in the same Weyl class as the hypersurface divisor,
i.e. are not exceptional and hence cannot undergo a conifold transition. To
obtain a manageable geometry for the CS theory, i.e. a geometry of the
type referred to above, we blow up the three toric fixed points of the base,
obtaining a local del Pezzo B3. Using standard methods, detailed in the
appendix, we find three patches with which we can cover the singular limit
of this geometry in which the size of the three exceptional curves is taken
to 0. Each patch is described by 4 variables, x, y, u, v in the first patch, the
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Figure 2: Deformed conifold; a cycle of the T 2 fiber degenerates along each of the
red lines (the horizontal, vertical line respectively in the two lower planes).

corresponding variables tilded, primed in the second and third patch, satis-
fying one constraint equation, xy = uv in the first patch, the tilded, primed
version of this equation in the second, third patch. The transition functions
between these patches are given in the appendix. The three exceptional di-
visors we have obtained in this way can undergo a conifold transition. We
perform the following deformations

xy = uv + µ1 , (5)

x̃ỹ = ũṽ + µ2 , (6)

x′y′ + µ1 = u′v′ + µ2 . (7)

The resulting geometry is depicted in Fig. 3).

As in the conifold case, we now introduce a new variable z such that
z = xy = x̃ỹ = x′y′ + µ1. For this system of equations to be consistent,
we must also deform the transition functions between the patches. This is
done in the appendix. An important feature of this construction is that the
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ṽ

x′

y′

u′ v′

Figure 3: Deforming flopped local B3. The lines L0, L1, L2 encode the degeneration
locus of the T 2 fiber in the real plane at z = 0, µ1, µ2 respectively.

relation between the phases of the complex coordinates in the overlap of
the different patches, as given by the transition functions, is encoded in the
relative slopes of the lines L0, L1, L2 in Fig. 3. As the two cycles of the T 2

fiber are given by the phases of these coordinates, the slopes of these lines
allow us to read off which cycle of the T 2 is degenerating in the real planes
at z = 0, z = µ1, and z = µ2.

Lines in the complex z-plane connecting the points z = 0, z = µ1, z = µ2

have a T 2 fibered over them with a cycle degenerating at either end. Each
of these T 2 fibrations over an interval form a closed 3-manifold, which has a
convenient description, with regard to the CS evaluation [21, 8], in terms of a
Heegaard splitting [22]. This splitting allows us to describe the 3-manifolds
as obtained by gluing two solid tori together along their surface using an
SL(2, Z) map (SL(2, Z) encompasses all self-diffeomorphisms of a torus up
to homotopy). To this end, we divide the interval I connecting the two
points in the z-plane into two intervals I1, I2. I1 and I2 coordinatize the
depth direction of the two solid tori. The torus worth of points at each
depth i ∈ I1 or i ∈ I2 is identified with the fiber over the corresponding
point of the interval I. The two endpoints of I, over which the T 2 fiber
degenerates, correspond to the depth 0 points ∂I1 ∩ ∂I or ∂I2 ∩ ∂I of the
solid tori. To obtain a correct realization of the T 2 fibration over I, we must
in the final step glue the two solid tori together such that the appropriate
cycles are identified. Let us introduce a basis for the second homology of the
three T 2s in the game, A and B for the T 2 fiber over I, such that the cycles
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degenerating at the endpoints of I are A and aA+bB, Ai and Bi, i = 1, 2 for
the tori comprising the surfaces of the two solid tori, such that A1 and A2 are
the cycles which become trivial when we fill in the tori. Hence, we need to
identify A with A1 and aA+ bB with A2. This fixes two of the entries of the
SL(2, Z) gluing diffeomorphism between the surfaces of the two solid tori.
Next, we would like to fix the Bi cycles to be the S1s along which the two
compact holomorphic annuli intersect the 3-manifold. Note that since the
Ai cycles of the fiber are degenerate along the holomorphic curves, multiples
of these can be added to the Bi at will. Hence, the above identifications fix
the SL(2, Z) gluing diffeomorphism only up to this ambiguity,

(
1 0
1 1

)n2
(

A2

B2

)
=

(
a b
c d

)(
1 0
1 1

)n1
(

A1

B1

)
, (8)

where n1 and n2 are arbitrary integers. In the CS framework, the cycles
Bi + niAi are wrapped by Wilson loops. The integer ambiguity (n1, n2) in
the choice of these matrices corresponds to a framing ambiguity in the CS
picture which we will fix by hand.

It is not hard to show that the three 3-manifolds arising in our geometry
are all S3s. 3 After the deformation, we hence arrive at an S3 situated at
each vertex of the original web diagram. This geometry contains compact
holomorphic curves. These curves end on the S3s. The same considerations
as in the conifold case show that any such curve must therefore have constant
z coordinate. By choosing the complex deformation parameters appropri-
ately, we can ensure that the S3s pairwise intersect only in one point in the
z-plane (recall that z is a complex coordinate), and that these intersection
points all coincide with values of z at which some cycle of the T 2 fibration
degenerates (in other words, the finite intervals which represent the S3s in
the z-plane only touch at their endpoints). Arguing patchwise, we can easily
see that the only compact holomorphic curves in the geometry thus obtained
(annuli and their multicovers) have axes along the line in the R

2 plane along
which a cycle on the T 2 degenerates: in the first patch, say, at z = 0, we
must satisfy xy = 0, uv = −µ1 and furthermore, we want to intersect the S3

3This is done by an analysis of the first fundamental group of the 3-manifold obtained
by gluing the two solid tori [22]. Let us briefly sketch how information on the 3-manifold M

can be obtained from considering π1(M). By the Seifert-Van Kampen theorem, this group
is generated by the disjoint union of the generators of the two tori modulo the relations
imposed by the gluing diffeomorphism. In the notation above, these two generators are B1

and B2 (or more precisely the images of these cycles under the embedding of the surface
tori into the solid tori). By equation (8) and the triviality of the embedded cycles A1

and A2, Bb
1 = 1. Hence, if |b| 6= 0, 1, π1(M) contains a torsion element. In particular, M

cannot be S3. A more careful analysis [22] shows that the only 3-manifolds one can obtain
via the construction described above are S3, S2 × S1, and Lens spaces Lb.
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at x = ȳ, u = −v̄ in a circle. It is not hard to show that this is only possible
for x = y = 0, u = sm for s ∈ C, |s| ≥ |µ1|

1
2m or |s| ≤ |µ1|

1
2m .

We must establish the relation between the open and closed geometry
parameters: the complex Kähler parameters ti of the blown down exceptional
IP1s of the closed string geometry are the ’t Hooft couplings on the open
string side, ti = 2πiNi

k+Ni
. In addition, we have the Kähler parameters r ′i of the

curves in the base that do not partake in the conifold transition. On the
open string, the corresponding parameters classically should be the areas of
the world-sheet instanton annuli ri stretched between the S3s (the geometric
data on the open string side also includes the volumes of the S3s, which are
however complex structure moduli and therefore not relevant for the A-model
amplitudes). To relate the CS-partition function we obtain on the geometry
of Fig. 3 to the closed string partition function of local IP2, we must consider
the limit ti → ∞ (again, we are deforming Kähler parameters; the reason we
can do this without impunity is that the closed string partition functions are
holomorphic in these parameters). For this limit to exist, we will see that
the Kähler parameters r′i of the non-exceptional curves of the closed string
geometry must receive contributions, in the mapping from open to closed
string parameters, from the ’t Hooft couplings in addition to the expected
contribution from the area ri of the annuli. It would be interesting to see
this more directly, e.g., as suggested in [8], by utilizing the GLσM approach
employed in [23] to prove the large N-duality in the conifold case.

From this example, the path we would like to follow for a local CY on
any toric base is clear: we would like to blow up the vertices of the toric fan
(these correspond to fixed points of the torus action), then perform a conifold
transition on each of the exceptional curves so as to obtain a 3-manifold at
each such vertex. 4 This gives rise to Feynman-like rules for computing the
closed string partition function, as pointed out in [24].

3.2 Hirzebruch surfaces

The geometries that will be relevant for the field theory application in this
paper are the canonical line bundles over the first three Hirzebruch surfaces
Fm

5 . These surfaces are IP1 bundles over a IP1 base. F0 is the trivial bundle

4That this deformation is always possible is suggested by analogues of Fig. 3. However,
since we argue patchwise, care needs to be taken that the deformed patches can consistently
be glued together. This will require deforming the transition functions in addition to the
constraint equations in each patch.

