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Some Comments about Ito's Construction Procedure 

Daniel W. Stroock 

For K. Ito on his 88th birthday 

Abstract. 

This article reviews Ito's procedure for constructing the Markov 
process generated by variable coefficient Levy-Khinchine operators. 
In particular, it examines conditions under which Ito's procedure suc­
ceeds but more analytic procedures appear to fail. 

§0 Introduction 

In his famous memoir [1], Ito dealt with the construction of Markov 
processes corresponding to variable coefficient Levy-Khinchine opera­
tors. His method rests on the ability to represent of the action of Levy­
Khinchiiie operator L with diffusion coefficient x---+ a(x), drift coefficient 
x ---+ b(x), and Levy measure x ---+ M(x, ·) on a cp E C~(JRn; IR) in the 
form 

n n 

i,j=l i=l 

(0.1) + f (cp(x+F(x,y))-cp(x) 
jiR"'\{0} 

- l[o,lJ (IYI) (F(x, y), grad.,cp )JR ... ) M(dy), 

for appropriate functions a : !Rn --+ Hom(!Rn; !Rn), c : !Rn --+ !Rn, 
F : !Rn x !Rn --+ !Rn, and Levy measure M. In order for his method to 
have a chance of working, these functions must be at least (Borel) mea­
surable, and, in practice, they must be much better than that. Indeed, 
apart from refinements (cf. [6]), which are important but of restricted 
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applicability, what one needs is that a and c be uniformly Lipschitz 
continuous and that F satisfy conditions of the form: 

(0.2) 

for each R E (0, oo). Under these conditions it is possible to carry out 
(cf. §3.1 and §4.1 in [3]) Ito's procedure for constructing the Markov 
process corresponding to x----+ (a(x), b(x), M(x. · )) by transforming the 
paths of the Levy process whose continuous part is standard Brownian 
motion and whose Levy part is the symmetric Cauchy process whose 

Levy measure is Mo(dy) = llR"\{o}(Y) 1yj!rH. 
Assuming that x ----+ a(x), x ----+ b(x), and x ----+ M(x, ·) are mea­

surable, it is always possible ( cf. §3.2, and especially Theorem 3.2.5, in 
[3]) to make measurable choices of x ----+ a and (x, y) ----+ F(x, y) so that 
(0.1) holds. In addition, it is well-known (cf. §3.2.1 in [3]) that the non­
negative definite, symmetric square root of x ----+ a(x) will be uniformly 
Lipschitz if either x ----+ a(x) is uniformly Lipschitz and uniformly pos­
itive definite or a and its second derivatives a are uniformly bounded. 
On the other hand, it is much less clear what smoothness properties of 
x ----+ M(x, ·) will guarantee that F can be chosen so that (0.2) holds. 
Because it is the Levy term which poses the greatest challenge to tra­
ditional analytic techniques, it may be of interest to investigate how 
successful Ito's theory is with it, and that is what we will be doing here. 

§ 1 Basic Result 

In this section we will show how to construct an F satisfying (0.2) 
when x----+ M(x, ·) can be expressed in the form 

(1.1) M(x,r) =Wn-1 r ( r lr(rw),B(x,w,r)dr) p,(dw) 
Jsn-1 J(o,oo) 

for r E ~"\{0}• where Wn-1 is the area of the unit sphere §n-1 in !Rn, 

p, E M1 (§n-1 ) (i.e., p, is a Borel probability measure on sn-1 ), and 
,8 : JRn X §n-1 X (0, oo) --+ (0, oo) is a measurable function with the 
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properties that 

(1.2) [ f3(x,w,r)dr = oo for all (x,w) E !Rn x §n-1, 
J(o,oo) 

(1.3) f 1 {3( )d & 1 r2{3(x,w,r) d 
in x, w, s s > 0 sup 2 r < oo, 

(x,w) (1,oo) (x,w) (O,oo) 1 + r 

(1.4) lim sup [ r2{3(x,w,r)dr=0= lim sup f {3(x,w,s)ds, 
R",.O (x,w) J(o,R] R-+oo (x,w) J[R,oo) 

and, for each (w,r) E §n-1 x (O,oo), {3( · ,w,r) has a continuous deriva­
tive which satisfies 

(1.5) sup f 
(x,w) J(o,R] 

(Irr,=) lgradxf3C., w, s) 1 ds f d 
r < oo 

{3(x,w,r) 

for each R E (0, oo). 

