Advanced Studies in Pure Mathematics 42, 2004 Complex Analysis in Several Variables pp. 37–44

On the middle dimension cohomology of A_l singularity

Takao Akahori

Abstract.

Let (V, o) be a normal isolated singularity in a complex Euclidean space (C^N, o) . Let M be the intersection of this singularity and the real hypersphere $S_{\epsilon}^{2N-1}(o)$, centered at the origin o with an ϵ radius. Then, naturally, this link M admits a CR structure, induced from V, and the deformation theory of this CR structures has been studied in [1], [2],[3]. Especially in [3], a particular subspace of the infinitesimal deformation space is found, and we propose to study the relation between this subspace and simultaneous deformation. We note that: if the canonical line bundle of the CR structure is trivial, then the infinitesimal space of the deformation of CR structures is a part of the middle dimension cohomology. And in this line, we conjecture that Z^1 , introduced in [3], might be related to the simultaneous deformation of isolated singularity (V, o) (see also [2]). We discuss this problem for A_l singularities.

§1. Motivation and Z^1 - space

Let $(V^{(n)}, o)$ be an isolated singularity in a complex eucliean space (C^N, o) . We consider the intersection

$$M = S_{\epsilon}^{2N-1}(o) \cap V.$$

Then M is a compact non-singular real 2n-1 dimensional C^{∞} manifold, and a CR structure $(M, {}^{0}T'')$ is induced from V, by ;

$${}^0T'' = C \otimes TM \cap T''(V - o).$$

Here T''(V-o) means the space consisting of type (1,0) vectors on V-o. This pair $(M,^0 T'')$ is called a CR structure(or a CR manifold). For this CR structure, the deformation theory, related to the deformation theory

Received April 1, 2002.

Partially supported by Grant-in-Aid for Scientific Research (C) 12640219.

T. Akahori

of isolated singularities (V, o), is successfully developed by Kuranishi. After the great work of Kuranishi, we are interested in the mixed Hodge structure of CR manifolds. We take a supplement vector field ζ to ${}^{0}T'' + {}^{0}T'$, here ${}^{0}T' = \overline{{}^{0}T''}$. For this CR structure with the supplement vector field $\{(M, {}^{0}T''), \zeta\}$, we can introduce a mixed Hodge structure which should correspond to the mixed Hodge structure on a tubular neighborhood U of M in V. Here, we assume that there is a real vector field ζ satisfying:

(1)
$$\zeta_p \notin {}^0T_p'' + {}^0T_p'$$

(2)
$$[\zeta, \Gamma(M, {}^0T'')] \subset \Gamma(M, {}^0T'').$$

While, during our studying deformation theory of CR structures, we learn that: for Calabi-Yau manifolds, the Kuranishi family is unobstructed. So, in order to obtain the analogy to isolated singularities, Z^1 space is found(see [3]).

(3)
$$Z^1 = \{u : u \in F^{n-1,1}, d''u = 0, d'u = 0\}.$$

In the case complex manifolds, Z^1 might be translated as follows. For a tubular neighborhood U of M in V, we set

(4)
$$\{u: u \in \Gamma(U, \wedge^{n-1}(T'U)^* \wedge (T''U)^*), \overline{\partial}u = 0, \partial u = 0\}.$$

If $X^{(n)}$ is a compact n-dimensional Kaehler manifold, then

(5)
$$\{u: u \in \Gamma(X^{(n)}, \wedge^{n-1}(T'X^{(n)})^* \wedge (T''X^{(n)})^*), \overline{\partial}u = 0, \partial u = 0\}.$$

includes the $\overline{\partial}$ -harmonic space consisting of (n-1,1) forms. While, here, we are treating an open manifold U(tubular neighborhood of M). So even if the (n-1,1) Kohn-Rossi cohomology does not vanish(the existence of a non- trivial $\overline{\partial}$ -harmonic space consisting of (n-1,1) forms), the above space might be 0. Here we give a program to obtain a nontrivial element of (4) from a non- trivial simultaneous deformation.

