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Introduction 

One of the prominent features in the post-Oka development of the 
several complex variables is the extensive use of the Cauchy-Riemann 
partial differential equations. We also note the development of the 
CR geometry induced on the boundary. This geometry is introduced 
by E. Cartan [3] in low dimensional cases. The general case is devel
oped by N. Tanaka [9], S.-S. Chern-J. Moser [4], S. Webster [10], and 
D. Burns. Jr.-S. Shnider [1]. This geometry will be the vehicle to set the 
Cauchy-Riemann equation geometrically. 

The CR geometry is a special case of the Cartan geometry, which is 
regarded as a deformation of the Klein's classical geometry. Namely, for 
each classical geometry given as a homogenous space G I H we have the 
Cartan geometries modeled after G I H. For example, Riemann geometry 
is modeled after the euclidean geometry, which is the quotient of the 
group of euclidean motions by the orthogonal group. On a space X we 
have a Cart an geometry modeled after G I H when we have (1) a principal 
H-bundle E formed by frames, i.e. ways to identify up to equivalence 
(infinitesimally up to certain order) its neighborhood with open sets in 
GIH. (2) A Cartan connection onE valued in the Lie algebra of G. 

CR geometry may be regarded as the case of Cartan geometry when 
the homogenous space is the unit ball in complex euclidean space acted 
by the group of holomorphic automorphisms. We constructed CR geom
etry in [6] from the above view point. However, we did not construct the 
frame bundle directly. We first construct the bundle of the frames of the 
first (infinitesimal) order and then we prolong it to the frame bundle. 
In this paper, we construct CR geometry by defining frames directly. 
We also write down the normal CR Cartan connections and discuss its 
global aspect. 
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§ 1. The Homogenous CR manifolds 

We fix a non-degenerate hermitian n x n matrix 

(1) (h.ai]), a, (3 = 1, ... , n. 

We consider, as our model, the CR-structure on the hypersurface M in 
C n+1 _ {( 1 n )} · b - z , ... , z , w , g1ven y 

(2) 

A) We embed cn+l in the complex projective space cpn+l sending 
(zl, ... , zn, w) to the point with the homogenous coordinate [1, zl, ... , zn, w]. 
The subgroup Q of the projective group which preserves the closure M 
of M acts transitively on the closure. Thus M is the homogenous space 
on which we model our CR geometry. 

B) We find that Q decomposes to the product of the translation 
group and the isotropy group. Namely, 

(3) 

(4) 

Q = £ ·H, 

( ~1 ,·~0* 0~) £={l(z,x)= ' . _ ( 1 n) tr _ i ( ) } . Z- Z , ... , Z , W- X+ 2 z, Z 

where (z*)a = h.ai3zf3. 

(5) 

H = H/center, where His the group of (n + 2) x (n + 2) matrixes: 

(
a v* 

h = h(a,u,(J,s) = 0 u 
0 0 

b ) (3 ' 
1/?l 

where 

a is a non-zero complex number, u a complex n x n-matrix, (3 is a column 
complex n-vector (3 , and s is a real number satisfying: 

(6) u*u =I, 
a 
::-detu=1, v=iau*(J, 
a 

b i 
;;: = s- 2((3,(3), 

(u*)~ = !J.a"~h.f3au~, and I is the identity n x n-matrix. The center is the 
finite group 

(7) {h(eim', eim' I, 0, 0) ' m m = n+ 2 21r, m=0,1, ... ,n+1}. 
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C) The Lie algebra g of g has the grading: 

(8) g = g(-2) + g(-1) + g(o) + g(1) + g(2)• where 

(9.1) 
. d(l(O,s±)) 

g(-2) = { {x}(-2) = ( ds )s=O : ± E R}, 

(9.2) {{ .} (d(l(sz,O))) . n} 
g(-1) = z (-1) = ds s=O : z E C , 

(9.3) g(o) = Rrr + RJ.t + {su(n)}, where for u E su(n) 

(9.4) 

{ .} -(dh(1, e8 u,o, 0)) 
u - ds s=O, 

_ (dh(e8 ,I,O,O)) 
7r- ds s=O• 

_ (dh(eis,e-~isJ,O,O)) 
J.t- s=O• s 

(9.5) _ { {(3.} _ (dh(1,I,s/3,0)) ·. (3. E Rm}, 
g(1) - (1) - ds s=O 

(9.6) _ {{b.} _ (dh(1,I,O,sb))) . b. R} 
g(2) - (2) - ds s=O · E , 

(9.7) u E su(n) if and only if b:.utu~ + flaa-u~ = 0. 

(10) h = g(o) + g(1) + g(2) is the Lie algebra of H. 