5for m > 2 the surface Fm is accompanied by other 4-cycles in the non-compact CY3-
fold. For these cases, the partition functions that we will write down give only the contri-
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IP1 × IP1. The toric fans and web diagrams for these local CYs are depicted
in Fig. 4.
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Figure 4: The fans and web diagrams for the canonical line bundle over the first
three Hirzebruch surfaces.

The second homology H2(Fm, Z) of the Hirzebruch surfaces is spanned
by the cycles B and F , represented by the base and fiber. The intersection
numbers of these cycles are

B2 = −m, F 2 = 0 , B · F = 1 . (9)

To obtain an open string geometry, we blow up the vertices of these
diagrams and perform the conifold transition on the exceptional divisors
thus obtained.6 This is illustrated diagrammatically for the case of F0 in
Fig. 5.

Note that in blowing up local F2, the fan of the geometry is no longer
convex. In the web diagram, this manifests itself in terms of crossing lines.
The local CY hence contains additional 4-cycles. It would be interesting
to check explicitly whether this affects the deformation argument. The fact
that we obtain the correct invariants using the open geometry we naively
obtain from such a deformation suggests that this is not so.

bution of curves in Fm to the total partition function.
6Note that the base of F1 is an exceptional curve. In fact, F1 and B1, i.e. IP2 blown

up at one point, are isomorphic. Hence, to calculate the partition function of F1, we could
perform the conifold transition on this exceptional curve and only two additional ones
obtained by blowing up the two vertices at which F and B + F intersect in Fig. 4. This
yields exactly the geometry of local B3 that we considered in the case of local IP2. To
regain F1, we now would send two of the three Kähler paramters ti of the exceptional
curves to infinity [8]. We can even obtain the partition function for F2 from this geometry,
by sending the appropriate combination of Kähler parameters to infinity.
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ũ
ṽ
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Figure 5: The large N transition in the case of F0. The U i
j indicate Wilson loop

insertions in the CS theories as explained in section 4.

4 Chern-Simons partition function for local Hirze-

bruch surfaces

In this section, we compute the CS partition functions ZCS , with the ap-
propriate Wilson loop insertions, based on the geometries obtained from
deforming the local Hirzebruch surfaces Fm, m = 0, 1, 2 as outlined in the
previous section. We will follow closely the discussion of [8] where the case of
local F0 was discussed in detail. According to the large N duality conjecture,
these computations should reproduce the closed topological string partition
functions (4) for the respective local CY3-folds. We will use this equality in
the next section to determine the Gopakumar-Vafa invariants of the closed
geometries as well as to study the field theory limit of the compactification
of type IIA on them.

We will start by discussing the case F0 which was studied in detail in [8].
The open string geometry is depicted in Fig. 5. The Chern-Simons partition
function for the full geometry is given by [8]

ZCS(ri, Ni; q) =

∫ 4∏

i=1

(DAie
SCS(Ai))O(U2

1 , U1
2 ; rB)O(U2

2 , U1
3 ; rF )

O(U2
3 , U1

4 ; rB)O(U2
4 , U1

1 ; rF ). (10)

Here, logO(U, V ; r) is the correction to the Chern-Simons action coming
from annuli of length r with boundary on two S3’s [8](note that we have
taken r1 = r3 = rB and r2 = r4 = rF in equation (10) in accordance with
the F0 geometry),

O(U, V ; r) = exp{
∞∑

n=1

e−nr

n
TrUnTrV −n} =

∑

R

e−lRrTrRU TrRV −1 . (11)
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U i
j computes the holonomy of the CS-connection Aj along the boundary γi

of a compact holomorphic annulus ending on the j-th S3 (in the cases we
consider, there will be two curves γ1 and γ2 per S3),

U i
j = Pexp

∮

γi

Aj . (12)

The last equality in equation (11) follows from an application of the Frobe-
nius formula. The sum is over all representations of the special unitary
group, lR counts the number of boxes in the Young tableaux of the repre-
sentation R. This identity allows us to write the partition function (10) as a
simple sum of products of partition functions of the individual CS-theories,

ZCS(ri, Ni; q) = 〈O(U 2
1 , U1

2 ; rB)O(U2
2 , U1

2 ; rF )O(U2
3 , U1

4 ; rB)O(U2
4 , U1

1 ; rF )〉 ,

=
∑

R1,2,3,4

e−rB(l1+l3)−rF (l2+l4)WR1R4(λ4, q)WR4R3(λ3, q)

WR3R2(λ2, q)WR2R1(λ1, q) . (13)

WRiRj
are expectation values in the individual CS theories with ’t Hooft

coupling ti = 2πiNi

ki+Ni
= log λi (recall that q = eigs , hence λi = qNi), given by

WRiRj
(λ, q) = 〈TrRi

(U1)TrRj
(U2)〉 . (14)

In the following, we will reserve the notation WRiRj
for the special constel-

lation of curves γi that occurs in the case of F0 in each of the four S3s, at
zero framing (i.e. n1 = n2 = 0, in the notation of equation (8)): the γi wrap
orthogonal cycles, hence form a Hopf link. The Hopf link invariants WRiRj

can be easily calculated using the results of [25, 26].

As explained in the previous section, we need to consider the limit λi →
∞ in order to recover the partition function for F0, and later for F1 and F2.
The leading power of λ in WR1R2(λ, q) is λ(lR1

+lR2
)/2 [8]. Hence, ZCS naively

diverges in this limit. We remedy this by scaling ri together with λi, such
that the appropriate linear combination of these parameters is finite in the
λi → ∞ limit. We interpret these linear combinations as the renormalized
Kähler parameters of the closed string geometry. They are given by

TB = rB +
t2 + t3

2
= rB +

t1 + t4
2

, (15)

TF = rF +
t1 + t2

2
= rF +

t3 + t4
2

. (16)

The CS partition function for local F0 now becomes

ZCS(QB, QF ; q) =
∑

R1,2,3,4

Q
−(l1+l3)
B Q

−(l2+l4)
F WR1R4(q)WR4R3(q)

WR3R2(q)WR2R1(q) , (17)
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where, as before, QB = e−TB , QF = e−TF , and we have defined

WRiRj
(q) = lim

λ→∞
λ−(li+lj)/2WRiRj

(λ, q) . (18)

We can simplify this expression and perform two of the sums over represen-
tations explicitly. To this end, we introduce the quantity

KR1R2(Q) =
∑

R

QlRWR1R(q)WRR2(q) . (19)

In terms of KR1R2(Q), the CS partition function in equation (17) becomes

ZCS(QB , QF ; q) =
∑

R1,R2

Ql1+l2
B KR1R2(QF )2 . (20)

We will denote the trivial representation by a point. From our discussion
in the previous section, we see that the function K·· yields the partition
function of the closed string on the local CY T ∗(IP1) × C. Below, based on
the explicit evaluation of this case in [8], we will make an ansatz for the
form of KR1R2(Q) in the case of arbitrary R1 and R2 which will drastically
simplify the computation of this expression.

Diagrammatically, we can depict KR1R2(Q) as in Fig. 6.
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Figure 6: KR1R2
(Q)

To evaluate the CS partition function for local F1 and local F2, we need
similar expressions for the diagrams to the right of the dashed lines in Fig. 7,

as depicted in Fig. 8. If we denote these contributions by K
(m)
R1R2

(Q), we can
express the partition function for local F(m) as

Z
(m)
CS (QB , QF ; q) =

∑

R1,R2

Q
lR1

+lR2
B Q

mlR2
F KR1R2(QF )K

(m)
R1R2

(QF ) , (21)
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Figure 7: Splitting local Fm into K
(m)
RiRj

contributions.
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(m)
R1R2

where the factor of Q
mlR2
B appears since the rational curve associated with

the two parallel internal lines of the web diagram are B and B + mF for
local Fm (see Fig. 4).

The open string geometry which can be used to determine K
(m)
R1R2

(Q) is
shown in Fig. 9 and is given by

K
(m)
R1R2

(Q) = lim
λ→∞

λlR+
lR1

+lR2
2 〈TrR1U1 O(U3, U4; r)TrR2U

−1
2 〉 , (22)

= lim
λ→∞

∑

R

QlRλ
lR1

+lR

2 WR1R(λ, q)λ
lR+lR2

2 WRR2(λ, q)

(−1)m(lR1
+lR2

)q
m
2

(κR2
−κR1

) ,

where Q = e−r. The m dependent factors stem from a choice of framing
n1 = −n2 = m, n1 = −n2 = −m at the two vertices respectively. 7 This
choice was made by hand by matching the lowest Gopakumar-Vafa invariants
we obtain with those calculated in the literature using localization methods.
It would clearly be desirable to justify this choice intrinsically.