Let \tilde{V} be the resolution of the isolated singularity with complex dimension n in \mathbb{C}^N , V, and π is the resolution map π ; $\tilde{V} \to V$. And consider non-trivial deformations of isolated singularity (V, o) with this resolution. Namely, π_t is a resolution map of V_t in \mathbb{C}^N , π_t ; $\tilde{V}_t \to V_t$, $t \in T$, where V_t is a deformation of V, \tilde{V}_t is a deformation of \tilde{V} , Tis an analytic space with the origin, and at the origin, $\pi_o = \pi$, $\tilde{V}_o =$ \tilde{V} , $V_o = V$. Furthermore, we assume that $V_t \subset \mathbb{C}^N$. Now we take a \mathbb{C}^{∞} trivialization i_t : a tubular neighborhood of $M_o \to$ a tubular neighborhood of M_t , which satisfies $i_t(M_o) = M_t$. In this setting, our program is as follows.

- (First Step) By using the simultaneous resolution, we construct a non-trivial (n, 0) form ω_t , which is not d exact on \tilde{V}_t for a generic t, and depends on t complex analytically. In general, "to give an (n, 0) form, satisfying a certain condition", might be easier than "to give an (n 1, 1) form with the corresponding condition".
- (Second Step) By choosing a proper C^{∞} trivialization of the simultaneous deformation, i_t ,

$$i_t^*\omega_t = \omega_0 + \omega_1 t + \cdots$$
, (expansion with respect to t).

• (<u>Third Step</u>) From $d\omega_t = 0$, it follows that: $d\omega_1 = 0$. By the definition, ω_1 is a form of type (n, 0) + (n - 1, 1) on $\tilde{V}_o - \pi^{-1}(o)$, we write it by;

$$\omega_1 = \omega_1^{(n,0)} + \omega_1^{(n-1,1)}.$$

As $d\omega_1 = 0$, this is equivalent to

$$\overline{\partial}\omega_1^{(n-1,1)} = 0,$$

 $\overline{\partial}\omega_1^{(n,0)} + \partial\omega_1^{(n-1,1)} = 0.$

The $\overline{\partial}$ -cohomology class, determined by $\omega_1^{(n-1,1)}$, is the induced one by the Kodaira-Spencer class of deformations. So, this must be non-trivial. In this setting, we would like to construct a nontrivial element of (4), associated with the given simultaneous deformation.

For the Third Step, we have to comment on a crucial point. The naive answer is that:

$$\partial \omega_1^{(n-1,1)} = 0 ?$$

This is too strong. There is an ambiguity to choose the C^{∞} trivialization, i_t . By changing the C^{∞} trivialization, $\omega_1(\text{resp. }\omega_1^{(n-1,1)})$ is replaced by $\omega_1 - du(\text{resp. }\omega_1^{(n-1,1)} - \overline{\partial}u)$, where u is an (n-1,1) form. Hence our problem(to obtain a non-trivial element of (4)) is reduced to that; is there any C^{∞} (n-1,1) form u, satisfying: $\overline{\partial}\omega_1^{(n-1,1)} - \partial\overline{\partial}u = 0$? This is so called " $\partial\overline{\partial}$ lemma". For a compact Kaehler manifold, by taking the harmonic part, this is always solvable. However, for an open manifold, this is not an easy problem. One of our conjecture is that; if $\omega_1^{(n-1,1)}$ is induced by the simultaneous deformation, then this might be solvable. In the next section, we study this conjecture in A_l singularities. §2. A_l singularities

Let

$$X = \{(z_1, \ldots, z_{n+1}) : (z_1, \ldots, z_{n+1}) \in C^{n+1}, z_1^2 + \cdots + z_{n+1}^{l+1} = 0\},\$$

where l is a positive integer. We call this isolated singularity A_l singularity. Consider a family of deformations of X,

$$X_t = \{(z_1, \ldots, z_{n+1}) : (z_1, \ldots, z_{n+1}) \in C^{n+1}, z_1^2 + \cdots + z_{n+1}^{l+1} = t\}.$$

