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Some constructions of hyperbolic hypersurfaces 
in pn(C) 

Hirotaka Fujimoto 

Abstract. 

We show some methods of constructing hyperbolic hypersurfaces 
in the complex projective space, which gives a hyperbolic hypersur
face of degree 2n in pn(C) for every n 2: 2. Moreover, we show that 
there are some hyperbolic hypersurfaces of degree d in pn (C) for 
every d 2: 2 X 6n for each n 2: 3. 

§ 1. Introcution 

Since S. Kobayashi asked whether a generic hypersurface of large 
degree in pn(C) is hyperbolic or not in [8], many papers were devoted 
to constructing various examples of hypersurfaces in pn(C). In [2], R. 
Brody and M. Green gave an example of hyperbolic hypersurface in 
P 3 (C) of even degree :2: 50. Afterwards, new types of hyperbolic hy
persurfaces of degree din P 3 (C) were given by A. Nadel in the case of 
d = 6p + 3 for p :2: 3 in [10], by J. El Gaul for d :2: 14 in [7], by J. 
P. Demailly and by Y. T. Siu-S. K. Yeung for d :2: 11 in 1997 respec
tively. Moreover, J. P. Demailly-J. El Gaul proved that a very generic 
hypersurface of degree at least 21 in P 3 (C) is hyperbolic in [4] and M. 
Shirosaki constructed a hyperbolic hypersurface of degree 10 in [11]. On 
the other hand, in [9], K. Masuda and J. Noguchi proved that there 
exists a hyperbolic hypersurface of every degree d :2: d(n) for a posi
tive integer d(n) depending only on n and some concrete examples of 
hyperbolic hypersurfaces in pn(C) for n :S 5. 

Recently, the author constructed a family of hyperbolic hypersur
faces of degree 2n in pn(C) for n :2: 3 in [6]. The purpose of this note 
is to explain the results in [6] and to give some lower estimate of d(n) 
in the above-mentioned results given by Masuda-Noguchi. The author 
would like to thank J. Noguchi for useful suggestions to this work. 
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§2. Construction of H-polynomials 

For convenience' sake, we introduce the following terminology. 

Definition 2.1. We call a homogeneous polynomial Q(w) of degree 
din w = (w0 , w1 , ... , wn) an H-polynomial if it satisfies the conditions: 

(H1) If a holomorphic map f := (fo : fl : · · · : fn) of C into pn(C) 
satisfies the identity Q(fo, fl, ... , fn) = cftf for some c E C, then f is a 
constant. 

(H2) If a holomorphic map f := (!1 : · · · : fn) of C into pn-l(C) 
satisfies the identity Q(O, fl, ... , fn) = cf~+l for some c E C and entire 
function fn+l, then f is a constant. 

Definition 2.2. We say a complex space M to be Brody hyperbolic 
if there is no nonconstant holomorphic map of C into lv1. 

As was shown by R. Brody in [1], a compact complex manifold 
is Brody hyperbolic if and only if it is hyperbolic in the sense of S. 
Kobayashi. In the following, a compact hyperbolic space means a com
pact Brody hyperbolic space. 

Proposition 2.3. Let Q be an H-polynomial. Then, 
(i) V := {(wo: · · ·: wn); Q(wo, ... , wn) = 0} is hyperbolic and 
(ii) for W := {(wl : · · · : Wn); Q(O, w1, ... , Wn) = 0} C pn-l(C), 

pn- 1(C) \ W is Brody hyperbolic. 

In fact, (i) is nothing but the case c = 0 of (H1), and (ii) is a 
result of (H2) because we can find an entire function fn+l such that 
Q(O, fl, ... , fn) = f~+l if Q(O, fl, ... , fn) has no zeros. 

For the case where n = 2 we have the following: 

Theorem 2.4. Let Q(uo, u1, uz) be a homogeneous polynomial of 
degree d ~ 4 and consider the associated inhomogeneous polynomial 
Q(v, w) := Q(1, v, w). Assume that 

(C1) the simultaneous equations Qv(v, w) = Qw(v, w) = 0 have only 
finitely many solutions, say Pk := ( Vk, wk) (1 ::; k ::; N), 

(C2) Q(Pk) =/= Q(Pt) for 1::; k < £::; N, 
(C3) Quo (1, Vk, wk) =/= 0 for 1 ::; k ::; N, 
(C4) {(u1, Uz); Qu, (0, u1, uz) = 0, i = 0, 1, 2} = {(0, 0)}. 
(C5) Hessian <p := QvvC.!ww- Q~w =/= 0 at (vk,Wk) (1::; k::; N). 

