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On the middle dimension cohomology of 
Az singularity 

Takao Akahori 

Abstract. 

Let (V, o) be a normal isolated singularity in a complex Euclidean 
space ( CN, o). Let M be the intersection of this singularity and the 
real hypersphere s;N-1(o), centered at the origin o with an e radius. 
Then, naturally, this link M admits a CR structure, induced from V, 
and the deformation theory of this CR structures has been studied 
in [1], [2],[3]. Especially in [3], a particular subspace of the infinitesi
mal deformation space is found, and we propose to study the relation 
between this subspace and simultaneous deformation. We note that: 
if the canonical line bundle of the CR structure is trivial, then the 
infinitesimal space of the deformation of CR structures is a part of 
the middle dimension cohomology. And in this line, we conjecture 
that Z 1 ' introduced in [3]' might be related to the simultaneous de
formation of isolated singularity (V,o)(see also [2]). We discuss this 
problem for Az singularities. 

§1. Motivation and Z 1 -space 

Let (V(n), o) be an isolated singularity in a complex eucliean space 
(eN' 0) 0 We consider the intersection 

Then M is a compact non-singular real2n-1 dimensional coc manifold, 
and a CR structure (M, 0T") is induced from V, by; 

0T" = C ® TM n T"(V ~ o). 

Here T"(V -o) means the space consisting of type (1, 0) vectors on V -o. 
This pair (M,0 T") is called a CR structure( or a CR manifold). For this 
CR structure, the deformation theory, related to the deformation theory 
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of isolated singularities (V, o), is successfully developed by Kuranishi. 
After the great work of Kuranishi, we are interested in the mixed Hodge 
structure of CR manifolds. We take a supplement vector field ( to 
0r" + 0r', here 0r' = 0r". For this CR structure with the supplement 
vector field {(M, 0r"), (}, we can introduce a mixed Hodge structure 
which should correspond to the mixed Hodge structure on a tubular 
neighborhood U of Min V. Here, we assume that there is a real vector 
field ( satisfying: 

(1) 

(2) 

/" d or" + or' "'P 'F p p 

[(, r(M, 0 r")] c r(M, 0r"). 

While, during our studying deformation theory of CR structures, we 
learn that: for Calabi-Yau manifolds, the Kuranishi family is unob
structed. So, in order to obtain the analogy to isolated singularities, Z 1 

space is found(see [3]). 

(3) Z 1 = {u: u E Fn-l, 1,d"u = O,d'u = 0}. 

In the case complex manifolds, Z 1 might be translated as follows. 
For a tubular neighborhood U of M in V, we set 

(4) {u: u E r(U, 1\n-l(r'U)* 1\ (r"U)*), au= 0, au= 0}. 

If x<n) is a compact n-dimensional Kaehler manifold, then 

(5) {u: u E r(X(n), 1\n-l(r' x<n))* 1\ (r" x<n))*), au= 0, au= 0}. 

includes the a-harmonic space consisting of (n- 1, 1) forms. While, 
here, we are treating an open manifold U(tubular neighborhood of M). 
So even if the (n- 1, 1) Kohn-Rossi cohomology does not vanish( the 
existence of a non- trivial a-harmonic space consisting of (n-1, 1) forms), 
the above space might be 0. Here we give a program to obtain a non
trivial element of ( 4) from a non- trivial simultaneous deformation. 

Let V be the resolution of the isolated singularity with complex 
dimension n in eN, v, and 7r is the resolution map 7rj v ~ v. And 
consider non-trivial deformations of isolated singularity (V, o) with this 
resolution. Namely, 7rt is a resolution map of vt in eN , 7rti Vt ~ vt, 
t E r, where vt is a deformation of V, Vt is a deformation of V, r 
is an analytic space with the origin, and at the origin, 1r 0 = 1r, V0 = 
V, V0 = V. Furthermore, we assume that vt C CN. Now we take 
a coo trivialization it : a tubular neighborhood of M 0 ~ a tubular 
neighborhood of Mt, which satisfies it(M0 ) = Mt. In this setting, our 
program is as follows. 
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• (First Step) By using the simultaneous resolution, we construct a 

non-trivial (n, 0) form Wt, which is not d exact on Vt for a generic 
t, and depends on t complex analytically. In general, "to give an 
(n, 0) form, satisfying a certain condition", might be easier than 
"to give an ( n - 1, 1) form with the corresponding condition". 

• (Second Step) By choosing a proper c= trivialization of the si
multaneous deformation, it, 

i; Wt = wo + w1 t + · · · , (expansion with respect to t). 