Let $M = X \cap \{(z_1, \ldots, z_{n+1}) : |z_1|^2 + \cdots + |z_{n+1}|^2 = 1\}$. And consider a C^{∞} trivialization of this deformation over a neighborhood of M in X. Let $i_t : (z_1, \ldots, z_{n+1}) \to (z_1(t), \ldots, z_{n+1}(t))$, where

$$z_{1}(t) = z_{1} + \frac{1}{2k(z,\overline{z})}\overline{z}_{1}(1+|z_{n+1}|^{2} + \dots + |z_{n+1}|^{2l})t,$$

...
$$z_{n}(t) = z_{n} + \frac{1}{2k(z,\overline{z})}\overline{z}_{n}(1+|z_{n+1}|^{2} + \dots + |z_{n+1}|^{2l})t$$

$$z_{n+1}(t) = z_{n+1} + \frac{1}{(l+1)k(z,\overline{z})}\overline{z}_{n+1}^{l}t$$

Here

 $k(z,\overline{z}) = (1+|z_{n+1}|^2 + \dots + |z_{n+1}|^{2(l-1)})(|z_1|^2 + \dots + |z_n|^2) + |z_{n+1}|^2 l.$ So, on *M*, because of $|z_1|^2 + \dots + |z_n|^2 = 1 - |z_{n+1}|^2$, $k(z,\overline{z}) = 1$ holds. And,

$$z_{1}(t)^{2} + \dots + z_{n}(t)^{2} + z_{n+1}(t)^{l+1}$$

$$= z_{1}^{2} + \dots + z_{n}^{2} + z_{n+1}^{l+1}$$

$$+ \frac{1}{k(z,\overline{z})} \{ (1 + |z_{n+1}|^{2} + \dots + |z_{n+1}|^{2(l-1)}) (|z_{1}|^{2} + \dots + |z_{n}|^{2})$$

$$+ |z_{n+1}|^{2l} \} t + \text{higher order term of } t$$

$$\equiv t \mod t^{2}$$

By adjusting higher order term, we have a C^{∞} trivialization $i_t : X \to X_t$ over a neighborhood of M. However, in this paper, we discuss only differential forms of type (n-1, 1). So the above map is enough.

$\S 3.$ An approach to the First Step

In this section, we give a non-trivial holomorphic (n,0) form on $X_t \cap$ (a neighborhood of M in C^{n+1}), which depends on t, complex

analytically. Let $f = z_1^2 + \cdots + z_n^2 + z_{n+1}^{l+1}$. Like in [2], we, first, set a type (1,0) vector field Z_f , defined on a neighborhood of M in the C^{n+1} , as follows. Let Ω be the standard symplectic form.

$$\Omega = \sum_{i=1}^{n+1} \sqrt{-1} dz_i \wedge d\overline{z}_i.$$

By using this metric, we define a (1, 0) vector field Z_f on a neighborhood of M by;

$$df(X) = \Omega(X, \overline{Z}_f)$$
, for all (1,0) vector field X.

This Z_f is easily written down as follows.

$$Z_f = \sqrt{-1} \sum_{i=1}^{n+1} \overline{\left(\frac{\partial f}{\partial z_i}\right)} \frac{\partial}{\partial z_i}$$
$$= \sqrt{-1} \{\sum_{i=1}^n 2\overline{z}_i \frac{\partial}{\partial z_i} + (l+1)\overline{z}_{n+1}^l \frac{\partial}{\partial z_{n+1}} \}.$$

So,

$$Z_f(f) = \sqrt{-1} (2^2 \sum_{i=1}^n |z_i|^2 + (l+1)^2 |z_{n+1}|^{2l})$$

$$\neq 0 \text{ on a neighborhood of } M.$$

Let $\omega = dz_1 \wedge \cdots \wedge dz_{n+1}$. For X_t , we set a holomorphic (n, 0) form $\omega'(t)$, which depends on t, complex analytically by ;

 $\omega'(t) = Z_f \rfloor \omega$ on X_t (inner product with vector field Z_f).

And set

$$\omega'_t = \frac{1}{\sum_{i=1}^n 2^2 |z_i|^2 + (l+1)^2 |z_{n+1}|^{2l}} \omega'(t).$$

By the type of ω , our ω'_t is of type (n, 0) on X_t . We must show that our ω'_t is holomorphic on X_t . For this, we recall the following lemma.

