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Fixed points of polynomial automorphisms of C"

Tetsuo Ueda

Abstract.

We study the fixed point indices of some polynomial automor-
phisms of C™. In particular, it is shown that, for a composition of
generalized Hénon maps, the sum of the fixed point indices vanishes.
A consequence is that a generic polynomial automorphism of C? has
a saddle fixed point.

§1. Statement of the results

A bijective map F' of the space of n complex variables C" onto itself
defined by polynomials fi(z),..., fo(z), 2 = (z1,... ,Zy), is said to be
a polynomial automorphism of C™, The set Aut (C") of all polynomial
automorphisms of C™ forms a group under composition. Two maps
Fi,F; € Aut(C"™) are conjugate if there exists a map G € Aut (C")
such that F, = G 1o Fy o G.

For a fixed point of a holomorphic map of C™ to itself, holomorphic
Lefschetz index can be defined (see §2, also Griffiths-Harris [2]). We
will study the indices for the fixed points of polynomial automorphisms,
since they are important invariants under conjugation.

For the case of two variables, Friedland-Milnor [1] showed that any
map in Aut (C?) is conjugate to either (1) an affine map, (2) an ele-
mentary map or (3) a composition F, o --- o F} of generalized Hénon
maps

FH(Iay) = (yvpu(y) —6ux), p=1,...,m,

where p,,(y) are polynomials of degree > 2 and §,, # 0.

We denote by Hy the set consisting of compositions of generalized
Hénon maps, and by H the set of all maps conjugate to one of the maps
in Ho.
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Let Fix (F') denote the set of all fixed points of F. It was shown in
[1] that, if F € Hy and deg F' = k, then F has k fixed points counting
multiplicity. i.e., Z Mult (F,a) = k.
a€Fix(F)

Now we have

Theorem 1. IfF € H, then we have
> Ind(F,a) =0.

a€Fix(F)

We note that the formula fails in general for maps ¢ H. A proof
of this formula for a generalized Hénon map is given in [3]. A similar
result for holomorphic maps on projective spaces is given in [4].

Corollary 1. Let F € H and suppose that F' has only simple fixed
points a; (j =1,---,k). Let Aj1, ;2 denote the eigenvalues of F'(a;).
Then we have

k
1 1
> (=t ) =

Jj=1

Corollary 2. Let F € H and 6 = det F’. Suppose that |0| # 1 or
0 =1. Then (1) F has either a saddle fired point or a multiple fixed
point, and (2) F has infinitely many periodic points that are either
saddle or multiple.

The condition on § cannot be dropped as the following example
shows.
Example Let F be a Hénon map defined by
F(‘T’y) = (y?y2 +c— 51‘)

Then F has at least one saddle fixed point if and only if (é,¢) ¢ AUT,
where A = {(§ +1)? — 4c = 0} and

= {|5| =1, § is real andy/2(1 + Red) — 1 <

We can generalize the index formula to maps of certain class of
polynomial automorphisms of C™:

Theorem 2. Let F = F,,0---0F] be the composition of shift-like
maps F, : C* - C" (u=1,...,m) defined by

<

1+ Red
5 .

SCTNe

Fu(zy,...,zp) = (T2, .., Tn, 0,21 + pu(x2, ... ,Zpn)),
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where p,, are polynomials in n — 1 variables. Suppose that there exist
v (2 <v < n) such that

P,(za,... ,zp) = cua:,’f“ + (lower order terms), ¢, # 0.
Then we have ), cpig(r) Ind (F,a) = 0.

We remark that, for general (compositions of) shift-like maps, the
set Fix (F') may be non-isolated. Even if Fix (F) is isolated, the index
formula does not necessarily hold.

Example Consider the map F : C* — C2 defined by

F(xv Y, Z) = (ya Z,JI + (y - 2)2)

If § # 1, then Fix (F) = {0} and Ind (F,0) = 1/(1 —4§). If § = 1, then
Fix(F)={z=y=2z2}.

§2. Multiplicity and Index

Let G : C* — C" be a holomorphic map and suppose that a is an
isolated zero of G. Then there exist neighborhoods U of a and V of
0 such that G71(0) N U = {a} and that G|U : U — V is a branched
cover. We define the zero multiplicity mult (G, a) of G at a to be the
sheet number of this map G|U. We call that a is a simple zero of G if
mult (G,a) = 1, or in other words, if det G'(a) # 0.

If a is a simple zero, we define the zero index by ind (G,a) =
1/det G’(a). For the general case ind (G, a) is defined as follows: We
set w =dxy A--- Adx, and

“$”2n Z( D) YZdT A - -dTy - A dTp

Where ¢, = /-1 (n — )l/(2m)™. We define

ind (G, a) = /E)B(G*n) Aw

where B denotes a ball with center a of sufficiently small radius so that
a is the only zero of G in B.
We will apply the following lemma in the proof of Theorem 2.

Lemma 3. Let G(z) = (g1(x),...,gn(z)) be a polynomial map of
C" to C". Suppose that g, is of the form

gu(z) = c,,x’;'zy) + (lower order terms), k, >2,¢, #0, (v=1,...,n).

where o is a permutation of {1,... ,n}. then ZaEG'l(O) ind (G, a) = 0.
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To see this, we note that

Z ind(G,a)———/ (G*n) Aw,

a€G—1(0) 9B

where B is a sufficiently large ball in C". By estimating the integral,
we conclude the lemma.