• (Third Step) From dwt = 0, it follows that: dw1 = 0. By the 
definition, w1 is a form of type (n, 0) + (n -1, 1) on V0 - 1r-1 (o), 
we write it by; 

_ (n,O) + (n-1,1) 
w1- w 1 w 1 • 

As dw1 = 0, this is equivalent to 

"E (n-1,1) _ O uw1 - , 

"E (n,O) + <:~ (n-1,1) _ O uw1 uw1 - . 

The a-cohomology class, determined by w~n- 1 ' 1), is the induced 
one by the Kodaira-Spencer class of deformations. So, this must 
be non-trivial. In this setting, we would like to construct a non
trivial element of ( 4), associated with the given simultaneous de
formation. 

For the Third Step, we have to comment on a crucial point. The 
naive answer is that: 

!l (n-1,1) _ O ? uw1 - . 

This is too strong. There is an ambiguity to choose the c= trivialization, 
it. By changing the c= trivialization, w 1(resp. w~n- 1 ' 1 )) is replaced by 

(n 11) -
w1 - du(resp. w 1 - ' - 8u), where u is an (n- 1, 1) form. Hence our 
problem(to obtain a non-trivial element of (4)) is reduced to that; is 
there any c= (n -1, 1) form u, satisfying: aw~n- 1 ' 1)- aau = 0? This is 
so called "88 lemma". For a compact Kaehler manifold, by taking the 
harmonic part, this is always solvable. However, for an open manifold, 
this is not an easy problem. One of our conjecture is that; if w~n- 1 ' 1 ) is 
induced by the simultaneous deformation, then this might be solvable. 
In the next section, we study this conjecture in Az singularities. 



40 T. Akahori 

§2. At singularities 

Let 

X = {(zl, ... 'Zn+l) : (zl, ... 'Zn+l) E cn+l' zi + ... + z~~\ = 0}, 

where l is a positive integer. We call this isolated singularity At singu
larity. Consider a family of deformations of X, 

Xt = {(zl, ... 'Zn+d: (zl, ... ' Zn+l) E cn+l' zi + ... + z~~\ = t}. 

Let M =X n {(z1, ... , Zn+l) :I z1 12 + · · · + I Zn+l 12= 1 }. And consider 
a c= trivialization of this deformation over a neighborhood of M in X. 
Let it: (z1, ... ,Zn+l)-+ (zl(t), ... ,zn+l(t)), where 

1 - 12 12t) Zn + 2k(z, z) Zn(1+ I Zn+l + ... + I Zn+l t 

1 t 
Zn+l + (l + 1)k(z,z)Zn+lt 

Here 

k(z, z) = (1+ I ZnHI 2 + .. ·+I Zn+ll 2(t-l))(l zll 2 + .. +I Zn 12)+ I ZnHI 2 l. 

So, on M, because of I z1 12 + · · · + I Zn 12= 1- I Zn+l 12, k(z, z) = 1 
holds. And, 

Z1(t) 2 + '· · + Zn(t)2 + Zn+l(t)t+l 

z2 + ... + z2 + zt+l 
1 n n+l 

+ k(:,z) {(1 +I ZnHI 2 +··+I Zn+ll 2(t-l))(l z1l 2 +··+I Zn 12) 

+ I Zn+l l2t}t +higher order term of t 

t mod t2 

By adjusting higher order term, we have a c= trivialization it : X -+ Xt 
over a neighborhood of M. However, in this paper, we discuss only 
differential forms of type ( n - 1, 1). So the above map is enough. 

§3. An approach to the First Step 

In this section, we give a non-trivial holomorphic (n, 0) form on 
Xt n (a neighborhood of M in cn+1), which depends on t, complex 
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analytically. Let f = zr + · · · + z~ + z!,~\. Like in [2], we, first, set a 
type (1, 0) vector field z1, defined on a neighborhood of Min the en+ I, 

as follows. Let n be the standard symplectic form. 

n+l 

n = 2::: v=Tdzi 1\ azi. 
i=l 

By using this metric, we define a (1, 0) vector field z1 on a neighborhood 
of M by; 

df(X) = Sl(X, Z f), for all (1, 0) vector field X. 

This Z f is easily written down as follows. 

So, 

n+lar a 
vCT"'(-)-
~ az az 
i=l t t 

n 

i=l 

=/= 0 on a neighborhood of M. 

Let w = dz1 1\ · · · 1\ dzn+l· For Xt, we set a holomorphic (n, 0) form 
w'(t), which depends on t, complex analytically by ; 

w'(t) = ZJJw on Xt (inner product with vector field ZJ)· 

And set 

w~ = 2::122 I Z; 12 +~l + 1)2 I Zn+l 12lw'(t). 

By the type of w, our w~ is of type (n, 0) on Xt. We must show that our 
w~ is holomorphic on Xt. For this, we recall the following lemma. 

