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Meromorphic mappings and deficiencies 

Seiki Mori 

Abstract. 

In this note, we shall discuss elimination theorems of defects of 
hypersurfaces or rational moving targets for a meromorphic mapping 
or a holomorphic curve into pn (C) by its small deformation. 

§1. Introduction. 

Value distribution theory is to study how intersects the image of a 
mapping to divisors in a target space. Liouville theorem asserts that the 
image of a meromorphic function is dense in the projective space P 1(C), 
and also Picard theorem asserts that the image covers all points on 
P 1(C) except for at most two points. Nevanlinna theory is a quantitative 
refinement of Picard theorem. Nevanlinna deficiency c51(a) express that 
cSt(a) = 1 if the image f(C) omits a-point and cSt(a) > 0 iff covers a 
point a relatively few times. For a meromorphic mapping of em into 
pn(C), Nevanlinna's defect relations or Crofton's formulae assert that 
Nevanlinna defects or Valiron defects of a mapping are very few. 

We shall now discuss on defects for a family of mappings, that is, 
elimination theorems of defects of hyperplanes, hypersurfaces or rational 
moving targets for a meromorphic mapping or a holomorphic curve into 
pn (C) by its small deformation. Here a samll deformation f of f means 
that the difference of order functions of f and f is relatively small. 

§2. Preliminaries. 

Let z = (z!, ... , Zm) be the natural coordinate system in em. Set 

m 

(z, ~) = L Zj~j for~= (6, ... , ~m), llzll 2 = (z, z), B(r) = { zlllzll < r }. 
j=l 
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8B(r) = { zlllzll = r }, '1/J = dde log llzll 2 and a= de log llzll 2 A 't/Jm- 1 , 

where de= ~ (8- 8) and '1/Jk = 'ljJ A··· A 'ljJ (k-times). 
Let f be a nonconstant meromorphic mapping f of em into pn (C) 

and L = [Hd] be the line bundle over pn(C) which is determined by 
d-th tensor power of the hyperplane bundle [H]. A hypersurface D of 
degree d in pn(C) is given by the divisor of a holomorphic section s E 
H 0 (Pn(C), O(L)) which is determined by a homogeneous polynomial 
P( w) of degree d. A metric a = {a"'} on the line bundle L is given by 
aa = C2:.7=o lwjfwal 2 )d in a neighborhood Ua ={wE pn(C)Iwa "I 0}. 

The Nevanlinna's order function Tt(r, L) off for the line bundle L 
is given by: 

i r dtl Tt(r, L) := - j*wA'Ij;m-I, 
ro t B(t) 

where w = {wa} = dde log(2:7=o lwjfwal 2 )d in Ua. We say that f is 

d .f . Tt(r, L) 
transcen ental 1 hm 1 +oo. The norm of a section s is 

r-++oo ogr 
given by 

II 11 2 ·= lsal 2 = IP(w)l 2 

S • (""n I ·12)d" aa ~j=O w1 

The proximity function mt(r, D) of Dis defined by 

r 1 r 11111d 
mt(r, D):= JaB log list II a= laB log IP(f)l a. 

The Nevanlinna deficiency bt(D) and the Valiron deficiency flt(D) of 
D for f is defined by 

·- . . mt(r, D) ·- . m 1(r, D) 
bt(D) .- hmmf ( £) and flt(D) .- hmsup ( ) . 

r-+oo T1 r, r-+oo Tt r, L 

Using Stok's theorem, the Nevanlinna's order function T1(r) := T1(r, [H]) 
of f for the hyperplane bundle [H] is written as: 

r n 1/2 i n 
Tt(r)= }A log(LIIJI 2 ) a+O(l)= logLifjla+O(l). 

aB(r) j=O aB(r) j=O 

Let f be a meromorphic mapping of em into pn(C), and ¢ be a 
meromorphic mapping of em into the dual projective space pn(C)* 
which is called a moving target for f. Then the proximity function 
m f ( r, ¢) of a moving target ¢ into pn (C)* is given by: 

r lltiiii<PII 
mt(r,¢) :=JaB log 1(!,¢)1 a. 
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The Nevanlinna deficiency J1(¢) and the Valiron deficiency D..1(¢) of a 
moving target ¢ for f are defined similarly. (See [5]) 

Let f be a meromorphic mapping of em into pn(C). Then f has 
a reduced representation Uo : ... : fn), and we write f = (fo, ... , fn) 
the same letter as the mapping f. Denote na f = (Da f 0 , ... , na fn) for 
a multi-index a, where D 0 fj = alai!Jj8zf1 ••• fJz~{'',a = (a1, ... ,am) 
and ial = a1 +···+am. 

Fujimoto [2] defined the generalized Wronskian of f by 

for n + 1 multi-indices ak =(at, ... , a~), (0::::; k::::; n). 

§ 2-2. Some Results 
Molzon-Shiffman-Sibony [6] defined the projective logarithmic ca­

pacity C(E) of a set Eon pn(C), and they gave a criterion of positivity 
of projective logarithmic capacity for a subset of pn(C) 

Proposition 1 ([3]). Let f be a nonconstant meromorphic map­
ping of em into pn (C). Then, for H E pn (C)*, 

lim mJ(r, H) = 0 
r-->+oo Tj(r) ' 

outside a set E C pn(C)* of projective logarithmic capacity zero. 

Proposition 2 ([3]). 

n 

A:= { (1, a1, ... ,an, ai, a1a2, ... , a~1 ···a~·, ... , IT a~) I aj E C} 
k=l 

is of positive projective logarithmic capacity. 

§3. Elimination of defects of meromorphic mappings. 

For a meromorphic mapping f of em into pn(C), we can eliminate 
all defects by a small deformation of f. 