Now let F' : C" — C" be a holomorphic map and suppose that a
is an isolated fixed point of F. This is equivalent to say that a is an
isolated zero of the map Id — F. We define the fixed point multiplicity
and the fixed point index by )

Mult (F,a) = mult (Id — F,a), Ind(F,a)=ind(Id - F,a).

§3. Outline of the proof

3.1 To prove Theorem 2, let us first introduce the concept of vectorial
shift-like map. We denote the points in C™" as (m,n)-matrices and

also as a row of column vectors: & = (&;) = (&1,-.-,6n)- A map
® € Aut (C™") is said to be a vectorial shift-like map if it is of the form

&1y, 8n) = (&2, &n, ALl + Q(&2, - ,6n))

where A € GL(m, C) and @ is a column vector of polynomials in m(n—1)
variables &;; (1 <1 <m;2<j<n).

The fixed points of & are of the form b = (b, ... ,b), where b € C™
are the roots of the equation A¢ + Q(§, ... ,£) = £&. We define a linear

mapL:(glw" 7§n)H(n17"' ,'l”[n) by
nu:&/_&/-{-l(’/:l,...,n-l) and 7711':571

Then (Id — @) o L~! takes the form (71,... ,7mn) = (N1, s Mne1,Mn —
Am+--+n0,) —Q(m2+ -+ 1ny. .. ,Mn)). The sum of the zero point
indices of this map is equal to that of the map n — n—An—Q(n,...,n).
If this satisfies the condition of Lemma 3, then } ;e gy, () Ind (2, b) = 0.

3.2 Let F, : C" — C" be holomorphic maps (u = 1,...,m), and let
F = F,, 0---0 F} be their composition. To study the fixed points of F,
we consider the map F': C™™ — C™" defined as follows. We denote the
points in C™" by a (m,n)-matrix and also as a column of row vectors :
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& = (zij) = Y(x1y-.. , ). We define F' by

T Fm(mm)
. | oz Fi(z1)
F@)y=F| " |= ,

Tm Fm—l(zm—l)

There is a one-to-one correspondence between the sets Fix (F') and
Fix (F). In fact, if a is in Fix (F), then the point G = (a1, ... , @) with
a1 = a,a, = F,_1(ay_1) (0 = 2,...,m) is in Fix (F). Conversely, if
a="1ay,...,ay) is in Fix (F), then a; is in Fix (F).

Further we can prove that, if a € Fix(F) and 4 € Fix (F) are
corresponding fixed points, then

Mult (F,a) = Mult (F,4), and Ind(F,a) = Ind(F,a).

3.3 Now we apply the above obserlzations to a composition F' = F,, o
--- o Fy of shift-like maps F,,. Then F(&) takes the form

Tm2 e Tmn 6mmm1 =+ pm(xm% ey xmn)
T2 0 Tin o111 + p1(T12,- - , T1n)
ITm-1,2 "~°° Tm-1,n 6m—1-'rm—1,1 + pm—l(mm—l,% ceey -Tm-—l,n)

We can reduce F to a vectorial shift-like map by conjugation. To see
this, consider the linear map M : C™" 3 (z;;) — (&;) € C™" defined
by &ij = T[i—;41),; Where [£] denotes the number such that 1 < [{] <m
and [¢] = ¢ mod m. Then the conjugate ® = M o Fo M~ is a vectorial
shift-like map ®(&1,...,&) = (&2,.-. ,&n, Al1 + Q(&2, ... ,&n)), where

Oj1-n)éf1-n),1 + Pli-n)(§2=n},2>- -+ +&m,n)
A&i+Q(&a, ... ,én)= O-rifia-ni +P[2—:n](§[3—n],2’ eobin)
Oim-n)éim=n),1 + p[m-r;] (€1-n),21- -~ s&€m—1n)
The map n —n— An— Q(n, ..., n) takes the form
m M = O1—n)M1-n] = P—n](M2=n]>- - - >Mm)
2 N2 — Oj2—n)M2—n] — Pl2—n](NB—n]s- -+ +7M1)

Nm Nm = Ofm—n)Mm-n] — Plm—n](Mi=n]>- -+ »Mm—1)
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Under the condition of Theorem 2, this map satisfies the condition of
Lemma 3. Thus Theorem 2 is proved.

References

[1] S. Friedland and J. Milnor, Dynamical properties of plane polynomial
automorphisms, Ergod. Th. and Dynam. Sys.,9 (1989),67-99.

[2] Ph. Griffiths and J. Harris, Principles of Algebraic Geometry, John Wiley
& Sons, 1978.

[3] S. Morosawa, Y. Nishimura, M. Taniguchi and T. Ueda, Holomorphic
Dynamics, Cambridge U. Press, 2000.

[4] T. Ueda, Complex dynamics on projective spaces — index formula for
fixed points. Dynamical systems and chaos, Vol. 1, 252-259, World Sci.
Publishing, 1995.

Division of Mathematics

Faculty of Integrated Human Studies
Kyoto University

Kyoto 606-8501

Japan

Current address:
Department of Mathematics
Kyoto University

Kyoto 606-8502

Japan