7In the notation of [8], this corresponds to the choice of gluing matrices T −mS−1T−m

and T mS−1T m.
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Figure 9: The open string geometry which determined K
(m)
R1R2

(Q).

Comparing to equation (19), we obtain

K
(m)
R1R2

(Q) = (−1)m(lR1
+lR2

)q
m
2

(κR2
−κR1

)KR1R2(Q) . (23)

The CS partition function in equation (20) now becomes

Z
(m)
CS (QB , QF ; q) =

∑

R1,R2

Q
lR1

+lR2
B Q

mlR2
F (−1)m(lR1

+lR2
)

q
m
2

(κR2
−κR1

)KR1R2(QF )2 . (24)

In order to evaluate KR1R2(Q), we need to calculate the leading order con-
tribution in λ to WR1R2(λ, q). We include the necessary formulae for com-
pleteness. For a derivation of the following relations, we refer the reader to
the cited references and the recent review article [27].

The leading order contribution to WR1R2(λ, q) is given by [25, 26, 8]

WR1R2(q) = WR1(q) qlR2
/2 Sµ2(Eµ1(t)) . (25)

Here, µ1 and µ2 are the Young tableaux associated to the representations
R1 and R2. Sµ is the polynomial Sµ = detMµ, where the r × r matrix Mµ,

r being the number of columns in µ, is given by M
(ij)
µ = (aµ∨

i +j−i). µ∨

denotes the transposed Young tableaux to µ, i.e. with columns and rows
interchanged. The ai are the coefficients of ti in the expansion of Eµ, given
by

Eµ(t) = (1 +

∞∑

n=1

(

n∏

i=1

1

qi − 1
)tn) (

d∏

j=1

1 + qµj−jt

1 + q−jt
) , (26)

WR(q) = qκR/4
∏

1≤i<j≤d

[µi − µj + j − i]

[j − i]

d∏

i=1

µi∏

v=1

1

[v − i + d]
, (27)
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where [x] = qx/2 − q−x/2, d denotes the number of rows in the tableau µ, µi

denotes the number of boxes in the i-th row of µ, and κR is given by

κR = lR +

d(µ)∑

i=1

µi(µi − 2i) . (28)

In the next section, we will take the field theory limit to get the instanton
partition function. For this reason, it is important to know how WR(q)
behaves in the limit q → 1. Since [x] ≈ (q − 1)x in this limit, the first
product on the RHS of equation (27) is finite in this limit, but the second
diverges as (q − 1)−lR . It follows that

WR(q) =
LR(q)

(q − 1)lR
, (29)

where LR(q) is finite at q = 1 and given by

LR(1) =
∏

1≤i<j≤d

µi − µj + j − i

j − i

d∏

i=1

µi∏

v=1

1

v − i + d
. (30)

If both R1 and R2 are the trivial representation, then, as pointed out
above, KR1R2 computes the closed string partition function for the CY3-fold
T ∗(IP1) × C. The partition function for this geometry was obtained in [8]
and has the form

K· ·(Q) = Exp{
∞∑

n=1

Bn(q)Qn} , Bn(q) =
qn

n(qn − 1)2
=

B1(q
n)

n
. (31)

Notice that K··(Q) diverges in the field theory limit. For non-trivial R1, R2,
we can parametrize KR1R2 in the form

KR1R2(Q) = K··(Q)WR1(q)WR2(q)Exp{
∞∑

n=1

fn
R1R2

(q)Qn} . (32)

It is natural to expect that

fn
R1R2

(q) =
fR1R2(q

n)

n
, (33)

even for non-trivial representations (the intuition behind this ansatz is that

the f(qn)
n n-dependence stems from having contributions from a single iso-

lated curve and its multicovers, which is a generic feature of the geometries

to which the K
(m)
R1R2

contribute). We have explicitly calculated the first few
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terms of KR1R2 for some non-trivial representations and found the results
to be in agreement with this ansatz. Using this ansatz, calculating the sum
over all representations in KR1R2 is reduced to determining a single term in
the series, the coefficient of Q. This can easily be determined to be

fR1R2(q) =
WR1,

WR1

W ,R2

WR2

−W2 (34)

=
q

(q − 1)2
{1 + (q − 1)

d1∑

j=1

(qµ1
j−j − q−j)}

{1 + (q − 1)

d2∑

j=1

(qµ2
j−j − q−j)} − q

(q − 1)2
.

The above expression for fR1R2(q) can be simplified to the following form,

fR1R2(q) = (q − 2 + q−1)fR1(q)fR2(q) + fR1(q) + fR2(q)

=:
∑

k

Ck(R1, R2)q
k , (35)

where

fR(q) := fR, .(q) =

d∑

j=1

q−(j−1)(1 + q + q2 + · · · + qµj−1) , (36)

=

d∑

j=1

µj∑

v=1

qv−j .

The following properties of the function fR1R2(q), which are easily read off
from equations (35) and (36), will be useful later,

fRT
1 RT

2
(q) = fR1R2(q

−1) , (37)

fR1R2(1) =
∑

k

Ck(R1, R2) = lR1 + lR2 ,

dfR1R2(q)

dq

∣∣∣∣
q=1

=
∑

k

k Ck(R1, R2) =
κR1 + κR2

2
.

Using the above form of fR1R2(q), we get

KR1R2(Q) = K··(Q)WR1WR2

∏

k

(1 − qkQ)−Ck(R1,R2) , (38)

and thus, the partition function is given by

Z
(m)
CS = K2

··(QF )
∑

R1,R2

Q
lR1

+lR2
B Q

mlR2
F (−1)m(lR1

+lR2
)

q
m
2

(κR1
−κR2

)
W2

R1
(q)W2

R2
(q)

∏
k(1 − qkQF )2Ck(R1,R2)

. (39)
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Notice that, as a consequence of having performed two of the sums over

representations in Z
(m)
CS explicitly, the above expression allows us to compute,

at every order in QB , the dependence on QF to all orders. At given n, we
thus obtain the Gopakumar-Vafa invariants N g

(n,m) for all m.

5 Counting curves and instantons

We now want to use the results obtained in the previous section to compute
the Gopakumar-Vafa invariants of the local Hirzebruch surfaces and to study
the field theory limit of type IIA string theory compactified on these spaces.

The closed string partition function for a CY 3-fold X, equation (4), can
be put in the following form

Fclosed(ω) =

∞∑

g=0

g2g−2
s Fg(ω) =

∑

Σ∈H2(X)

∞∑

g=0

∞∑

n=1

N̂g
Σ qn(1−g)

n(qn − 1)2−2g
e−nΣ·ω , (40)

where q = eigs and ω is the quantum corrected Kähler form on X. The
integer invariants N̂g

Σ are essentially Gopakumar-Vafa invariants, related to

the invariants N g
Σ introduced in [20] by N̂g

Σ = (−1)g−1Ng
Σ. Recall that

H2(Fm, Z) is spanned by the homology classes B and F of the base IP1 and
the fiber IP1 respectively. The exponential in the partition function hence
takes the form e−n(kTB+lTF ) = Qnk

B Qnl
F . The generating functions of the

topological string amplitudes defined above can then be written as

Fclosed(TB , TF ) =
∞∑

n=1

N̂0
F qn

n(qn − 1)2
Qn

F

+

∞∑

k=1

Qk
B

∞∑

g=0

∑

r|k

qr(1−g)

r(qr − 1)2−2g
f (k/r)

g (Qr
F ) , (41)

where

f (n)
g (x) =

∑

m

N̂g
(n,m)x

m . (42)

f
(k)
g (x) is the generating function for the genus g invariants of curves kB +
∗F . In the field theory limit, the first term in equation (41), coming from
multicovers of F , gives the perturbative contribution to the prepotential as
was shown in [4]. We will see that computations in Chern-Simons theory on

the open string side determine the generating functions of invariants f
(k)
g (x)

in a straightforward way.
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In subsection 5.3, we will take the field theory limit of the CS partition
function directly, i.e. without the intermediate step of expressing it in terms
of A-model quantities. We will see that, after a slight manipulation, it is the
same as the expression given by Nekrasov [15].

