Advanced Studies in Pure Mathematics 42, 2004 Complex Analysis in Several Variables pp. 339–345

Nikulin's K3 surfaces, adiabatic limit of equivariant analytic torsion, and the Borcherds Φ -function

Ken-Ichi Yoshikawa

Abstract.

In this note, we prove that the "adiabatic limit" of the equivariant analytic torsion of a Nikulin's K3 surface converges to the value of norm of the Borcherds Φ -function at its period point after a certain renormalization.

§0. Introduction

Let $\pi: M \to B$ be a submersion of compact Riemannian manifolds. Let g_M and g_B be Riemannian metrics on M and B, respectively. For $0 < \epsilon < \infty$, set $g_{M,\epsilon} := g_M + \epsilon^{-1}\pi^*g_B$. Let $T(g_M)$ be a geometric object depending on the metric g_M . The limit of $T(g_{M,\epsilon})$ as $\epsilon \to 0$ is called the adiabatic limit of T. The adiabatic limits of various geometric objects have been studied by many authors. In this note, we study a variant of this problem. (Although we will not discuss here, the work of Berthomieu-Bismut ([B-B]) seems to be very related to our subject.)

Let $\pi: X \to \mathbb{P}^1$ be an elliptic K3 surface. Let $\iota: X \to X$ be a holomorphic involution acting non-trivially on canonical forms on X. Let κ_X and $\kappa_{\mathbb{P}^1}$ be Kähler classes on X and \mathbb{P}^1 , respectively. By Yau ([Ya]), the Kähler class $\kappa_{X,\epsilon} := \kappa_X + \epsilon^{-1} \pi^* \kappa_{\mathbb{P}^1}$ carries uniquely a Ricci-flat Kähler form ω_{ϵ} . We study the equivariant analytic torsion ([Bi]) of $(X, \iota, \omega_{\epsilon})$ as $\epsilon \to 0$ in the case where (X, ι) is a class of K3 surfaces studied by Nikulin ([N]). As a result, we recover the Borcherds Φ -function of dimension 26 restricted to a certain locus of dimension 10.

Although we talked a little about the adiabatic limit of the invariant introduced in [Yo] at the conference, we will focus on that subject in this short note.

Received March 27, 2002

We would like to thank Professor Jean-Michel Bismut for very stimulating discussion concerning the subject of this note during our stay at Université Paris-Sud in September, 2001.

$\S1$. Nikulin's K3 surfaces

Let X be a K3 surface with canonical bundle K_X . Let $\eta_X \in H^0(X, K_X)$ be a nowhere vanishing holomorphic 2-form on X. Then $H^2(X, \mathbb{Z})$ equipped with the intersection pairing is isometric to the K3-lattice

(1.1)
$$\mathbb{L}_{K3} := U \oplus U \oplus U \oplus E_8 \oplus E_8,$$

where $U = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$ and E_8 is the negative definite lattice associated with the Cartin matrix of type E_8 . An isometry $\phi \colon H^2(X, \mathbb{Z}) \cong \mathbb{L}_{K3}$ is called a marking of X, and the pair (X, ϕ) is called a marked K3 surface.

Set

(1.2)
$$\Omega := \{ [x] \in \mathbb{P}(\mathbb{L}_{K3} \otimes \mathbb{C}); \langle x, x \rangle = 0, \langle x, \bar{x} \rangle > 0 \}.$$

For a marked K3 surface (X, ϕ) , the point $[\phi(\eta_X)] \in \mathbb{P}(\mathbb{L}_{K3} \otimes \mathbb{C})$ is called the period of (X, ϕ) . Then one can verify that $[\phi(\eta_X)] \in \Omega$.

Definition 1.1. Let $\iota: X \to X$ be a holomorphic involution acting non-trivially on $H^0(X, K_X)$, i.e., $\iota^*\eta_X = -\eta_X$. The pair (X, ι) is called a *Nikulin's K3 surface* if the ι^* -invariant part of $H^2(X, \mathbb{Z})$ is isometric to the lattice $\Lambda := U \oplus E_8(2)$. Here $E_8(2)$ denotes the lattice of rank 8 whose intersection form is twice of that on E_8 .