For 9 E g we set 
(11) 
9 = {9[-2]}{-2) + {9[-1]}{-1) + 97r7r + 9p,J.t + {9su} + {9[1]}(1) + {9[2]}(2)· 

D) In terms of the decomposition (3) the action of g E g on 
(z1 ,w1 ) EM is given by 
(12) 
Tz(z,x)(z1, w 1) = (z 1 + z, w 1 + w + i(z1, z) ), where (z1, z) = flaf3(z 1)C>zf3. 

(13) 

( 1 1) ( 1 ( 1 1 ) 1 1 1) Th z , w = a>. uz + w (3 , -:x-lal 2 w , where>.= 1- i(uz1,{3) + ~w1 • 
a 



168 M. Kuranishi 

E) The 8j,-operators of the CR structure on M is generated by 

(14) 

We have 

(15) 

P a a . 0 a a_h f3 =a-- tz* a-' Z* - -f3aZ . z 0 w 

[Po Pf3] - ··h ~ 
' - t-f3a aOM' 

a a a --=-+-. a0M aw aw 

F) The Maurer-Cartan form wa has the expression: 

where WH = h-1dh is the Maurer-Cartan form of Hand 

(17) 
i i 

(}M = dx + 2(z,dz)- "2(dz, z). 

It then follows by calculation that using the terminology in (11) 

Note that for matrix valued 1-forms a and (3 

(19) [a,(3] =a 1\ (3 + (3 1\ a. 

We then find that the structure equation : dwa + [wa, wa]/2 = 0 is 
rewritten in terms of the grading ( 8) as 

(20.1) 

(20.2) 

(20.3) 

(20.4) 

(20.5) 

d(wa)[-2]- i((wa)[-1], (wa)[-1J)- 2(wa)71" 1\ (wa)[-2] = 0. 

n+2 
d(wa)[-1]+{(wa)su- ((wa)71" + --i(wa)I')I} 1\ (wa)[-1] 

n 

+ (wa)[1] 1\ (wa)[-2] = 0, 

d(wa)71"- ~((wa)[-1], (wa)[1J) + (wa)[2J 1\ (wa)[-2] = 0, 

d(wa)~' + lR((wa)[-1], (wa)[lJ) = 0, 

d(wa)su+(wa)su 1\ (wa)su + i(wa)[1] 1\ (wa)[-1] 

- i(wa)[-1] 1\ (wa)[1J + ~ilR((wa)[-1], (wa)[lJ) = 0, 
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(20.6) 

d(wo)[1j+((wo)su+((wo)7r- n + 2 i(wo)I-')J)Aw[1J+(wo)[-1JA(wo)[2] = 0, 
n 

(20.7) d(wo)[2] + i((wo)[1]' (wo)[1J) + 2(wo)7r A (wo)[2J = 0. 

G) Note by calculation that for g = l(z0 , w 0 )h 

(21) 

(22) a -p a ( ) b 1 a "h a 1 r.~a?-1 -all "~T9 0 = ---U-y + t'""=iJU-y-fJ fJv· 
oM aa a 

H) We find by calculation that, setting 

(23) 

(24.1) 

(24.2) 

Ad(h- 1)({.¢}(1)) = A(h,g,l), we have 

A(h, ±, -2)[-2] = lal2±, A(h, ±, -2)[-1] = -lal2±u* /3, 

A(h, ±, -2)71" + iA(h, ±, -2)~-' = -ab±, 

2i 
A(h, ±, -2)[su] = ilal2±( u* /3) 0 (/3*u) + - A(h, ±, J-L)I 

n 
A(h, ±, -2)[1J = -ab±u* /3, A(h, ±, -2)[2] = -lbl 2±, 

A(h,z,-1)[_ 21 =0, A(h,z,(-1))[_ 11 =au*i, 

A(h, i, -1)71" + iA(h, i, -1)~-' = ia(i, /3), 
2i 

A(h, i, -1)[su] =- ia( u* i) 0 (f3*u) - ia( u* /3) 0 (i*u) + -A(h, i, J-L)l, 
n 

A(h, i, -1 )[1] = bu* i - ia(/3, i)u* /3, A(h, i, -1 )[2J = 2\Rib(z, /3), 

(24.3) 

(24.4) 1 n+2. * n+2 
Ad(h- )tt = J-L- {--tu !3}(1) + {--(/3, /3)}(2), 

n n 
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(24.5) Ad(h- 1){a} = {u*au} + {u*a,B}(1) + {i(a,B,,B)}(2) (a E su(n)), 

(24.6) 

§2. CR coframes of infinitesimal order 1 

A) Let M be a CR manifold with non-degenerate Levi-form, given 
by a sub bundle T;' M of {)p differential operators. We may identify M 
with a hypersurface in en+ 1 passing the origin Po defined by an equation: 

(1) r = 0. 