5.1 Curves

To extract the generating functions (42) for the Gopakumar-Vafa invariants
from the CS partition functions (39), we need to equate the appropriate
coefficients of QB in Zclosed = eFclosed and ZCS . To this end, we introduce
the functions Gk and Zk, such that

Zclosed = Exp{
∞∑

n=1

G(qn, nω)

n
} (43)

= K· ·(QF )
bN0
(0,1) Exp{

∞∑

n=1

1

n

∞∑

k=1

Qkn
B Gk(q

n, Qn
F )} ,

and

ZCS(QB , QF ; q) = K2
· ·(QF )

∞∑

k=0

Qk
BZk(QF , q) . (44)

Then

G(q, ω) =
∑

Σ∈H2(X,ZZ)

∞∑

g=0

N̂g
Σ q1−g

(q − 1)2−2g
e−Σ·ω (45)

=
N̂0

(0,1) q

(q − 1)2
QF +

∞∑

k=1

Qk
BGk(q,QF ) ,

where

Gk(q,QF ) =

∞∑

m=0

∞∑

g=0

N̂g
(k,m) q1−g

(q − 1)2−2g
Qm

F =

∞∑

g=0

1

(q1/2 − q−1/2)2−2g
f (k)

g (QF ) .(46)

We have used the fact that N g
(0,m) ∼ δg,0δm,1, which was already pointed out

in [4].8 For Zk, specializing to F0 (the cases F1 and F2 can be treated anal-
ogously; the results are quoted in the appendix), we obtain from equation
(39)

Zk(q,QF ) =
∑

{R1,R2|lR1
+lR2

=k}

W2
R1

W2
R2∏

m(1 − qmQF )2Cm(R1,R2)
. (47)

8[4] only considered the case g = 0. The δg,0 reflects the fact that a higher genus surface
cannot be mapped holomorphically into a sphere.
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Thus Zclosed = ZCS implies that N̂0
(0,1) = 2 (consistent with [4]) and

G1(q,QF ) = Z1(q,QF ) , (48)

G2(q,QF ) = Z2(q,QF ) − 1

2
Z1(q,QF )2 − 1

2
Z1(q

2, Q2
F ) ,

G3(q,QF ) = Z3(q,QF ) +
1

3
Z1(q,QF )3 − Z1(q,QF )Z2(q,QF ) − 1

3
Z1(q

3, Q3
F ) ,

G4(q,QF ) = Z4(q,QF ) − 1

4
Z4(q,QF )4 + Z1(q,QF )2Z2(q,QF )

−Z1(q,QF )Z3(q,QF ) − 1

2
Z1(q,QF )2 − 1

2
Z2(q

2, Q2
F ) +

1

4
Z1(q

2, Q2
F )2 .

The functions Zk(q,QF ) are easy to determine. From the above relations,
we find that (for k = 1, 2, 3, 4)

f (k)
g (x) =

P
(k)
g (x)

(1 − x)2g+4k−2
, (49)

where the functions P
(k)
g (x) are finite at x = 1. This behavior will become

important when considering the field theory limit in the next subsection.

k=1: In this case, since all curves B+mF are of genus zero, it is possible
to obtain the invariants N g

B+mF directly. The moduli space of curves is just

IP2m+1 and therefore N g
(1,m) = −(2m + 2)δg,0, hence we expect

f
(1)
0 (x) = − 2

(1 − x)2
, f

(1)
g>0(x) = 0 . (50)

This is exactly what we obtain from Z1(q,QF ).

k=2: In this case, by calculating G2(q,QF ), one can give an exact ex-
pression for all invariants,

f (2)
g (x) =

(3g + 6)xg+1 + (6g + 8)xg+2 + (3g + 6)xg+3

(1 − x)2g+6(1 + x)2
. (51)

k=3:

f (3)
g (x) =

xg+4H
(3)
g (x)

(1 − x)2g+10(1 + x + x2)2
, (52)

where H
(3)
g (x) is such that

H(3)
g (x) = H(3)

g (1/x) =

g+3−[ g+1
2

]∑

k=−g−3+[ g+1
2

]

Akx
k . (53)
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H
(3)
0 (x) := 8(x3 + x−3) + 46(x2 + x−2) + 100(x + x−1) + 124 , (54)

H
(3)
1 (x) := 68(x3 + x−3) + 336(x2 + x−2) + 692(x + x−1) + 880

H
(3)
2 (x) := 12(x4 + x−4) + 436(x3 + x−3) + 1874(x2 + x−2)

+3736(x + x−1) + 4732 ,

H
(3)
3 (x) := 156(x4 + x−4) + 2496(x3 + x−3) + 9515(x2 + x−2)

+18464(x + x−1) + 23120 ,

H
(3)
4 (x) := 16(x5 + x−5) + 1304(x4 + x−4) + 13368(x3 + x−3)

+46118(x2 + x−2) + 87180(x + x−1) + 107852 ,

H
(3)
5 (x) := 276(x5 + x−5) + 8920(x4 + x−4) + 68388(x3 + x−3)

+217040(x2 + x−2) + 399888(x + x−1) + 489312 ,

k=4:

f (4)
g (x) =

x2g+6H
(4)
g (x)

(1 − x)2g+14(1 + x)2g+6
. (55)

H
(4)
0 (x) = 10(x5 + x−5) + 208(x4 + x−4) + 1472(x3 + x−3) (56)

+5072(x2 + x−2) + 10310(x + x−1) + 12864 ,

H
(4)
1 (x) = 300(x6 + x−6) + 5392(x5 + x−5) + 38977(x4 + x−4)

+156500(x3 + x−3) + 397376(x2 + x−2)

+681628(x + x−1) + 812710 ,

H
(4)
2 (x) = 116(x8 + x−8) + 7114(x7 + x−7) + 105688(x6 + x−6)

+768492(x5 + x−5) + 3394424(x4 + x−4)

+10082352(x3 + x−3) + 21285960(x2 + x−2)

+32970906(x + x−1) + 38079720 ,

H
(4)
3 (x) = 15(x10 + x−10) + 4560(x9 + x−9) + 146856(x8 + x−8)

+1891720(x7 + x−7) + 13702561(x6 + x−6)

+64651284(x5 + x−5) + 214971644(x4 + x−4)

+527911700(x3 + x−3) + 985697328(x2 + x−2)

+1424513408(x + x−1) + 1608879864 ,
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H
(4)
4 (x) = 1560(x11 + x−11) + 120984(x10 + x−10) + 2793760(x9 + x−9)

+32488976(x8 + x−8) + 233788052(x7 + x−7)

+1156821600(x6 + x−6) + 4187974036(x5 + x−5)

+11538312784(x4 + x−4) + 24830267172(x3 + x−3)

+42464519560(x2 + x−2) + 58354404732(x + x−1)

+64833791552 , (57)

H
(4)
5 (x) = 276(x13 + x−13) + 62765(x12 + x−12) + 2707868(x11 + x−11)

+50597066(x10 + x−10) + 545520996(x9 + x−9)

+3898919969(x8 + x−8) + 19995586316(x7 + x−7)

+77346747002(x6 + x−6) + 233315291868(x5 + x−5)

+561626870823(x4 + x−4) + 1096392376436(x3 + x−3)

+1755278206204(x2 + x−2) + 2321514065296(x + x−1)

+2547127635094 .

5.2 Instantons

In the last subsection, we saw that the generating functions for Gopakumar-
Vafa invariants counting curves kB + lF with fixed k can conveniently be
extracted from the open string partition function. As pointed out above,
the world-sheet instantons wrapping these curves contribute to the k gauge
instanton correction to the prepotential of the N = 2 theory.

