Advanced Studies in Pure Mathematics 42, 2004 Complex Analysis in Several Variables pp. 319–324

Fixed points of polynomial automorphisms of \mathbb{C}^n

Tetsuo Ueda

Abstract.

We study the fixed point indices of some polynomial automorphisms of \mathbb{C}^n . In particular, it is shown that, for a composition of generalized Hénon maps, the sum of the fixed point indices vanishes. A consequence is that a generic polynomial automorphism of \mathbb{C}^2 has a saddle fixed point.

§1. Statement of the results

A bijective map F of the space of n complex variables \mathbf{C}^n onto itself defined by polynomials $f_1(x), \ldots, f_n(x), x = (x_1, \ldots, x_n)$, is said to be a polynomial automorphism of \mathbf{C}^n . The set $\operatorname{Aut}(\mathbf{C}^n)$ of all polynomial automorphisms of \mathbf{C}^n forms a group under composition. Two maps $F_1, F_2 \in \operatorname{Aut}(\mathbf{C}^n)$ are conjugate if there exists a map $G \in \operatorname{Aut}(\mathbf{C}^n)$ such that $F_2 = G^{-1} \circ F_1 \circ G$.

For a fixed point of a holomorphic map of \mathbb{C}^n to itself, holomorphic Lefschetz index can be defined (see §2, also Griffiths-Harris [2]). We will study the indices for the fixed points of polynomial automorphisms, since they are important invariants under conjugation.

For the case of two variables, Friedland-Milnor [1] showed that any map in $\operatorname{Aut}(\mathbb{C}^2)$ is conjugate to either (1) an affine map, (2) an elementary map or (3) a composition $F_m \circ \cdots \circ F_1$ of generalized Hénon maps

$$F_{\mu}(x,y) = (y, p_{\mu}(y) - \delta_{\mu}x), \quad \mu = 1, \dots, m,$$

where $p_{\mu}(y)$ are polynomials of degree ≥ 2 and $\delta_{\mu} \neq 0$.

We denote by H_0 the set consisting of compositions of generalized Hénon maps, and by H the set of all maps conjugate to one of the maps in H_0 .

Received April 11, 2002.

320 T. Ueda

Let Fix (F) denote the set of all fixed points of F. It was shown in [1] that, if $F \in H_0$ and deg F = k, then F has k fixed points counting multiplicity. i.e., $\sum_{a \in Fix(F)} \text{Mult } (F, a) = k.$

Now we have

Theorem 1. If $F \in H$, then we have

$$\sum_{a \in \text{Fix}(F)} \text{Ind}(F, a) = 0.$$

We note that the formula fails in general for maps $\notin H$. A proof of this formula for a generalized Hénon map is given in [3]. A similar result for holomorphic maps on projective spaces is given in [4].

Corollary 1. Let $F \in H$ and suppose that F has only simple fixed points a_j $(j = 1, \dots, k)$. Let $\lambda_{j,1}, \lambda_{j,2}$ denote the eigenvalues of $F'(a_j)$. Then we have

$$\sum_{j=1}^{k} \left(\frac{1}{1 - \lambda_{j,1}} + \frac{1}{1 - \lambda_{j,2}} \right) = k,$$

Corollary 2. Let $F \in H$ and $\delta = \det F'$. Suppose that $|\delta| \neq 1$ or $\delta = 1$. Then (1) F has either a saddle fixed point or a multiple fixed point, and (2) F has infinitely many periodic points that are either saddle or multiple.

The condition on δ cannot be dropped as the following example shows.