Theorem 1. Let f : em ----+ pn(C) be a given transcendental 
meromorphic mapping, and d is a positive integer. Then there exists a 
regular matrix L = (lij) O~i,j~n of the form li,j = Cijgj + dij, ( Cij, dij E 

C: 0::::; i,j::::; n) such that detL =1- 0 and j = L·f: em----+ pn(C) 
is a meromorphic mapping without Nevanlinna defects of hypersurfaces 
of degree at most d, and satisfies ITJ(r)- Tj(r)l = O(logr) (r----+ oo), 
where g 1 (j = 1, ... , n) are some monomials on em. 
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Theorem 2. Let f: e -t pn(e) be a given transcendental holo­
morphic curve. Then there exists a regular matrix L = (lij) O~i,j~n of the 
form li,j = Cijgj + dij, (cij,dij E e: 0 ~ i,j ~ n) such that detL i=- 0 
and j = L · f : e -t pn(e) is a holomorphic curve without Nevan­
linna defects of rational moving targets and satisfies ITJ(r)- Tf(r)l = 

o(T1(r))(r -too), where g1 (j = 1, ... , n) are some transcendental entire 
functions one satisfying T9;(r) = o(T9i+1 (r)), (j = 1, ... ,n -1) and 
T9n(r) = o(TJ(r)) (r -too) which are constructed by using Edrei-Fuchs' 
theorem [1]. 

Note that we cannot replace all transcendental entire functions gj 
by rational functions. 

Remark 1. In Theorem 1 and 2, mappings f may be linearly dege­
narate or of infinite order, and also iff is of finite order we can replace 
"Nevanlinna deficiency" by "Valiron deficiency" in the conclusion. 

Remark 2. I first proved Theorem 1 for a meromorphic mapping 
f: em -t pn(C) and hyperplanes [3], and also for a holomorphic curve 
f : e -t pn(e) and hypersurfaces [4]. The case where m > 1 in 
Theorem 1 is not yet published. Theorem 2 is found in [5]. 

We now give a very short sketch of the proof of Theorem 1 for m ?: 1. 
We need following lemmas. 

Lemma 1. There are monomials g1, ... ,gn in em such that any n 
derivatives in {D<>g := (D 0 g1, ... ,D0 gn)llnl ~ n + 1} are linearly inde­
pendent over the field M of meromorphic functions on em, where n = 
(nb ... , nm) E Z~o is a multi-index and D 0 gk = 8i<>igkj8z1<>1 • • • 8zm 0 "'. 

Lemma 2. Let h = (ho : h1 : · · · : hn) be a reduced representation 
of a meromorphic mapping of em into pn(e) and gb ... , gn linearly 
independent monomials as in Lemma 1. Then there exists ( l.h, ... , lin) 
such that 

is a reduced representation of a linearly nondegenerate meromorphic 
mapping of em into pn(e). 

Sketch of the proof of Theorem 1: 
There is a regular linear change L1 of pn(e) such that h := L1 · f = 
(ho : ... : hn) : em -t pn(e) is a reduced representation of the 
meromorphic mapping h which satisfies 

mh(r,Hj)=o(Th(r)) (r-t+oo), (j=0,1, .. ,n), 
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where Hj = {(wo: · · ·: wn)lwj = 0}. 
Consider the Veronese mapping Vd given by monomials of degree d. 

We first deform a meromorphic mapping h to ii := (ho : h1 + ihg1ho : 
h2 + ii2g2ho : · · · : hn + iingnho) by using 91, ... , 9n as in Lemma 1, and 
compose it to the Veronese mapping Vd· We write the composed mapping 
as f = vd o ii = (io, ... ,is)· 

We next choose a sequence of integers { mj,i} with large gaps such 

that m;~t 1 ) 2 < mj,i+1 for (j=1, ... ,n; i=1, ... ,m). We consider monomials 
9j = 9j,1(zl) · · · 9j,m(zm), where 9j,i(Zi) = z;"i·' (j=1, ... ,n; i=1, ... ,m). 
Then we can prove Lemma 1 and Lemma 2. In the proof of Theorem 1, 
the key point is an auxiliary mapping F which is constructed by using 
the generalized Wronskian of io, ... ,is· By using Proposition 1 and 2, 
we can choose complex numbers ii1, ... , iin in Lemma 2 such that F is 
nonconstant and !::.F(Ha) = 0 for some suitable vector a E C 8 +1 \ {0} 
constructed by using ii1, ... , iin. Another part of the proof is essentially 
similar to the method of [3]. Detail is omitted here. 

§4. A space of meromorphic mappings. 

We shall introduce a distance on the space :F of meromorphic map­
pings into pn(C). Let f = Uo : ... : fn) and g = (go : ... : 9n) be reduced 
representations of meromorphic mappings of em into pn (C). Then we 
define the distance d(f,g) := d1(f,g) + d2(f,g), where 

which is a distance and it can not distinguish mappings which are ratio­
nal or transcendental, and 

d (f ) I. . f I" { I TJ ( r) Tg ( r) I } 
2 ,g := 1mm 1msup (l )<> T ( ) - (l )<> T. ( ) , a--++1 r--+oo og r + f r og r + 9 r 

which is a pseudodistance and it distinguishs mappings which are ratio­
nal or transcendental. 

In our case, a small deformation i is represented as a form i = 
(ho, h1 +a1g1ho :, ... ,: hn +angnho). Also, we can choose (a1, ... ,an) such 
that llall := la1l + · · · + lanl is as small as possible. So, we can choose 
j := L1 1·i which is also a small deformation without Nevanlinna defects 
such that d(/, f) is as small as possible. Hence we see meromorphic 
mappings without Nevanlinna defects are dense in the subset :FT C :F 
of transcendental meromorphic mappings on this distance. 
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