Then, Q is an H-polynomial. 

For the proof, refer to [6]. 
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Remark. We can show that generic homogeneous polynomials of 
degree d 2: 4 satisfy the conditions in Theorem 2.4. Here, generic ho
mogeneous polynomials mean all polynomials in some nonempty Zariski 
open set in the space of all homogeneous polynomials of degree d. 

For the case n 2: 3, we can prove the following: 

Theorem 2.5. Let Q(u0 , u 1 , ... , un) be an H-polynomial of degree 
do and P(uo, Un+1) a homogeneous polynomial of degree d1 (2: 3) such 
that P(uo, Un+l) and F(w) := P(1, w) satisfies the conditions; 

(P1) P(O, Un+1) =/= 0, 
(P2) F' ( w) has only simple zeros a1, 0:2, ... , ad1 -1, 

(P3) F(ak) -=1- F(ac) for 1 ~ k < i! ~ d1 - 1. 
Form 2: 2, if d1 := mdo and 2/(d1- 2) + 1/m < 1, then 

is an H-polynomial. 

This is a slight improvement of [6, Theorem II]. We state the outline 
of the proof. Consider holomorphic functions iJ, some of which are 
nonzero, such that R(fo, ... , fn+1) = cjg1 • If fo = 0, then 

Q(O, JI, · ·. , fn) = ef~'f-1 

for some constant e and hence f is a constant by (H2). Otherwise, setting 
'P := fn+d fo and Q := Q(1, fd fo, ... , fn/ fo), we have F(r.p) -c = Qm. 
By the assumption, F( w) - c has at least d1 - 2 simple zeros (31 and 
r.p takes the values (Jj with multiplicities at least m, whence e<p (f3j) 2: 
1- 1/m, where 8"'((31) denote the truncated defects of (31. By virtue 
of the defect relation for meromorphic functions, we can conclude from 
the assumption that f is a constant. We can prove that R satisfies (H2) 
by the same argument as in the proof of [6, Theorem II]. We omit the 
details. 

By Theorem 2.4 and by using Theorem 2.5 repeatedly, we can easily 
conclude the following: 

Theorem 2.6. For each n 2: 2 there is a hyperbolic hypersurfaces 
of degree 2n in pn(C) and a hypersurface W of degree 2n in pn- 1(C) 
such that pn- 1(C) \ W is Brody hyperbolic. 

We can also construct many hyperbolic hypersurfaces in the complex 
projective space. For example, by Theorem 2.4, we can construct a 
hyperbolic hypersurface of degree 5 in P 2 (C) and, by the use of the case 
m = 3 of Theorem 2.5 repeatedly, hyperbolic hypersurfaces of degree 
5 x 3n-2 in pn(C), which are used later. 
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§3. Hyperbolic hypersurfaces of high degree 

In this section, we construct some examples of hyperbolic hypersur
faces of high degrees. We first give the following: 

Theorem 3.1. Take a polynomial F := "·· ,· ai1 ···i x'1.1 • .. xmirn L......Jl,••·,rn rn 

and consider the associated weighted homogeneous polynomial 

F* ( ) ~ d-hdl -···-irnd-m i1 i-m Xo,Xl, ... ,Xm := L...J ai1 ... i"'x0 x1 · "Xm 
i1, ... ,irn 

in (x0 , x1, ... , Xn) with weights (1, dt, ... , dm) for some positive integers 
di, where d := max{i1d1 + · · · + imdm; ah .. ·i= =/= 0}. Assume that 

(i) F*(O, x 1, ... , xm) consits of only one monomial, 

(ii) if F('{)l, ... , 'Pm) = 0 for meromorphic functions 'Pi on C, then 
at least one of 'Pi's is a constant. 
Then, for arbitrary H-polynomials Qi(w0 , ... , wn) of degree di (1 ::::; i::::; 
m), the hypersurface 

V := { w = (wo: ... : Wn); wgF ( Ql(w)lwg1 , ••• , Qm(w)lwg=) = 0} 
in pn(C) is hyperbolic. 