Lemma 3.1. w = -Hdf 1\ w~ on a neighborhood of M. 

We sketch the proof of this lemma. For a point p of a neighborhood 
of Min en+ I, T~cn+l is spanned by Z f and {Xi (p) h::;i::;n, which satisfy 
X;(p)f = 0. So, with these vector fields, just by a direct computation, 
we have our lemma. 
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By this lemma, on Xt, 
dw~ = 0. 

We have to see that our w~ is not a d-exactn on Xo = X. But if we 
restric Wt to 

{(z1, · · · , Zn, Zn+I) : zi + · · · + z; + z~"t\ = 0, Zn+l = 0} 

a complex n- 1 dimensional A 1 singularity, then it gives a non-trivial 
n - 1 dimensional cohomology(by the definition of our wi, it coincides 
with nontrivial element, constructed in [2]). So, we have a non trivial 
form. 

§4. An approach to the Third Step 

By the coo trivialization of the simultaneous deformations, it, con
structed in Section 2, on a tubular neighborhood of M, 

i;wt = wo + w1t + · · · , (expansion with respect tot). 

We explain a difficulty about this part. For example, we take A1 

singularity (in our notations, l = 1). Then, in the coo isomorphism map, 
it, as a denominator, k(z, z) appears. Only on the boundary case(CR 
case) 

k(z, z) = 1 on the boundary. 

But we are treating the tubular neighborhood case. So, it is not so 
valid that there is no extra non-trivial (n, 0) term of w1 (we write it by 
w~n,o) ). Fortunately, for the case l = 1 (the case of an ordinary double 
point ) , ( n, 0) term doesn't appear( this means that it is not necessary 
to change the coo trivialization it, constructed in Section 2). So, in 
this case, dw1 = 0 means that; 8w1 = 0 and 8w1 = 0. For the other l, 
we have to control the difficulty which arises from the term k(z, ). In 
another paper, we discuss the other case. 

For the case l = 1, the coo isomorphism map is as follows. 

And 
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In order to simplify the sketch, we assume n = 2. Then, 

a a a z1 =2(zl-a +z2-a +z3-a ) 
Z1 Z2 Z3 

And so, 

ZJ(f) = 4(1 Zl 12 +I Z2 12 +I Z3 12) 

= 4r2 . 

Here r 2 =I Z1 12 +I Z2 12 +I Z3 12. And 

1 1 
z1(t) z1+2r2z1t, 

1 1 
z2(t) z2 + 2 r 2 z2t, 

1 1 
Z3(t) Z3 + --z3t. 

2 r 2 

Now we compute WI· 

1 1 1 
i; ( 4r 2 ZJ Jw) = 2i;( r 2 (z1dz2 Adz3- z2dz1 Adz3 +z3dz1 Adz2)) 

= ~ ( Z1 (t)dz2(t) Adz3(t)- z2(t)dz1 (t) Adz3(t) + z3(t)dz1 ( t) Adz2 (t))) 
2 Z1 (t)zl (t) + Z2( t)z2(t) + Z3(t)z3 (t) 

=- _1 (z1dz2(t) A dz3(t)-z2dz1(t)Adz3(t)+z3dz1(t) A dz2(t))) 2 mod(t , t) 
2 z1(t)z1 +z2(t)z2+z3(t)z3 

= ~ ( z1dz2( t) Adz3 (t)- z2dz1 (t) Adz3(t) +z3dz1 (t) Adz2(t))) 
2 Z1Z1 +z2z2+Z3Z3 
because of z~ + z~ + zj = 0. 

While 

1 1 11 1 1 11 
z 1dz2(t) Adz3(t) = z 1 (dz2 + 2 (d(r2) )z2t+ 2 r 2 dz2t) A(dz3 + 2(d( r 2) )z3t+ 2 r 2 dZ3t) 

1 1 1 1 = z 1dz2 A dz3 + {z1 2 (d(r2))z2 A dz3 + z1 2 r 2dZ2 A dz3 

1 1 1 1 
+ z1dz2 A 2 (d(r2 ))z3 + z1dz2 2 r 2dZ3}t mod t2. 

Therefore from this term, (2, 0) part is 

1 1 1 1 
2z1z2a(r2) Adz3 + 2z1z3dz2 Aa(r2). 
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By the same way, from -:z2dz1 (t) A dz3 (t), as a (2, 0) part, 

1 1 1 1 
-2z1z28(r2) Adz3- 2z2z3dz1 A8(r2). 

And from z3dz1 (t) A dz2 (t), (2, 0) part is 

1 1 1 1 
2Z1Z38(r2) A dz2 + 2Z2Z3dz1 A 8(r2 ). 

So summing up these three terms, in this case, we see that (2, 0) part 
does not appear. 
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