Nikulin's K3 surfaces are constructed as follows:

Let $C_1, C_2 \subset \mathbb{P}^2$ be two smooth cubic curves in general position. Then C_1 meets C_2 transversally at 9 points; $C_1 \cap C_2 = \{p_1, p_2, \dots, p_9\}$. Let $\mathbb{P}^2[9] \to \mathbb{P}^2$ be the blowing-up of \mathbb{P}^2 at these 9 points. Then $\mathbb{P}^2[9]$ is the blowing-up of the base points of the pencil spanned by C_1, C_2 .

Fix homogeneous polynomials $f_1(z)$, $f_2(z)$ defining C_1 , C_2 , respectively. Then $\mathbb{P}^2[9]$ admits the elliptic fibration $\pi : \mathbb{P}^2[9] \to \mathbb{P}^1$ with fiber $\pi^{-1}(s:t) = \{[z] \in \mathbb{P}^2; sf_1(z) + tf_2(z) = 0\}$. Hence, $\mathbb{P}^2[9]$ is a rational elliptic surface.

Let $\widetilde{C}_1, \widetilde{C}_2 \subset \mathbb{P}^2[9]$ be the proper transform of C_1, C_2 , respectively. Then the divisor $\widetilde{C}_1 + \widetilde{C}_2$ is the member of the double anti-canonical system $|-2K_{\mathbb{P}^2}[9]|$. Let $X_{C_1+C_2}$ be the double covering of $\mathbb{P}^2[9]$ with branch divisor $\widetilde{C}_1 + \widetilde{C}_2$. Let $\iota_{C_1+C_2}: X_{C_1+C_2} \to X_{C_1+C_2}$ be the non-trivial covering transformation. By the canonical bundle formula, $X_{C_1+C_2}$ is a K3 surface. By the rationality of $\mathbb{P}^2[9]$, $\iota_{C_1+C_2}$ acts non-trivially on $H^0(X_{C_1+C_2}, K_{X_{C_1+C_2}})$. Since the fixed point set of $\iota_{C_1+C_2}$ is identified with $C_1 + C_2$, it follows from Nikulin's classification of the fixed point set ([N, Th. 4.2.2]) that $(X_{C_1+C_2}, \iota_{C_1+C_2})$ is a Nikulin's K3 surface.

340

Let $\pi_{C_1+C_2} \colon X_{C_1+C_2} \to \mathbb{P}^1$ be the elliptic fibration associated to the linear system $|\widetilde{C}_1|$. Since the image of every member of $|\widetilde{C}_1|$ by $\iota_{C_1+C_2}$ is again a member of $|\widetilde{C}_1|$, there exists an involution $i_{\mathbb{P}^1}$ on \mathbb{P}^1 such that

(1.3)
$$\begin{array}{ccc} X_{C_1+C_2} & \xrightarrow{p} & \mathbb{P}^2[9] \\ \pi_{C_1+C_2} \downarrow & & \downarrow \pi \\ & & \mathbb{P}^1 & \xrightarrow{q} & \mathbb{P}^1 \end{array}$$

is a commutative diagram, where $p: X_{C_1+C_2} \to \mathbb{P}^2[9] = X_{C_1+C_2}/\iota_{C_1+C_2}$ and $q: \mathbb{P}^1 \to \mathbb{P}^1 = \mathbb{P}^1/i_{\mathbb{P}^1}$ are the natural projections.

§2. The moduli space of Nikulin's K3 surfaces

Define an involution I_{Λ} on \mathbb{L}_{K3} by

(2.1)
$$I_{\Lambda}(a, b, c, x, y) = (a, -b, -c, y, x)$$
 $(a, b, c \in U, x, y \in E_8).$

Then Λ is the invariant part of I_{Λ} . Let L be the anti-invariant part of I_{Λ} . Then L is the orthogonal complement of Λ in \mathbb{L}_{K3} , and

$$(2.2) L = U \oplus U \oplus E_8(2).$$

Let (X, ι) be a Nikulin's K3 surface. Since the embedding $\Lambda \hookrightarrow \mathbb{L}_{K3}$ is unique up to an automorphism of \mathbb{L}_{K3} , there exists a marking ϕ of X such that $\phi \circ \iota^* \circ \phi^{-1} = I_{\Lambda}$. A marking with this property is called a marking of a Nikulin's K3 surface. By Definition 1.1, the period of a marked Nikulin's K3 surface lies in the following subset of Ω :