We regard Po as the reference point and interested in the local aspect 
near Po· Hence we may shrink M if necessary. We consider a chart 
{(z 1 , ... ,zn,w)} of cn+1 . By a holomorphic linear change of chart we 
may assume 

(2) 
ar ar 
- - - -'- 0 at Po aw aw r ' 

ar = 0(1). 
aza 

We set ra = ajaza, ra = ajaza, etc. Our model is the case 

(3) 

by 

(4) 

(5) 

1 
r = rM = -:-(w- w)- (z,z). 

z 

B) The space T;' M of the 81> differential operators of M is generated 

2 a a 
---(rw-a- -rw-a ). rw-rw w w 

a;aoM is tangential toM. Qa,Qa,a;aoM form a base of the complex 
tangent space CT M. 

C) For a differential form >. on cn+l we also use the same letter 
to denote its restriction to M. 81> operators and their bar generate the 
sub bundle of complex tangent space CT M defined by 

(6) 
1 r r- -

where ()M = -( dw + dw + _f!_dzf3 + _f!_dzf3 ). 
2 rw rw 
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dzO!' r[i"Q, eM form a base of CT* M dual to the above mentioned base of 
CT M. T(,' M is given by he equation: 

(7) dza = 0, eM= 0. 

Since T" M is closed under bracket, we see by the expression of Qa 
in (2) 

(8.1) 

Because of the Definition of the Levi-form we may set 

- -a [Qa, Qf3] = icaf3_ 
aeM 

(8.2) (mod Q', Qr). 

In view of (15) §1 and (3) we may assume that 

(8.3) 

Because of the above mentioned duality, when l is a function on M, 

(9) 
- Ol 

dl = (Qal)dza + (Qal)aza +~eM. 
ueM 

D) Consider a manifold Nand a map f : N----+ M. Since f is also 
a map into cn+l we have in terms of the standard chart (z\ ... ,zn,w) 
the expression f = (! \ ... , fn, f 0 ). Note that for any vector field X on 
Nand a function l on M we have X(l of)= (dl,dfX) of. Therefore 
by (9) 
(10.1) 

- - Ol 
X(lof) = (Xr) (Qal)of+(Xfa) (Qal)of+(Rxf) aeM of, where 

(10.2) 
1 0 - r r- -

Rxf=-(Xf +Xf0 +~ofXr+~ofXfa). 
2 rw rw 

Since df X is tangential to M, 

(10.3) rw a fXf 0 + rw a fXf 0 + ra a fXr + r6 a fXfa = 0. 

Therefore we also have the expressions: 

(10.4) 

1 r-- r 
Rxf =-( w w a f) {(rw a f)Xf 0 + (ra a f)Xr} 

2 rwrw 

1 rw -rw - -
=-( of) {(rw o f)Xf0 + (ra o f)Xfa}. 

2 rwrw 
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E) Let f M--+ M be a map sending the origin 0 to Po· Then by 
(6) 

(11) 

Apply (9) to the case N = M = M and l = f 0 as well as l = Jf3, ji3. 
We then find 

f*BM =Ct (}M + C~t dzM + cgt aza M, where 

(12.1) 

1 aj0 ajO T(3 ajf3 TiJ ajf3 
Ct = 2(aBM + aOM + rw 0 f aBM + rw 0 f aoM ), 

co = ~(Pe< fo + pa JO + Tf3 of pa Jf3 + ri3 of pa Jf3), 
at 2 rw rw 

cQ = ~(pa fo + pa jO + T(3 of pa Jf3 + TiJ of pa jf3). 
at 2 rw rw 

Similarly, we find 

(12.2) 
j*dz"~ =Grit (}M + C~t dzM + C~t aza M, 

Grit=::~, C~t =pap, C~t = P0j"~. 

Since r o f = 0, we also have 

(13.1) 

(13.2) rw of pa / 0 + rw of pa / 0 + T(3 of pa Jf3 + ri3 of pa Jf3 = 0. 

Set 

(14.1) w = a fo + r Q 0 f a !C< . 
aoM rw {)(}M 

By the Definition of Ct in (12.1) and (13.1) we find that 

(14.2) W + W = 2Ct, rw of W + rw of W = 0. 

Hence (rw- rw) of W = 2(rw o !)Ct. Therefore 

rw- rw aj0 ajf3 
Ct = 2 _ o f(rw of ~(} + Tf3 of ~(} ). 

rw rw u M u M 
(15) 
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F) We define the CR attaching maps of M as the maps which 
preserve infinitesimally the defining equation (7) of our CR structure. 
Namely, 

(16) Definition. f : M----> M is called a CR attaching map of order 
m when f is a diffeomorphism near 0 and 

(16.1) C~1 = O(m), C~1 = O(m), Ct(O) > 0. 