From the expansion of the relevant part of the topological string ampli-
tude

Finstanton(QB , QF , gs) =
∑

(k,m)6=(0,0)

∞∑

g=0

∞∑

n=0

N̂g
(k,m) qn(1−g)

n(qn − 1)2−2g
Qnk

B Qnm
F , (58)

and recalling the field theory limit (1) as β → 0, we see that the divergence

of f
(k)
g (Qn

F ) ∼ β2−2g−4k (see equations (42), (49)) is exactly cancelled by

the β dependence of
Qnk

B

(qn−1)2−2g ∼ β4kn+2g−2 for the case of single wrappings,

n = 1. Multiwrapping contributions vanish in the field theory limit.
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The k-instanton contribution is thus given by Fk,

Fk = lim
β→0

(
βΛ

2
)4k{

∞∑

g=0

f
(k)
g (1 − 2aβ)

(β~)2−2g
} , (59)

= a2 (
Λ

a
)4k ck ,

where

ck(~, a) =

∞∑

g=0

1

~2−2g

P
(k)
g (1)

22g−2+8k a2g
. (60)

The coefficient of ~
−2 in the expansion of ck(~, a) is the k-instanton contribu-

tion to the prepotential. The coefficient of ~
0 is the k-instanton contribution

to the coefficient of the
∫

TrR2
+ term in the effective action arising when the

field theory is coupled to gravity. For the N = 2 D=4 SU(2) theory this
has been confirmed by comparing the results from the topologically twisted
theory and matrix model calculations [19, 28]. The field theory interpreta-
tion of the coefficients of ~

2g−2 (g > 1) in the expansion of ck(~, a) are as
yet unclear (recall that these stem from the higher genus topological string
amplitudes; in the low energy limit of type IIA, they describe the coupling
of the graviphoton to R2

+).

From the results of the previous subsection, we can easily calculate the
first few instanton contributions.

Since f
(1)
g (x) = δg,0

2
(1−x)2

, we get

c1(~, a) =
1

~2

1

25
. (61)

For c2(~, a), we extract P
(2)
g (1) = 3g + 5 from

f (2)
g (x) =

(3g + 6)xg+1 + (6g + 8)xg+2 + (3g + 6)xg+3

(1 − x)2g+6(1 + x)2
. (62)

Thus we get

c2(~, a) =
∞∑

g=0

1

~2−2g

3g + 5

22g+14a2g

=
1

~2

5

214
+

1

213a2
+ ~

2 11

218a4
+ ~

4 7

219a6
+ · · · . (63)

For c3(~, a) we have, from equation (55), the following expansion up to
g = 10,
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c3(~, a) =
∞∑

g=0

1

~2−2g

P
(3)
g (1)

22g+22a2g

=
1

~2

3

218
+

1

3 × 214a2
+

~
2

a4

117

222
+

~
4

a6

293

223
+

~
6

a8

8413

3 × 226

+
~

8

a10

3261

226
+

~
10

a12

59465

230
+

~
12

a14

400493

3 × 231
+

~
14

a16

1184499

234

+
~

16

a18

650505

233
+

~
18

a20

68040919

3 × 238
+ · · · . (64)

For c4(~, a) we have, from equation (58), the following expansion up to
g = 10,

c4(~, a) =

∞∑

g=0

1

~2−2g

P
(4)
g (1)

22g+30a2g

=
1

~2

1469

231
+

1647

229a2
+

~
2

a4

171201

234
+

~
4

a6

985823

235

+
~

6

a8

42777927

239
+

~
8

a10

112053387

239
+

~
10

a12

1147794293

241

+
~

12

a14

5785079481

242
+

~
14

a16

460910273265

247

+
~

16

a18

568311318115

246
+

~
18

a20

22248943631667

250
+ · · · . (65)

5.3 Field theory limit of Chern-Simons partition function

In the last subsection, we expressed the gauge instanton contributions in
terms of curve counting formulas (equation (60)), i.e. with the interpretation
of the field theory as the low energy limit of type IIA in mind. We can equally
well express the complete instanton partition function by taking the field

theory limit of Z
(m)
CS (QB , QF ; q) in (4) directly, i.e. without the intermediate

transcription to closed string quantities. In this spirit, it would be interesting
to formulate a direct relationship between the three dimensional CS and the
four dimensional N = 2 theory.

Unlike the previous subsection, we will here consider all three cases Fm,
m = 1, 2, 3 simultaneously. It will turn out that all m dependence cancels in
the field theory limit, as expected, provided we introduce a sign factor when
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relating the field theory to the geometric parameters, in the following way

QB = (−1)m(
βΛ

2
)4 , QF = e−2aβ , q = e−β~ . (66)

It would be interesting to justify the factor of (−1)m intrinsically.

Using these relations in equations (32) and (29),

KR1R2(QF )

K· ·(QF )
=

LR1(q)

(q − 1)lR1

LR2(q)

(q − 1)lR2

∏

k

(1 − qkQF )−Ck(R1,R2) , (67)

we obtain in the limit β → 0

KR1R2(QF )

K· ·(QF )
=

1

(β~)lR1
+lR2

{LR1(1)LR2(1)
∏

k

(2aβ + β k ~)−Ck(R1 ,R2) + O(β)} ,

=
1

β2lR1
+2lR2

{LR1(1)LR2(1)

~
lR1

+lR2

∏

k

(2a + k~)−Ck(R1 ,R2) + O(β)} , (68)

where we have used the fact that
∑

k Ck(R1, R2) = lR1 + lR2 . Thus,

ZSU(2)(Λ, a; ~) := lim
β→0

Z
(m)
CS (QB , QF ; q)

K··(QF )2

=
∑

R1,R2

(
Λ

2
√

~
)4l1+4l2 LR1(1)

2LR2(1)
2

∏
k(2a + k~)2Ck(R1,R2)

, (69)

where the m-dependence cancels as promised. Hence, from equation (66)
it follows that all local Fm 3-folds yield the same results in the field theory
limit for all genus.

5.4 Relation with Nekrasov’s conjecture

The above instanton partition function agrees with the partition function
proposed by Nekrasov [15] and recently calculated in [17]. To see this, recall

that Z
(m)
CS (TB , TF , q) is given by

Z
(m)
CS (TB , TF ; q)

K··(QF )2
=

∑

R1,R2

Q
lR1

+lR2
B Q

mlR2
F (−1)m(lR1

+lR2
)

q−
m
2

(κR2
+κR1

)
W2

R1
W2

RT
2∏

k(1 − qkQF )2Ck(R1,RT
2 )

. (70)

We have used κRT = −κR. The term K··(Q)2 gives the 1-loop contribution to
the prepotential in the field theory limit. We have divided the Chern-Simons
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partition function by K··(Q)2 so that we only get the instanton contribution
in the field theory limit. Now using the definition of WR(q) given in equation
(27) and the following identity

∏

∞>j>i≥1

[µi − µj + j − i]

[j − i]
=

∏

d(µ)≥j>i≥1

[µi − µj + j − i]

[j − i]

d(µ)∏

i=1

µi∏

ν=1

1

[ν − i + d(µ)]
,

(71)

where µi = 0 for i > d(µ), we see that for q = e−β~

W2
R(q) = 2−2lR qκR/2

∞∏

i,j=1

sinh β~

2 (µi − µj + j − i)

sinh β~

2 (j − i)
. (72)

Note that care is required in treating the infinite product in order to obtain
the factor 2−2lR correctly (e.g. by recourse to the RHS of equation (71)).
One can also check that the following identity holds, though we have not yet
been able to derive it algebraically,

∏

k

(1 − qkQF )−2Ck(R1,RT
2 ) = Q

−lR1
−lR2

F 2−2(lR1
+lR2

)q−
1
2
(κR1

−κR2
)(73)

∏

l 6=n,i,j

sinh β
2 (aln + ~(µl,i − µn,j + j − i))

sinh β
2 (aln + ~(j − i))

, l, n = 1, 2; i, j ≥ 1 .

Again, the infinite product is to be interpreted along the lines of equation
(71). We have set QF = e−2aβ and a12 = −a21 = 2a. Putting this all
together, we obtain

Z
(m)
CS (TB , TF = 2aβ; q = e−β~)

K··(QF )2
=

∑

R1,2

((−1)m QB

24QF
)lR1

+lR2 Q
m lR2
F

q−
m
2

(κR1
+κR2

)
∏

l,n=1,2

∞∏

i,j=1

sinh β
2 (aln + ~(µl,i − µn,j + j − i))

sinh β
2 (aln + ~(j − i))

.

For m = 0 (local F0) this yields

Z
(0)
CS = K··(QF )2

∑

R1,R2

ϕlR1
+lR2

∏

l,n=1,2

∞∏

i,j=1

sinh β
2 (aln + ~(µl,i − µn,j + j − i))

sinh β
2 (aln + ~(j − i))

,(74)

where

ϕ =
QB

24QF
=

QB e2aβ

24
. (75)
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This is exactly the form of the partition function derived by Nekrasov from
an index calculation in [15] 9. In the field theory limit QB = (βΛ

2 )4 with
β → 0, we get

ZSU(2)(Λ, a; ~) = limβ→0
Z

(m)
CS (TB = 4 log(βΛ

2 ), TF = 2aβ; q = e−β~)

K··(QF )2
(77)

=
∑

R1,R2

(
Λ

2
)4(lR1

+lR2
)

∏

l,n=1,2

∞∏

i,j=1

aln + ~(µl,i − µn,j + j − i)

aln + ~(j − i)
.