Example Let F be a Hénon map defined by

$$F(x,y) = (y, y^2 + c - \delta x).$$

Then F has at least one saddle fixed point if and only if $(\delta, c) \notin \Delta \cup \Gamma$, where $\Delta = \{(\delta + 1)^2 - 4c = 0\}$ and

$$\Gamma = \left\{ |\delta| = 1, \ \frac{c}{\delta} \text{ is real and} \sqrt{2(1+\operatorname{Re}\delta)} - 1 \leq \frac{c}{\delta} < \frac{1+\operatorname{Re}\delta}{2} \right\}.$$

We can generalize the index formula to maps of certain class of polynomial automorphisms of \mathbb{C}^n :

Theorem 2. Let $F = F_m \circ \cdots \circ F_1$ be the composition of shift-like maps $F_{\mu}: \mathbb{C}^n \to \mathbb{C}^n$ $(\mu = 1, \dots, m)$ defined by

$$F_{\mu}(x_1,\ldots,x_n)=(x_2,\ldots,x_n,a_{\mu}x_1+p_{\mu}(x_2,\ldots,x_n)),$$

where p_{μ} are polynomials in n-1 variables. Suppose that there exist ν $(2 \le \nu \le n)$ such that

$$P_{\mu}(x_2,\ldots,x_n) = c_{\mu}x_{\nu}^{k_{\mu}} + \text{(lower order terms)}, \ c_{\mu} \neq 0.$$

Then we have $\sum_{a \in Fix(F)} Ind(F, a) = 0.$

We remark that, for general (compositions of) shift-like maps, the set Fix(F) may be non-isolated. Even if Fix(F) is isolated, the index formula does not necessarily hold.

Example Consider the map $F: \mathbb{C}^3 \to \mathbb{C}^3$ defined by

$$F(x, y, z) = (y, z, \delta x + (y - z)^{2}).$$

If $\delta \neq 1$, then Fix $(F) = \{0\}$ and Ind $(F,0) = 1/(1-\delta)$. If $\delta = 1$, then Fix $(F) = \{x = y = z\}$.

§2. Multiplicity and Index

Let $G: \mathbb{C}^n \to \mathbb{C}^n$ be a holomorphic map and suppose that a is an isolated zero of G. Then there exist neighborhoods U of a and V of 0 such that $G^{-1}(0) \cap U = \{a\}$ and that $G|U:U\to V$ is a branched cover. We define the zero multiplicity mult (G,a) of G at a to be the sheet number of this map G|U. We call that a is a simple zero of G if mult (G,a)=1, or in other words, if $\det G'(a)\neq 0$.

If a is a simple zero, we define the zero index by $\operatorname{ind}(G, a) = 1/\det G'(a)$. For the general case $\operatorname{ind}(G, a)$ is defined as follows: We set $\omega = dx_1 \wedge \cdots \wedge dx_n$ and

$$\eta = \frac{c_n}{\|x\|^{2n}} \sum_{i=1}^n (-1)^{i-1} \overline{x}_i d\overline{x}_1 \wedge \cdots \widehat{dx}_i \cdots \wedge d\overline{x}_n$$

Where $c_n = \sqrt{-1}^{n^2} (n-1)!/(2\pi)^n$. We define

$$\operatorname{ind}\left(G,a\right)=\int_{\partial B}(G^{*}\eta)\wedge\omega$$

where B denotes a ball with center a of sufficiently small radius so that a is the only zero of G in B.

We will apply the following lemma in the proof of Theorem 2.

Lemma 3. Let $G(x) = (g_1(x), \ldots, g_n(x))$ be a polynomial map of \mathbb{C}^n to \mathbb{C}^n . Suppose that g_{ν} is of the form

$$g_{\nu}(x) = c_{\nu} x_{\sigma(\nu)}^{k_{\nu}} + \text{(lower order terms)}, \quad k_{\nu} \ge 2, c_{\nu} \ne 0, \quad (\nu = 1, ..., n).$$

where σ is a permutation of $\{1,\ldots,n\}$. then $\sum_{a\in G^{-1}(0)}\operatorname{ind}(G,a)=0$.

322 T. Ueda

To see this, we note that

$$\sum_{a \in G^{-1}(0)} \operatorname{ind} (G, a) = \int_{\partial B} (G^* \eta) \wedge \omega,$$

where B is a sufficiently large ball in \mathbb{C}^n . By estimating the integral, we conclude the lemma.