(17) Proposition. Let f M ----> M be a CR attaching map of order 
m. Then 

(17.1) Pafj =O(m) forj=0,1, ... ,n; a=1, ... ,n. 

Conversely f : M ----> M satisfying (17.1) is a CR attaching map of 
order m, provided Ct given by (15) is positive at the origin. We also 
have 

(17.2) 

Proof Set for an arbitrary f : M----> M 

(18.1) 

We see by (13.2) and (12.1) that 

(18.2) 

In the case f is a CR attaching map of order m, we have W~ = 
O(m), W~ = O(m). Therefore (17.2) holds. Since par = O(m) by 
(16.1) and W~ = O(m), (17.1) also holds. The converse holds, because 
(17.1) implies W~ = O(m) and by the 1st formula in (18.2) we have 
W~ = O(m). Q.E.D. 

(19) Proposition. For any p E M c cn+l there is an attaching map 
of order 3. 
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Proof. We may assume that pis the origin. In view of the theorem 
of Chern and Moser we may assume that M is given by the equation: 
r = 0, where 

(20.1) 1 - 0 r = -:-(w- w)- (z,z)- F(w,x ), 
z 

where F = 0 (mod (z, z) 4 ). Then the map 

(20.2) 
1 

f: M 3 (z,w)----> (z,w+iF(z, 2(w+w)) 

is a CR attaching map of order 3, because 

(20.3) f 0 = w (mod (z, z) 4), r = z"' (mod (z, z) 4). 

Q.E.D. 

G) Let N be a manifold. We denote by J6(M, N) the space of l-jets 
at the reference point 0 of maps of M into N. 

(21) Definition. J E Jl(M, M) is called a CR l-jet when there is a 
CR attaching map f of order l representing J. Denote by J6(M)cR the 
space of CR l-jets. 

Since P"',P"',8/8BM form a base of CTM, JJ(M,Cn+l) has 
th t d d h t ( (O)j (l)j (l)j (l)j ) h · e san ar car .. ,p , ... ,p, , ... ,p15. , ... ,p0 , ... , were J = 
0, 1, ... , n. Namely, for J E JJ(M, cn+l) represented by a map f : 
M ____, cn+l 

(22) 

p(0)1(J) =fl(O), p~l)j(J) = P"'fl(O), 

p~l)j(J) =P"'J1(0), P6l)j(J) = ::~ (0). 

J 1(M,M) c J 1(M,Cn+l) is the submanifold defined by 

(23.1) 

(23.2) 
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Note that the map 
(24) 

J ~ JJ(M,Cn+l) --t (p(O)(J), ... ,p~l)j(J), ... , ~(rw(P(O)(J))p~l)O(J) 

+rn(P(O)(J))p~l)O(J)), ... , rw(P(O)(J))p~l)O(J) + T(3(P(Ol(J))p~1)!3(J), ... ) 
E M X cn(n+l) X R X en 

is of maximal rank. Note also that C~1 (0) = 0 is a consequence of 

p~l)J = 0 and (23.2). In view of (17), it then follows that 

(25) Proposition. JJ(M)cR is the subspace of J6(M, M) defined by 
the equations: 

(25.1) P~l)j = o, cCll > o, 

where c(ll is defined by 

(26) 

(27) Proposition. For any p E M, complex numbers CJ ('y = 1, ... , n; j = 

0, 1..., n), and C > 0 there is unique J E JJ(M)cR such that 

(28) 

P(o)(J) = p, Pyh(J) = CJ, P~l)O(J) = _ r-y (p(o))CJ, 
rw 

p~l)O(J) = 2rw (p(O)) C _ r-y (p(O)) p~lh(J). 
rw- rw rw 

We thus have a chart (x, ... , CJ, ... ,C) of J6 (M)cR, called standard. 
H) Because of the duality we have for an attaching map f of order 

1 at x EM 

(f*P0 )x = CZ1 (0)(Q"~)x, 
(29) 

(!* :{} M)x = C;{f(O)(Q"~)x + C;{f(O)(Q"~)x + Ct(O)( :{} M)x. 

We call (! * pa) x, (! * g6 M) x the CR frame of order 1 associated to a CR 
1-jet J = jJf. The space of CR frame of order 1 is diffeomorphic to 
J6(M)cR· The CR coframe ... ,w~, ... of order 1 associated to CR 1-jet 
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J at x E M is defined as the dual to a CR frame of order 1 associated 
to J. We then find 

where (( c- 1 )~ ( J)) is the inverse matrix of the matrix ( c;r (J)). 