Proof. Consider a holomorphic map I := Uo : !I : · · · : In) of 
C into V(c pn(C)), where fi are entire functions without common 
zeros. If lo = 0, then Qio (0, !I, ... , In) = 0 for some io, whence I is a 
constant by (H1). Assume that lo ~ 0. Then, F('{J1, ... , 'Pn) = 0 for 
meromorphic functions 'Pi:= Qi(1,fi, ... ,ln)llg1 • whence some 'Pio is 
a constant and so I is a constant by (H1). This gives Theorem 3.1. 

We give an example satisfying the assumptions of Theorem 3.1. 

Proposition 3.2. Set F(x, y) := xP + yP + xrys + 1 for positive 
integers p, r, s. Assume that 

(1) p < t, 6lp + 2lt < 1, 

where t := min(r, s). Then, F(x, y) satisfies the assumptions (i) and (ii) 
of Theorem 3.1 for arbitrary positive integers d1 and d2 . 

Proof. Obviously, (i) holds. To see (ii), take nonconstant meromor
phic functions '{), 'ljJ with F('P, '1/J) = 0. We write 'P = !II lo, '1/J = hi lo 
with entire functions li such that fi and h have no common zeros. 
Consider the holomorphic map <I>:= UC: If: If) : C -t P 2 (C) and hy
perplanesH/:= {wj-1 = O}forj = 1,2,3andH4 := {wo+w1+w2 = 0}, 
which are in general position. Obviously, the pull-backs <I>* (Hj) of Hi for 
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j = 1, 2, 3, considered as divisors, have no positive multiplicities smaller 
thanp. Take a point zo in f- 1(H4). Since JC+ ff+ If=-Hnfg-(r+s), 
if fo(zo) 1- 0, the multiplicity of <P*(H4) at zo is at least t. Assume 
that fo(zo) = 0. Then, !l(zo) 1- 0 and h(zo) f- 0, because oth
erwise 'L~=O fi(z0)P f- 0. This is impossible by the assumption p < 
r + s. In conclusion, <P*(H4 ) has no positive multiplicities smaller than 
t. Then, there are constants c0 , c1, c2 with (eo, c1, c2) f- (0, 0, 0) such that 
c0r.pP + c1 'ljJP + c2 = 0. Because, otherwise, the second main theorem for 
holomorphic curves in pn(C) gives 3(1- 2/p) + (1- 2/t) ~ 3, which con
tradicts the assumption(cf., [5, Theorem 3.3.15]). If c2 = 0, then r.p and 
'1/J are obviously constants. Otherwise, we have eo!C + cdf + c2f~ = 0. 
Since p ~ 4 by the assumption, <P is a constant. This gives Proposition 
3.2. 

By Theorem 3.1 and Proposition 3.2, we have the following: 

Proposition 3.3. Let Qi(w) be H-polynomials of degree di (i = 

1, 2) inn+ 1 variables w = (w0 , w1, ... , wn) and p, r, s positive integers 
satisfying the condition ( 1). Then, the zero locus of the polynomial 

is a hyperbolic hypersurface in pn(C) of degree d := rd1 + sd2 . 

This improves Masuda-Noguchi's Theorem as follows: 

Theorem 3.4. For each n ~ 3 we can take a positive integer 
d(n) such that there are hyperbolic hypersurfaces of degree d for every 
d ~ d(n) in pn(C). Here, for example, we can take 

For the proof of Theorem 3.4, we give the following Lemma: 

Lemma 3.5. Let d1 and d2 be mutually prime positive integers. 
For arbitrarily given positive integer mo, every integer d with 

can be written as d = rd1 + sd2 with r, s ~mo. 

This is easily shown by the fact that, for each number C with 0 ~ C < 
d1, we can find integers r, s with lrl < d2, lsi < d1 such that C = rd1 +sd2. 

The proof of Theorem 3.4. To this end, for each nk 3) we 
set d1(n) := 2n and d2(n) := 5 x 3n-2. As is mentioned in the previous 
section, we can find H-polynomials Ql and Q2 of degree d1 ( n) and d2 ( n) 
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respectively. Define d(n) by (2). By Lemma 3.5, we can write every d::::: 
d(n) as d = rd1(n)+sdz(n) with r, s::::: m0 := 9, because d1(n) and dz(n) 
are mutually prime. For p := 8 and these r, s, which satisfy the condition 
(1), we apply Proposition 3.3 to find a homogeneous polynomial R of 
degree d such that V := {R = 0} is a hyperbolic hypersurface in pn(C). 
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