Now let $F: \mathbb{C}^n \to \mathbb{C}^n$ be a holomorphic map and suppose that a is an isolated fixed point of F. This is equivalent to say that a is an isolated zero of the map Id - F. We define the fixed point multiplicity and the fixed point index by

$$\operatorname{Mult}(F,a) = \operatorname{mult}(Id - F,a), \quad \operatorname{Ind}(F,a) = \operatorname{ind}(Id - F,a).$$

§3. Outline of the proof

3.1 To prove Theorem 2, let us first introduce the concept of vectorial shift-like map. We denote the points in \mathbf{C}^{mn} as (m, n)-matrices and also as a row of column vectors: $\hat{\xi} = (\xi_{ij}) = (\xi_1, \dots, \xi_n)$. A map $\Phi \in \operatorname{Aut}(\mathbf{C}^{mn})$ is said to be a vectorial shift-like map if it is of the form

$$\Phi(\xi_1,\ldots,\xi_n)=(\xi_2,\ldots,\xi_n,A\xi_1+Q(\xi_2,\ldots,\xi_n))$$

where $A \in GL(m, \mathbb{C})$ and Q is a column vector of polynomials in m(n-1) variables ξ_{ij} $(1 \le i \le m; 2 \le j \le n)$.

The fixed points of Φ are of the form $\hat{b} = (b, \ldots, b)$, where $b \in \mathbb{C}^m$ are the roots of the equation $A\xi + Q(\xi, \ldots, \xi) = \xi$. We define a linear map $L: (\xi_1, \ldots, \xi_n) \mapsto (\eta_1, \ldots, \eta_n)$ by

$$\eta_{\nu} = \xi_{\nu} - \xi_{\nu+1} \ (\nu = 1, \dots, n-1)$$
 and $\eta_n = \xi_n$.

Then $(Id - \Phi) \circ L^{-1}$ takes the form $(\eta_1, \ldots, \eta_n) \mapsto (\eta_1, \ldots, \eta_{n-1}, \eta_n - A(\eta_1 + \cdots + \eta_n) - Q(\eta_2 + \cdots + \eta_n, \ldots, \eta_n))$. The sum of the zero point indices of this map is equal to that of the map $\eta \mapsto \eta - A\eta - Q(\eta, \ldots, \eta)$. If this satisfies the condition of Lemma 3, then $\sum_{\hat{b} \in \text{Fix}} (\Phi) \text{Ind} (\Phi, \hat{b}) = 0$.

3.2 Let $F_{\mu}: \mathbb{C}^n \to \mathbb{C}^n$ be holomorphic maps $(\mu = 1, \dots, m)$, and let $F = F_m \circ \cdots \circ F_1$ be their composition. To study the fixed points of F, we consider the map $\hat{F}: \mathbb{C}^{mn} \to \mathbb{C}^{mn}$ defined as follows. We denote the points in \mathbb{C}^{mn} by a (m, n)-matrix and also as a column of row vectors:

 $\hat{x} = (x_{ij}) = {}^t(x_1, \ldots, x_m)$. We define \hat{F} by

$$\hat{F}(\hat{x}) = \hat{F} \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_m \end{pmatrix} = \begin{pmatrix} F_m(x_m) \\ F_1(x_1) \\ \vdots \\ F_{m-1}(x_{m-1}) \end{pmatrix}.$$

There is a one-to-one correspondence between the sets Fix (F) and Fix (\hat{F}) . In fact, if a is in Fix (F), then the point $\hat{a} = {}^{t}(a_1, \ldots, a_m)$ with $a_1 = a, a_{\mu} = F_{\mu-1}(a_{\mu-1})$ $(\mu = 2, \ldots, m)$ is in Fix (\hat{F}) . Conversely, if $\hat{a} = {}^{t}(a_1, \ldots, a_m)$ is in Fix (\hat{F}) , then a_1 is in Fix (F).