We may regard w~ as a 1-form f!J on JJ(M)cR· Hence using the 
standard chart 

(31) 0"' = (c- 1 )"'(dz"~ - CJ e ) 
"'M CM' 

Remark. In the case M = M we see by (17)-(18) §1 that 0"' = 

(wa)[-1]' 0° = (wa)([-2]· 

I) Note that the isotropy group 1t at 0 acts on M as a CR isomor
phism group. Hence, when f is a CR attching map of oder land hE H, 
f o Th ( cf. ( 13) § 1) is a CR attaching map of order l. Therefore we have 
the action of h on JJ(M)cR, which we denote by Rh. We then find by 
(21) §1 and calculation that for J E JJ(M)cR 

(32) C~(RhJ) = CJ(J)~u~, CJ(RhJ) = CJ(J) ~~ 2 + CJ(J)~(3u, 

(33) 

§3. CR coframe of infinitesimal order 2 

A) Let f M-+ M c cn+l be a CR attaching map of order m. 
Then 

(1) J*()M = Ct()M + O(m). Hence 

(2) 
j*d()M =Ct d()M + dCt 1\ ()M + O(m- 1) 

= iCt < dzM, dzM > +dCt 1\ ()M + O(m -1). 

Since f*dz"' = C~f dz1 + C~f ()M + O(m), we find that 

(3) dz1 = C~f {f*dz"'- C~f ()M} + O(m), 
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where ( c:;f) is the inverse matrix of ( c;f). Therefore 

j*d()M = iCtfl-yuc~Jc~f {f*dza A f*dz/3 + C01 f*dz!3 

- ctff*dza) A OM}+ dCJ A OM+ O(m -1). 
(4) 

For a function l on M we have by taking d of (9) §2 

(5) 

Applying (9) §2 again when l is replaced Qal, etc. we find that 

8l (3- -
&OM dOM =[Q , Qa]l dza A dz/3 

- {[Qa, a:M]l dz()l + [Qa, a:M]l d?'} A OM. 

(6) 

Applying the above in the case l = (w + w)/2, we find by (8.2) §2 that 

(7) dOM = icl3°dza A dz/3 + (cadza +cad?') A OM, 

where 

Hence 

J* dO M =icf3o. o f f* dza A f* dz/3 

+ (ca of j*dza + ca of f*d?') A f*OM. 
(9) 

Comparing the above with (4), we find that 

(11) Ctca of= ica/J of cgf + cgt p!3cf + O(m- 1). 

B) Di:mote by J6(M) the space of 2-jets of maps f of neighborhoods 
of 0 in M into M. When J = J5(f), we set 
(12) 

p~J1(J)=Pa P!3J1(0), p~J1 (J)=PaPf3J1(0), p~2J1 (J)=Pa a:MJ1(0), 

p~~j(J)= 8~: f(O), Ci2l(J)=PaCJ(O), C~}l(J)=PaCJ(O). 
M 
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Denote by J~(M)cR the space of 2-jets of CR attaching map toM 
of order 2. We set 

(13) 

Let (c,ao:) be the inverse matrix of (c.Bo:). We have by (10)-(11) 

(14) Proposition. For J = p~(J2 ) E E 1 with J2 E J~(M)cR 

(15) C~Jl~l)a(J)l!"~up~l),B(J) = c,ao:(P(o)(J)), 

The action of H on JJ(M)cR (cf. (35)-(36) §2) preserves E1. We 
find by (36) §2 that H acts transitively on the subspace of JJ(M)cR 
defined by the equation: In terms of the standard chart ( x, ... , Cj, ... , C) 
of Jl(M)cR 

(17) 

In view of (16) we conclude that 

(18) Proposition. E1 is the subspace of JJ(M)cR defined by the 
equation (17). 

C) We also find that the subgroup H 1 of H which acts as the identity 
transformation is given by 

(19) a= 1, u =I, f3 = 0. 

Hence H 1 is a 1 dimensional subgroup parametrized by 

(20) 
b 

8=~-. 
a 

Therefore E 1 is a principal bundle with the structure group H/H1• 

(21) 

We wish to define the CR frame bundle E by the following diagram: 

Jl(M)cR 
i 

E1 

f-- J2 
! 

t-- E 
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where J'f:R is a suitable subspace of J2(M)cR· (22) §1 and (20) suggest 
that we use as the above downward arrow the map 

(22) 

D) We justify the above choice. 