The fact that the expression is equal to the one given in equation (69) follows
from the β → 0 limit of the identities given in equation (71) and equation
(73).

The above partition function is a limit (~1 = ~2 = ~) of a more general
partition function discussed in [15, 16, 17]. On the CS side (open string side)
there exists a natural way of defining a more general open string partition
function by taking the coupling constant associated with the CS-theory on
each 3-cycle to be different. This more general partition function is given by

ZCS(q1, q2, QB , QF ) =
∑

R1,2

Ql1+l2
B KR1R2(q1, q2, QF )2 , (78)

where

KR1R2(q1, q2, QF ) =
∑

R

QlR
F WR1R(q1)WRR2(q2). (79)

For q1 = q2 we get back the original partition function. Again we make an
ansatz

KR1R2(q1, q2, QF ) = WR1(q1)WR2(q2)Exp{fn
R1R2

(q1, q2)Q
n
F } , (80)

where

fn
R1R2

(q1, q2) =
fR1R2(q

n
1 , qn

2 )

n
. (81)

9A generalization of this to SU(N) was also given by Nekrasov [15]

ZSU(N)(ϕ, β) =
X

R1,··· ,N

ϕ
l1+···+lN

N
Y

l,n=1

∞
Y

i,j=1

sinh β

2
(aln + ~(µl,i − µn,j + j − i))

sinh β

2
(aln + ~(j − i))

. (76)
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Equating the coefficients of QF in equations (79) and (80) then yields

fR1R2(q1, q2) =
WR1, (q1)

WR1(q1)

W ,R2(q2)

WR2(q2)
−W (q1)W (q2)

=

√
q1q2

(q1 − 1)(q2 − 1)
{1 + (q1 − 1)

d1∑

j=1

(q
µj−j
1 − q−j

1 )}

{1 + (q2 − 1)

d2∑

j=1

(q
νj−j
2 − q−j

2 )} −
√

q1q2

(q1 − 1)(q2 − 1)
.(82)

The above expression can be simplified to the following form

fR1R2(q1, q2) =

√
q2

q1

q1 − 1

q2 − 1
fR1(q1) +

√
q1

q2

q2 − 1

q1 − 1
fR2(q2)

+
(q1 − 1)(q2 − 1)√

q1q2
fR1(q1)fR2(q2)

=
∑

k1,k2∈Z+ 1
2

Ck1,k2(R1, R2)q
k1
1 qk2

2 ,

where fR1(q) =
∑d1

j=1 q−(j−1)(1 + q + · · · qµj−1).

Then this more general partition function is given by

ZCS(q1, q2, QB , QF ) =
∑

R1,2

Ql1+l2
B

W2
R1

(q1)W2
R2

(q2)∏
k1,k2

(1 − qk1
1 qk2

2 QF )2Ck1 ,k2
(R1,R2)

. (83)

In the field theory limit we get

Z(Λ, a; ~1, ~2) =
∑

R1,2

(
Λ

2
)4(l1+l2)

L2
R1

(1)L2
R2

(1)

~2l1 ~2l2

∏

k1,k2

(2a + ~1k1 + ~2k2)
−2Ck1 ,k2

(R1 ,R2) , (84)

where we have used
∑

k1,k2
Ck1k2(R1, R2) = l1 + l2.
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Appendix

Details for local IP2

PSfrag replacements

(|x| = |y| =
√

|z|,
|u| = |v| =

√
|z − µ|, z)

(|x| = |y| =
√
|µ|,

|u| = |v| = 0, z = µ)
(|x| = |y| = 0,

|u| = |v| =
√
|µ|, z = 0)

|x|
|y|
|u|
|v|

Re(z)

x
y

u
v
x̃
ỹ

ũ
ṽ
x′

y′

u′

v′

local F0

local F1

local F2

U1
1

U2
1

U1
2

U2
2

U1
3

U2
3

U1
4

U2
4

x1 = 0
x2 = 0

x3 = 0

x4 = 0

x5 = 0
x6 = 0

x7 = 0
σ1

σ2

σ3

σ4

σ5

σ6

σ7

Figure 10: The fan and web diagram for B3.

From the toric diagram Fig. 10, we can read off the following σ model
charges

( 1 1 1 −3 0 0 0 )
( 0 −1 −1 1 1 0 0 )
( −1 0 −1 1 0 1 0 )
( −1 −1 0 1 0 0 1 )

The monomials invariant under the four U(1)s encoded in these charges are
generated by the following set

{x1x2x3x4x5x6x7, x2
1x2x4x6x

2
7, x1x

2
2x4x5x

2
7, x2x

2
3x4x

2
5x6, (85)

x2
2x3x4x

2
5x7, x1x

2
3x4x5x

2
6, x2

1x3x4x
2
6x7}

We cover the geometry with the 3 patches

Patch I: x3, x5, x6 6= 0 (86)

Patch II: x1, x6, x7 6= 0

Patch III: x2, x5, x7 6= 0 .
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In each patch, the invariant monomials are generated by the following set

Patch I: x =
x1x7

x3x5
, y = x2x

2
3x4x

2
5x6, u =

x2x7

x3x6
, v = x1x

2
3x4x5x

2
6

→ xy = uv (87)

Patch II: x̃ =
x3x5

x1x7
, ỹ = x2

1x2x4x6x
2
7, ũ =

x2x5

x1x6
, ṽ = x2

1x3x4x
2
6x7

→ x̃ỹ = ũṽ

Patch III: x′ =
x3x6

x2x7
, y′ = x1x

2
2x4x5x

2
7, u′ =

x1x6

x2x5
, v′ = x2

2x3x4x
2
5x7

→ x′y′ = u′v′ .

The transition functions in the overlap of the patches can easily be read off
from these equations:

x =
1

x̃
, y = x̃ũṽ , u =

ỹ

ṽ
, v = x̃ṽ , (88)

x̃ =
x′

u′
, ỹ = y′u′ ũ =

1

u′
, ṽ = u′2v′ ,

x′ =
v

xy
, y′ = uxy , u′ =

x

u
, v′ =

xy2

v
.

Note that the relation of the phases of the coordinates in different patches
can be read off from the web diagram. We now perform the following defor-
mations on the constraint equations

xy = uv + µ1 , (89)

x̃ỹ = ũṽ + µ2 , (90)

x′y′ + µ1 = u′v′ + µ2 . (91)

To enforce the relation z = xy = x̃ỹ = x′y′ + µ1, we must also deform the
transition functions,

x =
1

x̃
, y = x̃ũṽ + µ2x̃ , u =

ỹ

ṽ
− µ1

x̃ṽ
, v = x̃ṽ , (92)

x̃ =
x′

u′
, ỹ = y′u′ + µ1

u′

x′
, ũ =

1

u′
, ṽ = u′2v′ ,

x′ =
v

x

1

y − µ2

x

, y′ = ux(y − µ2

x
) , u′ =

v

y − y−µ2

x

, v′ =
x

v
(y − µ2

x
)2 .

These deformations maintain the phase relations of the coordinates in the
three patches.
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local F0

Here we list functions H
(n)
g (x) for n = 3, 4 and g = 0, . . . , 15.