Lemma 3.1. $\omega = -\sqrt{-1}df \wedge \omega'_t$ on a neighborhood of M.

We sketch the proof of this lemma. For a point p of a neighborhood of M in C^{n+1} , $T'_p C^{n+1}$ is spanned by Z_f and $\{X_i(p)\}_{1 \le i \le n}$, which satisfy $X_i(p)f = 0$. So, with these vector fields, just by a direct computation, we have our lemma. By this lemma, on X_t ,

$$d\omega'_t = 0.$$

We have to see that our ω'_o is not a d-exact on $X_o = X$. But if we restric ω_t to

$$\{(z_1,\cdots,z_n,z_{n+1}): z_1^2+\cdots+z_n^2+z_{n+1}^{l+1}=0, z_{n+1}=0\}$$

a complex n-1 dimensional A_1 singularity, then it gives a non-trivial n-1 dimensional cohomology(by the definition of our ω'_t , it coincides with nontrivial element, constructed in [2]). So, we have a non trivial form.

$\S4$. An approach to the Third Step

By the C^{∞} trivialization of the simultaneous deformations, i_t , constructed in Section 2, on a tubular neighborhood of M,

 $i_t^* \omega_t = \omega_0 + \omega_1 t + \cdots$, (expansion with respect to t).

We explain a difficulty about this part. For example, we take A_1 singularity (in our notations, l = 1). Then, in the C^{∞} isomorphism map, i_t , as a denominator, $k(z, \overline{z})$ appears. Only on the boundary case(CR case)

 $k(z,\overline{z}) = 1$ on the boundary.

But we are treating the tubular neighborhood case. So, it is not so valid that there is no extra non-trivial (n, 0) term of ω_1 (we write it by $\omega_1^{(n,0)}$). Fortunately, for the case l = 1 (the case of an ordinary double point), (n, 0) term doesn't appear(this means that it is not necessary to change the C^{∞} trivialization i_t , constructed in Section 2). So, in this case, $d\omega_1 = 0$ means that; $\partial\omega_1 = 0$ and $\overline{\partial}\omega_1 = 0$. For the other l, we have to control the difficulty which arises from the term $k(z, \overline{)}$. In another paper, we discuss the other case.

For the case l = 1, the C^{∞} isomorphism map is as follows.

$$z_i(t) = z_i + \frac{1}{2\sum_{i=1}^{n+1} |z_i|^2} \overline{z}_i t, \quad i = 1, \dots, n+1.$$

And

$$Z_f = 2(\sum_{i=1}^{n+1} \overline{z}_i \frac{\partial}{\partial z_i}).$$

In order to simplify the sketch, we assume n = 2. Then,

$$Z_f = 2(\overline{z}_1 \frac{\partial}{\partial z_1} + \overline{z}_2 \frac{\partial}{\partial z_2} + \overline{z}_3 \frac{\partial}{\partial z_3})$$

And so,

$$Z_{f} \rfloor \omega = 2(\overline{z}_{1}dz_{2} \wedge dz_{3} - \overline{z}_{2}dz_{1} \wedge dz_{3} + \overline{z}_{3}dz_{1} \wedge dz_{2}),$$

$$Z_f(f) = 4(|z_1|^2 + |z_2|^2 + |z_3|^2)$$

= 4r².

Here $r^2 = |z_1|^2 + |z_2|^2 + |z_3|^2$. And

$$z_{1}(t) = z_{1} + \frac{1}{2} \frac{1}{r^{2}} \overline{z}_{1} t,$$

$$z_{2}(t) = z_{2} + \frac{1}{2} \frac{1}{r^{2}} \overline{z}_{2} t,$$

$$z_{3}(t) = z_{3} + \frac{1}{2} \frac{1}{r^{2}} \overline{z}_{3} t.$$

Now we compute ω_1 .