Since p~2) may be regarded as a small deformation of '!R(b/a) by (22) 
§1, pis a projection. It remains to show that H acts onE making E a 
principal H-bundle. We define Jf:R as the space of 2-jets representable 

by a CR attaching map of order 3. We need to show that p~2 ) (Rhi) is 

a function of p~2l(J) and of h, provided J E i 2(M)cR· 
We find by (16) §2 that for f : M ---+ M 

a- a- -
aoM P"~(/01 o Th)(x) = { aoM (P"~Th)(x)}(P" r)(Thx) 

- a -+ (P"~Tf:)(x) aoM {(P" r) o Th}(x). 

(23) 

We apply (16) §2 to atM {(P" r) oTh}(x) in the case N = M = M and 

(X,l,f) is (a;aoM,P"r,Th)· We then find by (21)-(22) §2 
(24) 

(2)a - -~ u _1_ (2)a - . ~ 1-' (2)a - · ~Ji a 
Po7 (RhJ)- U 7 {II 2 Pou (J)+ f3 Pul-' (J)+zfl.up__{3 Co(J)} a a a a 

Therefore it is enough to show that p~~a ( J) is a function on E 1 , provided 
J is represented by an attaching map of order 3. 

By (10) we have for a CR attaching map f of order 3 

(25) 

Applying pu, we find that 
(26) 

(P"CJ)C¢a: of+ CtP"(c¢a: of) 

= (P" P"~ r)!17 ;;(Pv f<P) + (P7 r)l!7 ;;(P" pv f<P) + 0(1). 

Hence we see by (16) 
(27) 

p~~01 ( })f! 7 ;;Ct( J) = C~2) ( J)c¢a:(x)+C( J)C~( J)Qvc¢a:(x )+iC~( J)Ct( J). 
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In view of (16) we now conclude that p~2) 01 is a function on E 1 and 
consequently H acts on the space E. 

We write down the formula for the operation of H on p~2 ). Since 

C!¢(RhJ) = CC:(J)u~ja, we find 

(28) 
(C- 1 )~(RhJ)p6~ 01 (Rh]) = (C- 1 )~(J){ I:I2P6~ 01 (J) 

1 (2) - 1- b 
+-(YP-ya 01 (J) + ifl.-y6 -::::f3"C(f(J)}- n- + i < (3, (3 >. 

a a a 

Since C( c-1 )~ = f1."1 c::; c"il we have on the other hand 
(29) 

P~~n(J)(C-1)~(J) = cZJ) c~2l(J)+CJ(J){craQ'"'~cra(x)+ic:J(~) en"~}. 

We then find after some cancellation 
(30) 

(2) -
(2) - 1 (2) - b 1 01 Cn (J) 1 'Y - a-

Pu (RhJ) = lai 2 Pu (J)+~~-~~(3 { C(J) +;Y01 (J)(Q'"'~cap,(x))c ~-'(x)}. 

Therefore 

§4. The normal CR Cartan Connections 

Let w : T E ---+ g be a Cart an connection on the CR frame bundle 
E. 

A) w is called a CR Cartan connection (cf. (31) §2) when 

(1) 01 nn 
w[- 1] = H , 

Let U = {(x)} = {(z,x0 )} be a chart open set of M. In terms of a 
local trivialization U x H of E we have an expression : 

(2) 

where w is a g-valued 1-form on U and WH is the Maurer-Cartan form of 
H regarded as a h-valued 1-form. Its curvature form has the expression: 

(3) K = dD + ~[D,D] = Ad(h- 1)k, 
1 

where k = dw + 2[w, w]. 
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B) A local trivialization of E over U is given, using a section J : 
U->E, by 

(4) U x H 3 (x,h)--> RhJ(x) E E. 

We find by (31) §2 that win (2) is a CR Cartan connection when 
(5) 

w~1](x) = (C- 1 )~(x)(dz'Y- c:I(~)OM), W[-2] = ctx)OM, where 

(6) J(x) = ( ... , Cj(x), ... , C(x),p~2)(x)) 

is the standard chart expression of J(x). We see by the above that we 
have to determine w7l",wJL,Wsu,W[1],W[2] (cf (11) §1) to determine a CR 
Cartan connection. We put curvature conditions so that we have CR 
Cartan connections unique up to isomorphism. 