H
(3)
6 (x) = 20(x6 + x−6) + 2860(x5 + x−5) + 54344(x4 + x−4)

+338204(x3 + x−3) + 1000022(x2 + x−2)

+1797108(x + x−1) + 2177844

H
(3)
7 (x) = 428(x6 + x−6) + 23152(x5 + x−5) + 306968(x4 + x−4)

+1629392(x3 + x−3) + 4532536(x2 + x−2)

+7953136(x + x−1) + 9556104

H
(3)
8 (x) = 24(x7 + x−7) + 5296(x6 + x−6) + 161552(x5 + x−5)

+1643952(x4 + x−4) + 7688416(x3 + x−3)

+20272814(x2 + x−2) + 34777628(x + x−1) + 41468492 ,

H
(3)
9 (x) = 612(x7 + x−7) + 49736(x6 + x−6) + 1020652(x5 + x−5)

+8462384(x4 + x−4) + 35667972(x3 + x−3)

+89686864(x2 + x−2) + 150623428(x + x−1) + 178358464 ,

H
(3)
10 (x) = 28(x8 + x−8) + 8804(x7 + x−7) + 393728(x6 + x−6)

+6006028(x5 + x−5) + 42249200(x4 + x−4)

+163151268(x3 + x−3) + 393139474(x2 + x−2)

+647251192(x + x−1) + 761564668 ,

H
(3)
11 (x) = 828(x8 + x−8) + 94240(x7 + x−7) + 2772832(x6 + x−6)

+33511552(x5 + x−5) + 205862000(x4 + x−4)

+737434848(x3 + x−3) + 1709869228(x2 + x−2)

+2763195520(x + x−1) + 3232117936 ,

H
(3)
12 (x) = 32(x9 + x−9) + 13576(x8 + x−8) + 836744(x7 + x−7)

+17934000(x6 + x−6) + 179430424(x5 + x−5)

+983373728(x4 + x−4) + 3299321448(x3 + x−3)

+7386742102(x2 + x−2) + 11731393228(x + x−1) + 13647278764 ,

Ĥ
(3)
13 (x) = 1076(x9 + x−9) + 163256(x8 + x−8) + 6521908(x7 + x−7)

+108732192(x6 + x−6) + 929691024(x5 + x−5)

+4620614976(x4 + x−4) + 14631592752(x3 + x−3)

+31725047776(x2 + x−2) + 49571743936(x + x−1) + 57373130752 ,

H
(3)
14 (x) = 36(x10 + x−10) + 19804(x9 + x−9) + 1608728(x8 + x−8)

+46170268(x7 + x−7) + 626678580(x6 + x−6)

+4690016816(x5 + x−5) + 21410770496(x4 + x−4)

+64389042000(x3 + x−3) + 135558792610(x2 + x−2)

+208614265444(x + x−1) + 240290143540 ,
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H
(3)
15 (x) = 1356(x10 + x−10) + 264400(x9 + x−9) + 13772840(x8 + x−8)

+303539824(x7 + x−7) + 3467940668(x6 + x−6)

+23141374272(x5 + x−5) + 98036368128(x4 + x−4)

+281441631392(x3 + x−3) + 576623540332(x2 + x−2)

+874793870512(x + x−1)

+1003092794248 .

H
(4)
6 (x) = 20(x15 + x−15) + 20776(x14 + x−14) + 1802422(x13 + x−13)

+55118752(x12 + x−12) + 887791786(x11 + x−11)

+9032681160(x10 + x−10) + 64154932056(x9 + x−9)

+338318599184(x8 + x−8) + 1379961590592(x7 + x−7)

+4479333446968(x6 + x−6) + 11809327834558(x5 + x−5)

+25665330292512(x4 + x−4) + 46479319690946(x3 + x−3)

+70678653611736(x2 + x−2) + 90710040683380(x + x−1)

+98545938094688 ,

H
(4)
7 (x) = 4266(x16 + x−16) + 839844(x15 + x−15) + 43543660(x14 + x−14)

+1056778816(x13 + x−13) + 15241810336(x12 + x−12)

+148139062508(x11 + x−11) + 1046335719584(x10 + x−10)

+5642396903464(x9 + x−9) + 24036080776384(x8 + x−8)

+82894576962384(x7 + x−7) + 235675324886872(x6 + x−6)

+559907882759836(x5 + x−5) + 1122949968857408(x4 + x−4)

+1915763227378616(x3 + x−3) + 2795404761655196(x2 + x−2)

+3501738224591460(x + x−1) + 3773935482414956 ,

H
(4)
8 (x) = 496(x18 + x−18) + 273912(x17 + x−17) + 25434960(x16 + x−16)

+947885136(x15 + x−15) + 19453650776(x14 + x−14)

+257567625014(x13 + x−13) + 2412441992944(x12 + x−12)

+16956815818608(x11 + x−11) + 93128479478936(x10 + x−10)

+411350743539242(x9 + x−9) + 1492803031085792(x8 + x−8)

+4523350413679026(x7 + x−7) + 11586657433749704(x6 + x−6)

+25330337013080364(x5 + x−5) + 47609815386901776(x4 + x−4)

+77364284922244622(x3 + x−3) + 109129776774805848(x2 + x−2)

+134003186940618748(x + x−1) + 143470224614509472 ,
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H
(4)
9 (x) = 25(x20 + x−20) + 61316(x19 + x−19) + 11068374(x18 + x−18)

+652429176(x17 + x−17) + 19259125692(x16 + x−16)

+347810000852(x15 + x−15) + 4300723919714(x14 + x−14)

+39070905330120(x13 + x−13) + 273457920809930(x12 + x−12)

+1524969346570920(x11 + x−11) + 6945674565624384(x10 + x−10)

+263257650262280089(x9 + x−9) + 84243018258047546(x8 + x−8)

+230185454300541696(x7 + x−7) + 541844957793011864(x6 + x−6)

+1106543100329064720(x5 + x−5) + 1971231278784742349(x4 + x−4)

+3076166028299942844(x3 + x−3) + 4218295082475696624(x2 + x−2)

+5093897002657007052(x + x−1) + 5423687898801824948 ,

H10(x) = 8982(x21 + x−21) + 3578472(x20 + x−20) + 348034206(x19 + x−19)

+15037643104(x18 + x−18) + 372747895080(x17 + x−17)

+6084321194460(x16 + x−16) + 71140851380158(x15 + x−15)

+629960905795240(x14 + x−14) + 4392643781205418(x13 + x−13)

+24815217549021088(x12 + x−12) + 116039047539664182(x11 + x−11)

+456636168407024952(x10 + x−10) + 1532000433014962822(x9 + x−9)

+4427463940221909760(x8 + x−8) + 11113497261742849754(x7 + x−7)

+24391020745301746344(x6 + x−6) + 47054462823805306748(x5 + x−5)

+80129270910314118520(x4 + x−4) + 120842120340657126960(x3 + x−3)

+161785295782709385240(x2 + x−2) + 192612749016106866042(x + x−1)

+204120388510473361224 ,

H11(x) = 776(x23 + x−23) + 847738(x22 + x−22) + 144344832(x21 + x−21)

+9357879388(x20 + x−20) + 321867505044(x19 + x−19)

+6960563372879(x18 + x−18) + 104659625277760(x17 + x−17)

+1167957443029360(x16 + x−16) + 10119596098395264(x15 + x−15)

+70330233541355881(x14 + x−14) + 401754102187227592(x13 + x−13)

+1922054663797082448(x12 + x−12) + 7815436357972473172(x11 + x−11)

+27328823525971791460(x10 + x−10) + 82962081227932553344(x9 + x−9)

+220327585105407247080(x8 + x−8) + 515123507705963450920(x7 + x−7)

+1065676633098908467490(x6 + x−6) + 1958880323008004536300(x5 + x−5)

+3209930502325208372372(x4 + x−4) + 4701228070777034064356(x3 + x−3)

+6165909219169186575432(x2 + x−2) + 7251680674388081571600(x + x−1)

+7653871498185950485200 ,
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H12(x) = 30(x25 + x−25) + 142952(x24 + x−24) + 46397758(x23 + x−23)

+4666992904(x22 + x−22) + 226254790488(x21 + x−21)

+6528038807672(x20 + x−20) + 126479209707000(x19 + x−19)

+1776522953134224(x18 + x−18) + 19057077119890680(x17 + x−17)

+162049457830972496(x16 + x−16) + 1122934839735652880(x15 + x−15)

+6476817384316875496(x14 + x−14) + 31612278725628725440(x13 + x−13)

+132300992609304637960(x12 + x−12) + 479854874693771928080(x11 + x−11)

+1521505193447041212400(x10 + x−10) + 4247761951357534695194(x9 + x−9)

+10503538092109971310456(x8 + x−8) + 23116405003776992480010(x7 + x−7)

+45463376413349088082344(x6 + x−6) + 80165702837137187676152(x5 + x−5)

+127072760262836311167104(x4 + x−4) + 181450624018663596285928(x3 + x−3)

+233770042020772015684072(x2 + x−2) + 272031823542995558909304(x + x−1)

+286109526001880184530336 ,

H13(x) = 16248(x26 + x−26) + 11441484(x25 + x−25) + 1867609602(x24 + x−24)

+130313168272(x23 + x−23) + 5068617330184(x22 + x−22)

+127122681176684(x21 + x−21) + 2249626573376071(x20 + x−20)

+29833194044232700(x19 + x−19) + 309352842642427198(x18 + x−18)