(2.3)
$$\Omega_{\Lambda} := \{ [x] \in \mathbb{P}(L \otimes \mathbb{C}); \langle x, x \rangle = 0, \langle x, \bar{x} \rangle > 0 \}.$$

Then Ω_{Λ} consists of two connected components Ω_{Λ}^{\pm} , each of which is isomorphic to a symmetric bounded domain of type IV of dimension 10. However, the period mapping omits the divisor \mathcal{D}_{Λ} of Ω_{Λ} described as follows: For $l \in L$ with $l^2 := \langle l, l \rangle < 0$, set $H_l := \{ [x] \in \Omega_{\Lambda}; \langle x, l \rangle = 0 \}$. Let \mathcal{D}_{Λ} be the discriminant locus of Ω_{Λ} :

(2.4)
$$\mathcal{D}_{\Lambda} := \bigcup_{d \in L, \, d^2 = -2} H_d.$$

Let O(L) be the isometry group of the lattice L. Then O(L) acts naturally on Ω_{Λ} and preserves \mathcal{D}_{Λ} . In [Yo, Th. 1.8], we proved:

Theorem 2.1. The coarse moduli space of Nikulin's K3 surfaces is isomorphic to the analytic space $\mathcal{M}^0_{\Lambda} := (\Omega_{\Lambda} \setminus \mathcal{D}_{\Lambda}) / O(L)$ via the period mapping.

K.-I. Yoshikawa

§3. The restriction of the Borcherds Φ -function to Ω_{Λ}

In [Bo], Borcherds introduced a remarkable automorphic form on the 26-dimensional symmetric bounded domain of type IV associated with the even unimodular lattice $II_{2,26} := U \oplus U \oplus E_8 \oplus E_8 \oplus E_8$. His automorphic form is called the *Borcherds* Φ -function and is denoted by Φ . We refer to [Bo, Th. 10.1 and §10 Example 2] for more details about the Borcherds Φ -function.

Since $L \subset II_{2,26}$, one can restrict the Borcherds Φ -function to Ω_{Λ} . This automorphic form on Ω_{Λ} is denoted by Φ_{Λ} :

(3.1)
$$\Phi_{\Lambda} := \Phi|_{\Omega_{\Lambda}}.$$

Then we proved in [Yo, Lemma 8.5] that Φ_{Λ} is an automorphic form on Ω_{Λ} of weight 12 with zero divisor \mathcal{D}_{Λ} .

Fix a vector $\ell \in L \otimes \mathbb{R}$ such that $\ell^2 \geq 0$. The pointwise length of Φ_{Λ} is defined by

(3.2)
$$\|\Phi_{\Lambda}\|^{2}([z]) := \left(\frac{\langle z, \bar{z} \rangle_{L}}{|\langle z, \ell \rangle_{L}|^{2}}\right)^{12} |\Phi_{\Lambda}([z])|^{2} \qquad ([z] \in \Omega_{\Lambda}).$$

Then $\|\Phi_{\Lambda}\|^2$ is an O(L)-invariant C^{∞} -function on Ω_{Λ} and is regarded as a function on \mathcal{M}^0_{Λ} .

§4. Equivariant analytic torsion of Nikulin's K3 surfaces

In [Bi], Bismut established the foundations of the theory of equivariant analytic torsion and equivariant Quillen metrics. Here, we recall his construction in the simplest case. We refer to [Bi] for more details about equivariant analytic torsion and equivariant Quillen metrics.

Let Y be a compact Kähler manifold. Let $\theta: Y \to Y$ be a holomorphic involution. Let $\mathbb{Z}_2 \subset \operatorname{Aut}(Y)$ be the subgroup generated by θ . Let γ_Y be a \mathbb{Z}_2 -invariant Kähler metric on Y. Let \Box_q be the $\overline{\partial}$ -Laplacian acting on (0, q)-forms on Y with respect to γ_Y . Let $\sigma(\Box_q)$ be the spectrum of \Box_q . For $\lambda \in \sigma(\Box_q)$, let $E_q(\lambda)$ be the vector space of eigenforms of \Box_q with eigenvalue λ . Then \mathbb{Z}_2 preserves $E_q(\lambda)$.