C) As we obtained (20) §1 we find that k in (3) has the expression: 

(7.1) k[-2] = dw[-2] - i(w[-1]• W[-1J)- 2w71" 1\ W[-2]· 

(7.2) 
+ W[1]/\ W[-2], 

(7.3) 

(7.4) 

ksu = dWsu + Wsu 1\ Wsu + iw[1]/\ Wl-1] 

(7.5) 
. * 2 "\0( ) - ZW[- 1]/\ W[1] + -t:n. W[- 1], W[1] , 

n 

(7. 7) k[2] = dw[2] + i < W[1], W[1] > + 2w71" 1\ W[2]· 

D) In order to carry out the program mentioned at the end of B), 
we set 

(8) C =the matrix (C$(x)), C = ( ... , cg(x), ... ). 
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We also omit x in C(x), etc. We see by (7) §3, (10) §3, and (5) that 

(9) d8M = iC(w[-1J, w[-1J)- 21R(ic"~°C0 - Cc"~)rf71 1\ w[-2]· 

We then find that 
(10) 

dw[-2]-i(w[-1]> W[-1J)-q0 /\w[-2] = 0, dw[-1]+qllw[-1] +q[1]/\W[-2] = 0, 

0 i - 1 
q =1R(- cc'Yacg + c"~)rf71- 2d log c, 

(11) q =C- 1dC- iC-16 Q9 w[_ 11 , 

A i _ - c- 16 
q[1l = c-1C21R(- 0 cf3ac0 + c13 )dzf3 +Cd-C . 

(12) Lemma. We can find a unique set of a complex valued 1-form b0 , 

an su( n )-valued 1-form bsu, a en-valued 1-form b[1], such that 

(13.1) 

(13.2) 
dw[-2]-i(w[-1]> W[-1J)- 21Rb0 1\ W[- 2] = 0, 

dw[-1] + (bsu - b0 I) 1\ W[-1] + b[1]/\ W[-2] = 0. 

Proof. By using the type with respect to W[- 1], W[- 1], we check the 
uniqueness. To show the existence, note by (10) that d(w[- 1], W[- 1J)
q0 1\ (w[- 1], W[- 1J) = 0 (mod W[- 2J)· We then find 

(14 1) (dwa )(2,0)- ha!Jh -w" 1\ q"~ -w'"' - (q0 )( 1,0) 1\ wa = 0 . [-1] - -<1"( [-1] !31-' [-1] [-1] , 

where (qJ)(o, 1) = qJilw[_ 11 . On the other hand we see by (10) that 

(14.2) (d Q )(1,1) + Q -,.,- 1\ <1 0 
w[-1] qajl w[-1] w[-1] = . 

Therefore we find that (13) is valid when we set 

(b )a- a -"- ha!Jh 1/ " 
u 'Y - q'Yaw[-1]-- -'Yvqf3aw[-1]' 

(15) (bsu)p = (bu)p- (bu)~Jp, b0 = (q0 )( 1,0) + (bu)~, 
1 _ 1 ac 

b[1] =: q[1] - CC a(}M W[-1] (mod W[-2])· 

Q.E.D. 
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E) For a differential form a we set 

(16) a= a++ a(o) 1\ W[- 2], where a+,a(o) do not contain W[- 2]. 

By the Lemma we find the followings: 

(17) Proposition. k[- 2] = 0 if and only if w;t" = ~ b0 • 

(18) Proposition. Assume that k[- 2] = 0. Then k[- 1] = 0 if and only if 

+ - b (b(O) (bO)(O)J) w(1]- [1] + su - W[-1]· 

From now on we consider only CR Cartan connections satisfying the 
conditions in (17) and (18). We next examine conditions k1r = 0, k~-' = 0. 

By taking the exterior derivative of the first equality in (13.2), we 
find that 

(19) 

Therefore, we have the expression: 

Hence we find that 

(21) 
k1r =<;J(w[-1], b[1] - W[1J) + w~0li(w[-1], W[-1J) 

+ (dw~O) + W[2] - b(2] + 2W~O)~b0 ) 1\ W[-2]· 

(22) Proposition. Assume that k[-2] = k[- 1] = 0. Then k1r = 0 if and 
only if 

+ - b (d (0))+ 2 (O)~nbO o.( (0)) w(2]- [2]- w1r - w1r ~ - :s W[- 1],w[1] . 

We find 
(23) 

n o (O) n + 2 . (o) 
kp, = --d(C:Sb ) + ~(w[-1], b(1] + (wsu - --zwp, I)w[-1]) 

n+2 n 
. (0)( ) (d (0) In( (0)) (0)2~nb0) [-2] +zwl-' W[-1],W[-1] + WI-' +~ W[-1],W(1] +wl-' ~ 1\W . 
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By taking the exterior derivative of the 2nd formula in (13.2), we find 
by (20) that 
(24) 
{(dbsu- id'2sb0 I)+- '2s(w[-'-1] 7 bt])I + b:u !\ b:u +ibt] ®w[-1]} !\ W[-1] = 0. 