+2587963124320382488(x17 + x−17) + 17886698663434866553(x16 + x−16)

+104041685392475379304(x15 + x−15) + 516863496360020461678(x14 + x−14)

+2219175312759092765388(x13 + x−13) + 8315148255251476062787(x12 + x−12)

+27408849538963007252540(x11 + x−11) + 80010468270453478393296(x10 + x−10)

+207995282777817187829848(x9 + x−9) + 483761555487399956706890(x8 + x−8)

+1010575072306854645122796(x7 + x−7) + 1902256171458206034909248(x6 + x−6)

+3235110563313776191505496(x5 + x−5) + 4981575619223563155734966(x4 + x−4)

+6957331918466546588154936(x3 + x−3) + 8824248101674959733825220(x2 + x−2)

+10173350240915563250118496(x + x−1) + 10666791272137599144340470

H14(x) = 1116(x28 + x−28) + 2123034(x27 + x−27) + 597858776(x26 + x−26)

+61694966866(x25 + x−25) + 3280150367480(x24 + x−24)

+107249898982190(x23 + x−23) + 2398456260768240(x22 + x−22)

+39334297729267612(x21 + x−21) + 496590877057032204(x20 + x−20)

+4999965296583002358(x19 + x−19) + 41233256060532653688(x18 + x−18)

+284316242947879915100(x17 + x−17) + 1666176504493064118336(x16 + x−16)

+8408482528507356296876(x15 + x−15) + 36936675268551592344472(x14 + x−14)

+142494162691476258768526(x13 + x−13) + 486350783413982018389556(x12 + x−12)

+1477790555674438148532576(x11 + x−11) + 4018472087633195293071392(x10 + x−10)

+9822352746135144088586634(x9 + x−9) + 21662099226298401054640968(x8 + x−8)



A. Iqbal and A. Kashani-Poor 493

+43239893498911642392701526(x7 + x−7) + 78327490163691445755024792(x6 + x−6)

+129044537123542177935391914(x5 + x−5) + 193702544707394610401774948(x4 + x−4)

+265286854476302190398619068(x3 + x−3) + 331854109645644252336639088(x2 + x−2)

+379452019419503320388448152(x+ x−1) + 396769857245681885554908928 ,

H15(x) = 35(x30 + x−30) + 286744(x29 + x−29) + 151909916(x28 + x−28)

+24014981300(x27 + x−27) + 1776678078197(x26 + x−26)

+76462540562016(x25 + x−25) + 2171568812362050(x24 + x−24)

+44128251927349080(x23 + x−23) + 678229429084167029(x22 + x−22)

+82055061961991846889(x21 + x−21) + 80513486253657266932(x20 + x−20)

+655602921413643536680(x19 + x−19) + 4511043260336323140811(x18 + x−18)

+26612229682448017966692(x17 + x−17) + 136204891358039983634884(x16 + x−16)

+610736662112601476054180(x15 + x−15) + 2418823210255342971140237(x14 + x−14)

+8519606663089707541414760(x13 + x−13) + 26842281493690029147172220(x12 + x−12)

+76023106991445943817131912(x11 + x−11) + 194367691907203562148213795(x10 + x−10)

+450207515759262474725900584(x9 + x−9) + 947630554842568898139897502(x8 + x−8)

+1817312857981270397216413376(x7 + x−7) + 3182248997707767165484154515(x6 + x−6)

+5097338277427026638104847412(x5 + x−5) + 7480058119725431973984814452(x4 + x−4)

+10067787731012537908374528440(x3 + x−3) + 12440072163092579373241505125(x2 + x−2)

+14120405833090393940001592152(x+ x−1) + 14728907025122899597601666232 .

local F1

Here we list the functions H
(n)
g (x) for n = 3 and g = 0, · · · 15. The invariants

of local F0 and local F1 are related to each other for curves with even wrap-
ping number on the base, as can be seen easily by using the affine E8 Weyl
symmetry of local 1

2 K3. Thus the n = 4 case for local F1 can be derived

from the functions H
(4)
g (x) defined in the previous subsection.

H
(3)
6 (x) = 348(x11/2 + x−11/2) + 14800(x9/2 + x−9/2) (93)

+151712(x7/2 + x−7/2) + 626785(x5/2 + x−5/2)

+1412346(x3/2 + x−3/2) + 2075489(x1/2 + x−1/2) ,

H
(3)
7 (x) = 22(x13/2 + x−13/2) + 3956(x11/2 + x−11/2) + 96574(x9/2 + x−9/2)

+778054(x7/2 + x−7/2) + 2906210(x5/2 + x−5/2)

+6311298(x3/2 + x−3/2) + 9127550(x1/2 + x−1/2) ,
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H
(3)
8 (x) = 516(x13/2 + x−13/2) + 34576(x11/2 + x−11/2)

+576860(x9/2 + x−9/2) + 3862860(x7/2 + x−7/2)

+13270807(x5/2 + x−5/2) + 27851098(x3/2 + x−3/2)

+39687211(x1/2 + x−1/2) ,

H
(3)
9 (x) = 26(x15/2 + x−15/2) + 6904(x13/2 + x−13/2)

+257348(x11/2 + x−11/2) + 3236514(x9/2 + x−9/2)

+18699598(x7/2 + x−7/2) + 59831120(x5/2 + x−5/2)

+121660400(x3/2 + x−3/2) + 170998970(x1/2 + x−1/2) ,

H
(3)
10 (x) = 716(x15/2 + x−15/2) + 69360(x13/2 + x−13/2)

+1717944(x11/2 + x−11/2) + 17331516(x9/2 + x−9/2)

+88704772(x7/2 + x−7/2) + 266850161(x5/2 + x−5/2)

+526995098(x3/2 + x−3/2) + 731312489(x1/2 + x−1/2) ,

H
(3)
11 (x) = 30(x17/2 + x−17/2) + 11020(x15/2 + x−15/2)

+582314(x13/2 + x−13/2) + 10602230(x11/2 + x−11/2)

+89528346(x9/2 + x−9/2) + 413833342(x7/2 + x−7/2)

+1179215768(x5/2 + x−5/2) + 2266727282(x3/2 + x−3/2)

+3108299684(x1/2 + x−1/2) ,

H
(3)
12 (x) = 948(x17/2 + x−17/2) + 125232(x15/2 + x−15/2)

+4318452(x13/2 + x−13/2) + 61670124(x11/2 + x−11/2)

+449427764(x9/2 + x−9/2) + 1903914844(x7/2 + x−7/2)

+5169507095(x5/2 + x−5/2) + 9691341866(x3/2 + x−3/2)

+13142378339(x1/2 + x−1/2) ,

H
(3)
13 (x) = 34(x19/2 + x−19/2) + 16496(x17/2 + x−17/2)

+1172832(x15/2 + x−15/2) + 29239874(x13/2 + x−13/2)

+342547768(x11/2 + x−11/2) + 2204219504(x9/2 + x−9/2)

+8656118128(x7/2 + x−7/2) + 22505083592(x5/2 + x−5/2)

+41221499060(x3/2 + x−3/2) + 55320776984(x1/2 + x−1/2) ,

H
(3)
14 (x) = 1212(x19/2 + x−19/2) + 209296(x17/2 + x−17/2)

+9589584(x15/2 + x−15/2) + 184678652(x13/2 + x−13/2)

+1833812848(x11/2 + x−11/2) + 10604121856(x9/2 + x−9/2)

+38955683296(x7/2 + x−7/2) + 97377061565(x5/2 + x−5/2)

+174547100714(x3/2 + x−3/2) + 231970177529(x1/2 + x−1/2) ,
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H
(3)
15 (x) = 38(x21/2 + x−21/2) + 23524(x19/2 + x−19/2)

+2165078(x17/2 + x−17/2) + 70882310(x15/2 + x−15/2)

+1104236060(x13/2 + x−13/2) + 9526203334(x11/2 + x−11/2)

+50192855128(x9/2 + x−9/2) + 173767515352(x7/2 + x−7/2)

+419069234222(x5/2 + x−5/2) + 736192496108(x3/2 + x−3/2)

+969443089694(x1/2 + x−1/2) .

local F2

By invoking the affine E8 Weyl symmetry of local 1
2 K3 as above, the invari-

ants of F2 can be related to those of F0 via

Ng
nB+kF (F0) = N g

nB+(k+n)F (F2) . (94)

Our computations of F2 invariants using the large N duality are in exact
agreement with this formula.
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