The construction of F in this case can be carried out as follows. 
First, one determines p : !Rn x §n-1 x (0, oo) ___. (0, oo) so that 

1 f3(x,±1,s)ds = 2!L({±1}) when n = 1 
(p(x,±1,r),oo) r 

and 

[ 1 Jr. {3(x,w,s)ds =-
[p(x,w,r),oo) r 

when n,::::: 2. 

Second, f: §n-1 ___. §n-l is chosen so that f(w) = w when n = 1 and, 
when n ,::::: 2, f is a measurable map with the property that j*Asn-1 = 
Wn-1/L, where j*Asn-1 denotes the pushforward under f of the standard 
surface measure Asn-1 on §n- 1 . (The existence of such an f is assured by 
Theorem 3.2.5 in [3].) Finally, one takes F(x, rw) = p(x, f(w), r)f(w). 

To see that this F does the job, begin by observing that, by con-
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struction, 

1 cpoF(x,y) I di~+l = r ( r cpoF(x,rw)d;) Asn-1(dw) 
R."\{O} Y lsn-1 J(o,oo) r . 

= f ( f cp(rf(w))f3(x,J(w),r) dr) >.8 .. -1(dw) 
Jsn-1 J(o,oo) 

=1 cp(y)Af(x,dy) 
lR"\{0} 

for any cp E C(!Rn \ {0}; [0, oo)). That is, 

(1.6) { cp o F(x, y) Afo(dy) = f cp(y) Af(x, dy) 
jR"\{0} jlR"\{0} 

for cp E C(!Rn\{O};[O,oo)). Thus, if'I/J E C00 (BJRn(O,l);!Rn) satisfies 
11/J(y)- yJ ::::; CJyj2 for some C < oo and we adopt 

(1.7) KMcp(x) = { ( cp(x+y)-cp(x)- ('1/J(y), gradxcp)IR,.) Af(x, dy) 
jR"\{0} 

as the operator associated with x ~ Af(x, ·),then KMcp(x) is equal to 

f>i(x)8icp(x) + 1 (cp(x + F(x, y)) - cp(x) 
i=l lR"\{0} 

- l[o,lj(Jyl) (F(x, y), gradxcp )lR,.) Afo(dy) 

where c : !Rn ~ !Rn is given by 

(1.8) c(x) = 1 ( l[o,l] (Jyj)F(x, y) -'1/J(F(x, y))) Afo(dy). 
lR"\{0} 

Next, we need to check that F satisfies (0.2) and c is uniformly 
Lipschitz. To this end, first observe that, by (1.6), 

r IF(x, y)J 2 d~+l = f IYI 2 Af(x, dy) 
Jo<IYI~r JyJ {y:O<IYI~R(r)} 

::::; sup/ r2{3(x,w,r) dr, 
w {O<IYI~R(r)} 

where R(r) = sup(x,w)P(x,w,r). Since, by the second part of (1.4), 
R(r) < oo for all r E (0, oo), we know that the second line of (0.2) holds. 
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At the same time, from second part of (1.3), we know that R(r) '\, 0 as 
r '\, 0, and so the first line of (0.2) also holds. 

Turning to the last line of (0.2), observe that 

8xF(. 'rw) = Jrp(x,j(w),r),oo) 8xf3(. 'f(w), s) ds J(w), 
{J(x,J(w),p(x,f(w),r) 

and therefore, by (1.6), that 

{ IF(x2,y) -F(x1,y)i 2 i dj::+l 
Jo<IYI'S.R Y 

2 1 ( /rr,oo) jgradxf3( ·, w, s) Ids) 2 

::::; lx2 - x1l sup dr. 
(x,w) (O,R(r)] {J(x, W, r) 

Hence the third line of (0.2) follows from (1.5). 
Finally, we must check that the c in (1.8) is uniformly Lipschitz 

continuous. But, since 

c(x) =1 (1/J(F(x,y))-F(x,y))Mo(dy)+[ 1/J(F(x,y))Mo(dy), 
O<IYI9 JIYI?.l 

we can use the first part of (1.3) and the same line ofreasoning as above 
to see that there is an r E (0, oo) and a C < oo for which 

l8xci::::; Csup [ p(x,w,s)i8xp(-,w,s)i d~ 
w lco,r] s 

::::; Csup [ s ( [ l8xf3( · ,w, a)l da) ds 
w lco,R] J[s,oo) 

~------------------------

1 2 1 (Jrs,oo) l8xf3( ·, w, a)j da) 2 

::::; C sup s {J(x, w, s) ds {3( ) ds. 
w (O,R] (O,R] X, W, S 

Hence, by the second part of (1.3) and (1.5), it is clear that cis uniformly 
Lipschitz. 