Then it follows that 

(25) 

Therefore we find the following: Set 
(26) 

(d('2Jb0))<1•1) = (d~b0)a,ew[_ 11 !\ wt3[-1]• ~b0 = (~b0)awF- 11 + (~b0),ewf_ 11 , 

(27) Proposition. Assume that k[- 21 = k[- 11 = k1r = 0. Then k~' = 0 if 
and only if 

(O) -~ n + 2 (n.b )<> i ha,B(dn.bo) -
w~' -2 n(n + 1) ::s [1] <> + 2(n + 1) ::s <>f3' 

(w<0 l)<> =-n-h<>7(d~b0 ) - - -1-h~<-7 (d~b0 ) -8<> + ~h<>~<h _TJY 
su f3 n + 2- f3'Y n + 2- K"f f3 2- -f3'Y [1]~<-

- ~bn11 {3 + ~(~b[1]n8$, 
'th d (O) - - <> - -<>-

Wl WI' - W/t<>W[- 1] + Wl'aW[_ 11 , 

w(o)a =- 2h<>P{w - + w<0l(~b0)- + ~bl!} 
[1] - ~tf3 I' {3 2 {3 • 

Finally we put the condition: 

(28) tr k[2] = 0, 

where for a 2-form ¢ 

(29) 

(30) Proposition. tr k[2] = 0 if and only if 

(0) - 1 {. d + ( ) . ( + + ) } w[2]-:;:; ztr w[21 - tr W[1],W[1] +2ztr w'Tr /\w[2] . 
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F) Note by (23)-(24) §1 that 

(31) 
k[- 2] = k[- 11 =k1r = k~-' = tr k[2] = 0 if and only if 

K[-2] = K[-1] = K1r = K~-' = tr K(2] = 0. 

(32) Definition. A CR Cartan connection is called normal when its 
curvature satisfies the above conditions. 

Clearly the normality condition is a globally defined condition. We 
also see 

(33) Proposition. When we fix a chart (z, x0 ) and a local cross-section 

(4), for arbitrary choice ofw~o) there is a unique normal CR Cartan con
nection. The isomorphism class of the normal CR Cartan connections 
is unique. 

G) We next discuss the global aspect of the normal CR Cartan 
connetions. 

Fix a chart x = (z, x0 ). Beside the local cross-section J(x) given in 
(4)-(6) consider a new cross-section 

(34) J..(x) = Rh(x)J(x) for a H-valued function h(x). 

I..(x) induces a chart (x,f1.), which is related to the original chart (x, h) 
by 

(35) h=h(x)f1.. 

A Cartan connection (2) has the two expressions: 

Therefore 

(37) :!Q(x) = Ad(h(x)- 1)(w(x) + h(x)- 1dh(x)). 

From now we omit (x) for simplicity. By the above and by (23) §1 
we find that 

(38.1) 
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(38 2) "' _ ( -1)"' 'Y I 12( -1!3)"' . w[_ 11 - au 'Yw[_ 11 - a u W[-2]· 

For a 1-form ¢set 

(40) ,;.. ,;.. "' +,;.. -"'-+,;..(o) ;.. "' + - -"' -+;..(o) 
YJ = o/O<W[- 1] o/aW[- 1] YJ W[-2] = o/O<W[- 1] W 0 W[_ 11 '{J .'!Q.(- 2]· 

Then 

(41) 

Setting .'!Q.~o) = fil.~o) for simplicity, we then find 

1 1 1 
w~o) = -

1 
l2 w~o)- s + 21Rw1r"'-(3"' + 21R-(3"'(dlog lal)"' 

a a a 

1 (0) 
+ lal 2 (dlog lal) . 

(42) 

On the other hand we see by (30) §3, (11), and (17) that 

Therefore 

(44) w(0 ) +p(2) = - 1-(w(O) +p(2)) + R where 
-7r -U lal2 7r U ' 

(45) 
1 1 1 -- 1 (0) 

R = 2/R-(3"'{ (dlog lal)"'--(dlog 0)"'--0,IcvO'Q'Ycvu }+-I l2 (dlog Ia I) . 
a 2 n a 

Note that we have the standard chart ( 0, Qg', 0~) induced by the 
local cross-section I_. We find by (32)-(33) §2 and (30) §3 that 

(46) 

Set 

(47) 

0 1 0 0"' - 1 C"' 1 (3"~0"' - = lal 2 ' ~ - lal 2 0 + ~ 'Y' 
0 "' 10"' v -'Y =- v u'Y. 

a 
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Then we see by calculation that 

(48) 

Therefore the condition: w~+p~2) +U = 0 is a globally defined condition. 
We conclude 

( 49) Proposition. When we choose 

(50) w(o) = - p(2) - U 
7r ~ ' 

the normal CR Cartan connection is globally defined. 
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