For $g \in \mathbb{Z}_2$ and $s \in \mathbb{C}$, set $\zeta_q(g)(s) := \sum_{\lambda \in \sigma(\Box_q) \setminus \{0\}} \operatorname{Tr}(g|_{E_q(\lambda)}) \lambda^{-s}$. Classically, $\zeta_q(g)(s)$ converges absolutely when $\operatorname{Re} s > \dim Y$, admits a meromorphic continuation to \mathbb{C} , and is holomorphic at s = 0.

Definition 4.1. For $g \in \mathbb{Z}_2$, the equivariant analytic torsion of (Y, γ_Y) is defined by

(4.1)
$$\log \tau_{\mathbb{Z}_2}(Y, \gamma_Y)(g) := \sum_{q \ge 0} (-1)^{q+1} \zeta'_q(g)(0).$$

342

When g = 1, $\tau_{\mathbb{Z}_2}(Y, \gamma_Y)(1)$ coincides with the Ray-Singer analytic torsion of (Y, γ_Y) and is denoted by $\tau(Y, \gamma_Y)$.

§5. The adiabatic limit of $\tau_{\mathbb{Z}_2}$ for Nikulin's K3 surfaces

Let (X, ι) be a Nikulin's K3 surface. Let $C_1 + C_2$ be the set of fixed points of ι . Then C_1 and C_2 are mutually disjoint elliptic curves. Let $[(X, \iota)] \in \mathcal{M}^0_\Lambda$ be the O(L)-orbit of the period of (X, ι) . By the O(L)-invariance of $\|\Phi_\Lambda\|$, the value $\|\Phi_\Lambda([X, \iota])\|$ makes sense.

Let $\pi: X \to \mathbb{P}^1$ be the elliptic fibration associated with the free linear system $|C_1|$. Then the image of an arbitrary fiber of π by ι is again a fiber of π , and ι induces an involution $i_{\mathbb{P}^1}$ on \mathbb{P}^1 verifying (1.3).

Let κ_X be an ι -invariant Kähler class on X. Let $\kappa_{\mathbb{P}^1}$ be a Kähler class on \mathbb{P}^1 . For $0 < \epsilon < +\infty$, set

(5.1)
$$\kappa_{\epsilon} := \kappa_X + \epsilon^{-1} \pi^* \kappa_{\mathbb{P}^1}.$$

Then $\{\kappa_{\epsilon}\}_{0 < \epsilon < +\infty}$ is a family of ι -invariant Kähler classes on X. Notice that the Kähler class on the fiber induced from κ_{ϵ} is independent of ϵ . By Calabi-Yau ([Ya]), there exists uniquely an ι -invariant Ricci-flat Kähler form ω_{ϵ} in κ_{ϵ} :

(5.2)
$$\operatorname{Ric}(\omega_{\epsilon}) \equiv 0, \quad \iota^* \omega_{\epsilon} = \omega_{\epsilon}, \quad [\omega_{\epsilon}] = \kappa_{\epsilon} \quad (0 < \epsilon < +\infty).$$

Let $\operatorname{Vol}(X, \omega_{\epsilon}) := \int_{X} \omega_{\epsilon}^2/2!$ be the volume of (X, ω_{ϵ}) . Let $F \in H_2(X, \mathbb{Z})$ be the class of fibers of $\pi \colon X \to \mathbb{P}^1$. Set $\operatorname{Vol}(F, \kappa|_F) := \int_F \kappa|_F$ and $\operatorname{Vol}(\mathbb{P}^1, \kappa_{\mathbb{P}^1}) := \int_{\mathbb{P}^1} \kappa_{\mathbb{P}^1}$. By (5.1) and the projection formula, we get

(5.3)
$$\operatorname{Vol}(X, \omega_{\epsilon}) = \operatorname{Vol}(X, \kappa) + \epsilon^{-1} \operatorname{Vol}(F, \kappa|_F) \operatorname{Vol}(\mathbb{P}^1, \kappa_{\mathbb{P}^1}).$$

The following is the main result of this note:

Theorem 5.1. There exists a constant $C \neq 0$ depending only on the lattice Λ such that