$$\begin{split} i_t^*(\frac{1}{4r^2}Z_f \rfloor \omega) &= \frac{1}{2} i_t^*(\frac{1}{r^2}(\overline{z}_1 dz_2 \wedge dz_3 - \overline{z}_2 dz_1 \wedge dz_3 + \overline{z}_3 dz_1 \wedge dz_2)) \\ &= \frac{1}{2} (\frac{\overline{z}_1(t) dz_2(t) \wedge dz_3(t) - \overline{z}_2(t) dz_1(t) \wedge dz_3(t) + \overline{z}_3(t) dz_1(t) \wedge dz_2(t))}{z_1(t)\overline{z}_1(t) + z_2(t)\overline{z}_2(t) + z_3(t)\overline{z}_3(t)}) \\ &= \frac{1}{2} (\frac{\overline{z}_1 dz_2(t) \wedge dz_3(t) - \overline{z}_2 dz_1(t) \wedge dz_3(t) + \overline{z}_3 dz_1(t) \wedge dz_2(t))}{z_1(t)\overline{z}_1 + z_2(t)\overline{z}_2 + z_3(t)\overline{z}_3}) \mod(t^2, \overline{t}) \\ &= \frac{1}{2} (\frac{\overline{z}_1 dz_2(t) \wedge dz_3(t) - \overline{z}_2 dz_1(t) \wedge dz_3(t) + \overline{z}_3 dz_1(t) \wedge dz_2(t))}{z_1\overline{z}_1 + z_2\overline{z}_2 + z_3\overline{z}_3}) \\ &= \frac{1}{2} (\frac{\overline{z}_1 dz_2(t) \wedge dz_3(t) - \overline{z}_2 dz_1(t) \wedge dz_3(t) + \overline{z}_3 dz_1(t) \wedge dz_2(t))}{z_1\overline{z}_1 + z_2\overline{z}_2 + z_3\overline{z}_3}) \\ &= \frac{1}{2} (\frac{\overline{z}_1 dz_2(t) \wedge dz_3(t) - \overline{z}_2 dz_1(t) \wedge dz_3(t) + \overline{z}_3 dz_1(t) \wedge dz_2(t))}{z_1\overline{z}_1 + z_2\overline{z}_2 + z_3\overline{z}_3}) \\ &= \frac{1}{2} (\frac{\overline{z}_1 dz_2(t) \wedge dz_3(t) - \overline{z}_2 dz_1(t) \wedge dz_3(t) + \overline{z}_3 dz_1(t) \wedge dz_2(t))}{z_1\overline{z}_1 + z_2\overline{z}_2 + z_3\overline{z}_3}) \\ &= \frac{1}{2} (\frac{\overline{z}_1 dz_2(t) \wedge dz_3(t) - \overline{z}_2 dz_1(t) \wedge dz_3(t) + \overline{z}_3 dz_1(t) \wedge dz_2(t))}{z_1\overline{z}_1 + z_2\overline{z}_2 + z_3\overline{z}_3}) \\ &= \frac{1}{2} (\frac{\overline{z}_1 dz_2(t) \wedge dz_3(t) - \overline{z}_2 dz_1(t) \wedge dz_3(t) + \overline{z}_3 dz_1(t) \wedge dz_2(t))}{z_1\overline{z}_1 + z_2\overline{z}_2 + z_3\overline{z}_3} \\ &= \frac{1}{2} (\frac{\overline{z}_1 dz_2(t) \wedge dz_3(t) - \overline{z}_2 dz_1(t) \wedge dz_3(t) + \overline{z}_3 dz_1(t) \wedge dz_2(t))}{z_1\overline{z}_1 + z_2\overline{z}_2 + z_3\overline{z}_3} \\ &= \frac{1}{2} (\frac{\overline{z}_1 dz_2(t) \wedge dz_3(t) - \overline{z}_2 dz_1(t) \wedge dz_3(t) + \overline{z}_3 dz_1(t) \wedge dz_2(t))}{z_1\overline{z}_1 + z_2\overline{z}_2 + z_3\overline{z}_3} \\ &= \frac{1}{2} (\frac{\overline{z}_1 dz_2(t) \wedge dz_3(t) - \overline{z}_2 dz_1(t) \wedge dz_3(t) + \overline{z}_3 dz_1(t) \wedge dz_2(t))}{z_1\overline{z}_1 + z_2\overline{z}_2 + z_3\overline{z}_3} \\ &= \frac{1}{2} (\frac{\overline{z}_1 dz_2(t) \wedge dz_3(t) - \overline{z}_2 dz_1(t) \wedge dz_3(t) + \overline{z}_3 dz_1(t) \wedge dz_2(t))}{z_1\overline{z}_1 + z_2\overline{z}_2 + z_3\overline{z}_3} \\ &= \frac{1}{2} (\frac{\overline{z}_1 dz_2(t) \wedge dz_3(t) - \overline{z}_2 dz_1(t) \wedge dz_3(t) + \overline{z}_3 dz_1(t) \wedge dz_2(t))}{z_1\overline{z}_1 + z_2\overline{z}_2 + z_3\overline{z}_3} \\ &= \frac{1}{2} (\frac{\overline{z}_1 dz_2(t) \wedge dz_3(t) - \overline{z}_2 dz_1(t) \wedge dz_3(t) + \overline{z}_3 dz_1(t) \wedge dz_2(t))}{z_1\overline{z}_1 + z_2\overline{z}_2 + z_3\overline{z}_3} \\ &= \frac{1}{2} (\frac{\overline{z}_1$$