Further we can prove that, if $a \in \text{Fix}(F)$ and $\hat{a} \in \text{Fix}(\hat{F})$ are corresponding fixed points, then

$$\operatorname{Mult}(F, a) = \operatorname{Mult}(\hat{F}, \hat{a}), \quad \operatorname{and} \quad \operatorname{Ind}(F, a) = \operatorname{Ind}(\hat{F}, \hat{a}).$$

3.3 Now we apply the above obserbations to a composition $F = F_m \circ \cdots \circ F_1$ of shift-like maps F_{μ} . Then $\hat{F}(\hat{x})$ takes the form

$$\begin{pmatrix} x_{m2} & \cdots & x_{mn} & \delta_m x_{m1} + p_m(x_{m2}, \dots, x_{mn}) \\ x_{12} & \cdots & x_{1n} & \delta_1 x_{11} + p_1(x_{12}, \dots, x_{1n}) \\ \vdots & \ddots & \vdots & \vdots \\ x_{m-1,2} & \cdots & x_{m-1,n} & \delta_{m-1} x_{m-1,1} + p_{m-1}(x_{m-1,2}, \dots, x_{m-1,n}) \end{pmatrix}.$$

We can reduce \hat{F} to a vectorial shift-like map by conjugation. To see this, consider the linear map $M: \mathbf{C}^{mn} \ni (x_{ij}) \mapsto (\xi_{ij}) \in \mathbf{C}^{mn}$ defined by $\xi_{ij} = x_{[i-j+1],j}$ where $[\ell]$ denotes the number such that $1 \le [\ell] \le m$ and $[\ell] \equiv \ell \mod m$. Then the conjugate $\Phi = M \circ \hat{F} \circ M^{-1}$ is a vectorial shift-like map $\Phi(\xi_1, \ldots, \xi_n) = (\xi_2, \ldots, \xi_n, A\xi_1 + Q(\xi_2, \ldots, \xi_n))$, where

$$A\xi_1 + Q(\xi_2, \dots, \xi_n) = \begin{pmatrix} \delta_{[1-n]}\xi_{[1-n],1} + p_{[1-n]}(\xi_{[2-n],2}, \dots, \xi_{m,n}) \\ \delta_{[2-n]}\xi_{[2-n],1} + p_{[2-n]}(\xi_{[3-n],2}, \dots, \xi_{1,n}) \\ \vdots \\ \delta_{[m-n]}\xi_{[m-n],1} + p_{[m-n]}(\xi_{[1-n],2}, \dots, \xi_{m-1,n}) \end{pmatrix}.$$

The map $\eta \mapsto \eta - A\eta - Q(\eta, \dots, \eta)$ takes the form

$$\begin{pmatrix} \eta_1 \\ \eta_2 \\ \vdots \\ \eta_m \end{pmatrix} \mapsto \begin{pmatrix} \eta_1 - \delta_{[1-n]}\eta_{[1-n]} - p_{[1-n]}(\eta_{[2-n]}, \dots, \eta_m) \\ \eta_2 - \delta_{[2-n]}\eta_{[2-n]} - p_{[2-n]}(\eta_{[3-n]}, \dots, \eta_1) \\ \vdots \\ \eta_m - \delta_{[m-n]}\eta_{[m-n]} - p_{[m-n]}(\eta_{[1-n]}, \dots, \eta_{m-1}) \end{pmatrix}.$$

324 T. Ueda

Under the condition of Theorem 2, this map satisfies the condition of Lemma 3. Thus Theorem 2 is proved.

References

- [1] S. Friedland and J. Milnor, Dynamical properties of plane polynomial automorphisms, Ergod. Th. and Dynam. Sys., 9 (1989),67-99.
- [2] Ph. Griffiths and J. Harris, *Principles of Algebraic Geometry*, John Wiley & Sons, 1978.
- [3] S. Morosawa, Y. Nishimura, M. Taniguchi and T. Ueda, *Holomorphic Dynamics*, Cambridge U. Press, 2000.
- [4] T. Ueda, Complex dynamics on projective spaces index formula for fixed points. *Dynamical systems and chaos*, Vol. 1, 252–259, World Sci. Publishing, 1995.

Division of Mathematics Faculty of Integrated Human Studies Kyoto University Kyoto 606-8501 Japan

Current address: Department of Mathematics Kyoto University Kyoto 606-8502 Japan