(5.4)
$$\lim_{\epsilon \to 0} \tau_{\mathbb{Z}_2}(X, \omega_{\epsilon})(\iota) \cdot \operatorname{Vol}(X, \omega_{\epsilon}) = C \|\Phi_{\Lambda}([(X, \iota)])\|^{-\frac{1}{6}}$$

Proof. For $\tau \in \mathbb{H}$, let $\Delta(\tau) = e^{2\pi i \tau} \prod_{n>0} (1 - e^{2\pi i n \tau})^{24}$ be the Jacobi- Δ function. Set $\|\Delta(\tau)\|^2 := (\operatorname{Im} \tau)^{12} |\Delta(\tau)|^2$, which is a $SL_2(\mathbb{Z})$ -invariant function on \mathbb{H} . Let $[C_i] \in \mathbb{H}/SL_2(\mathbb{Z})$ be the period of the elliptic curve C_i . By the $SL_2(\mathbb{Z})$ -invariance of $\|\Delta(\tau)\|$, the value $\|\Delta([C_i])\|$ is independent of the choice of a representative of $[C_i]$ in \mathbb{H} .

By [Yo, Th. 5.2 and Th. 8.7], there exists a constant $C_{\Lambda} \neq 0$ depending only on the lattice Λ such that

(5.5)
$$\tau_{\mathbb{Z}_{2}}(X,\omega_{\epsilon})(\iota) \cdot \operatorname{Vol}(X,\omega_{\epsilon}) \prod_{i=1}^{2} \tau(C_{i},\omega_{\epsilon}|_{C_{i}}) \cdot \operatorname{Vol}(F,\kappa_{\epsilon}|_{F})$$
$$= C_{\Lambda} \|\Phi_{\Lambda}([(X,\iota)])\|^{-\frac{1}{6}} \cdot \prod_{i=1}^{2} \|\Delta([C_{i}])\|^{-\frac{1}{6}}.$$

By [G-W, Th. 5.6], the family of Kähler forms $\{\omega_{\epsilon}|_{C_i}\}_{0<\epsilon<1}$ converges in arbitrary C^k -topology to the *flat* Kähler form ω_{C_i} on C_i with Kähler class $\kappa|_{C_i}$. Hence, we deduce from the anomaly formula for Quillen metrics that

(5.6)
$$\lim_{\epsilon \to 0} \tau(C_i, \omega_{\epsilon}|_{C_i}) = \tau(C_i, \omega_{C_i}), \quad \operatorname{Vol}(F, \kappa_{\epsilon}|_F) = \operatorname{Vol}(C_i, \omega_{C_i}).$$

Since ω_{C_i} is flat, Kronecker's limit formula yields that

(5.7)
$$\tau(C_i, \omega_{C_i}) \cdot \operatorname{Vol}(C_i, \omega_{C_i}) = \|2^{12} \Delta([C_i])\|^{-\frac{1}{6}}$$

The result follows from (5.5), (5.6), (5.7).

References

- [B-B] A. Berthomieu and J.-M. Bismut, Quillen metrics and higher analytic torsion forms, J. Rein. Angew. Math., 457 (1994), 85–184.
- [Bi] J.-M. Bismut, Equivariant immersions and Quillen metrics, J. Differential Geom., 41 (1995), 53–157.
- [Bo] R.E. Borcherds, Automorphic forms on $O_{s+2,2}(\mathbb{R})$ and infinite products, Invent. Math., **120** (1995), 161–213.
- [G-W] M. Gross and P.M.H. Wilson, Large complex structure limits of K3 surfaces, J. Differential Geom., 55 (2000), 475–546.
- [N] V.V. Nikulin, Factor groups of groups of automorphisms of hyperbolic forms with respect to subgroups generated by 2-reflections, J. Soviet Math., 22 (1983), 1401–1476.
- [Ya] S.-T. Yau, On the Ricci curvature of a compact Kähler manifold and the complex Monge-Ampère Equation, I, Comm. Pure Appl. Math., 31 (1978), 339-411.
- [Yo] K.-I. Yoshikawa, K3 surfaces with involution, equivariant analytic torsion, and automorphic forms on the moduli space, Invent. Math. (to appear).

344

Q.E.D.

Graduate School of Mathematical Sciences University of Tokyo Tokyo 153-8914 JAPAN yosikawa@ms.u-tokyo.ac.jp