While

$$\begin{split} \overline{z}_1 dz_2(t) \wedge dz_3(t) &= \overline{z}_1 (dz_2 + \frac{1}{2} (d(\frac{1}{r^2})) \overline{z}_2 t + \frac{1}{2} \frac{1}{r^2} d\overline{z}_2 t) \wedge (dz_3 + \frac{1}{2} (d(\frac{1}{r^2})) \overline{z}_3 t + \frac{1}{2} \frac{1}{r^2} d\overline{z}_3 t) \\ &\equiv \overline{z}_1 dz_2 \wedge dz_3 + \{ \overline{z}_1 \frac{1}{2} (d(\frac{1}{r^2})) \overline{z}_2 \wedge dz_3 + \overline{z}_1 \frac{1}{2} \frac{1}{r^2} d\overline{z}_2 \wedge dz_3 \\ &+ \overline{z}_1 dz_2 \wedge \frac{1}{2} (d(\frac{1}{r^2})) \overline{z}_3 + \overline{z}_1 dz_2 \frac{1}{2} \frac{1}{r^2} d\overline{z}_3 \} t \mod t^2. \end{split}$$

Therefore from this term, (2,0) part is

$$\frac{1}{2}\overline{z}_1\overline{z}_2\partial(\frac{1}{r^2})\wedge dz_3 + \frac{1}{2}\overline{z}_1\overline{z}_3dz_2\wedge\partial(\frac{1}{r^2}).$$

T. Akahori

By the same way, from $-\overline{z}_2 dz_1(t) \wedge dz_3(t)$, as a (2,0) part,

$$-rac{1}{2}\overline{z}_1\overline{z}_2\partial(rac{1}{r^2})\wedge dz_3-rac{1}{2}\overline{z}_2\overline{z}_3dz_1\wedge\partial(rac{1}{r^2}).$$

And from $\overline{z}_3 dz_1(t) \wedge dz_2(t)$, (2,0) part is

$$\frac{1}{2}\overline{z}_1\overline{z}_3\partial(\frac{1}{r^2})\wedge dz_2+\frac{1}{2}\overline{z}_2\overline{z}_3dz_1\wedge\partial(\frac{1}{r^2}).$$

So summing up these three terms, in this case, we see that (2,0) part does not appear.

References

- T. Akahori, P. M. Garfield, J. M. Lee, Deformation theory of fivedimensional CR structures and the Rumin complex, Michigan Math. J. 50 (2002), 517-549.
- [2] T. Akahori, P. M. Garfield, On the ordinary double point from the point of view of CR structures.
- [3] T. Akahori, K. Miyajima, An analogy of Tian-Todorov theorem on deformations of CR structures, Compositio mathematica 85 (1993), no.1, 57-85.
- [4] T. Akahori, A mixed Hodge structure on a CR manifold, MSRI preprint 1996-026

Department of Mathematics Himeji-Inst. of Technology Himeji, 671-2201 Japan