By the results in §3.1 of [3], we can now say that when Misgiven 
by (1.1) with a {3 satisfying (1.2)-(1.5), then Ito's construction leads to 
a Markov process which corresponds to the operator KM in (1.7) in the 
sense that, starting at each x E JRn, the process solves the martingale 
problem (cf. §3 below) for KM on c;(lRn;lR). 
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An Example: In order to demonstrate that Ito's theory can handle 
situations which defy more analytic methodology, consider the case when 

f3(x, w, r) = a(x, w )r-1--\(x,w), 

where a : ~n X §n-1 ~ [ab a2] and >. : ~n X §n-1 ~ [>.1, >.2] are 
measurable functions, 0 < a 1 :::; a 2 < =, and 0 < >.1 :::; >.2 < 2. 
Assuming that a( · , w) and >.( · , w) are continuously differentiable for 
each wand that (x,w) ""'"'gradxa( · ,w) and (x,w) ""'"'grad"'>.(· ,w) are 
bounded, one can easily verify that f3's of this sort satisfy (1.2)-(1.5). 
The reason why traditional analytic approaches would have difficulties 
with an operator KM of the form in (1.7) when M is given by (1.1) 
with these f3's is that, unless >. is independent of x, KM will have no 
principal part. For this reason, perturbative techniques, like those on 
which standard pseudodifferential arguments ( cf. [2]) depend, do not 
apply. 

Remark: It is reasonable to ask whether there is any advantage to be 
gained by considering reference Levy measures other than M0 ( dy) = 
lJRn\{O} IYfl+r. However, at least so far as the considerations in this and 

the next sections1) are concerned, the answer seems to be no. Indeed, 
without any change in the proof, one can show that Ito's procedure works 
when M 0 in (0.2) is replaced by any Levy measure M and the conditions 
there are replaced by 

lim sup 1
1 

!2 [ IF(x, YW M(dy) = 0 
N->ooxEJRn 1 + X JAN 

(1.9) sup 1
1 

!2 [ JF(x, y)J 2 M(dy) < = 
xEJRn 1 + X Jr. 

sup I 1 !2 [ IF(x2,y)- F(xby)l2 M(dy) < =, 
x2#xr X2 - X1 Jr. 

where, for each N ~ 1, 0 E l:l.N E BJRn satisfies M(~n \ l:l.N) < =, 
and, for each E > 0, 0 E rf E BJRn satisfies M(~n \ rf) < E. However, 
because one can always find a measurable f: ~n \ {0} ~ ~n such that 
M = f*Mo, one can easily check that if M and F satisfies F(x, · )*M = 

M(x, ·)and the conditions in (1.9), then (x,y) ""'"'F(x,y) = F(x,f(y)) 
will satisfy F(x, · )*M0 = M(x, ·) and (1.9) with F and M0 replacing 
F and M and f- 1(/::l.N) and f- 1 (r<) replacing l:l.N and fe 

l) See the concluding Remark in §3 for a consideration in which there is an 
advantage to allowing more general reference Levy measures. 
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§2 Some Extensions 

It is important to note that there are situations in which it is im­
possible to construct an F which satisfies (1.9) for any choice of Levy 
measure M, even though x "-"'+ M(x, ·) is as smooth as one could 
hope. For example, consider the seemingly trivial case in which n = 1 
and M(x, dy) = a(x)81(dy), where a : ~ ~ [1, 2] is smooth and 
81 is the unit point mass at 1. Clearly, if M is a Levy measure and 
F : ~ x (~ \ {0}) ~ ~satisfies F(x, · )*M = M(x, · ), then, for each 
x, F(x, ·) E {0, 1} M-almost everywhere and M{f(x)) = a(x) when 
r(x) = {y: F(x,y) = 1}. Thus, for each E > 0, 

{ (F(x1,y)- F(xo,Y)r M(dy) ~ a,(xi) + a,(xo)- 2a,(xi) 1\ a,(xo) lr, 
= ia.(xi)- a.(xo)l, 

where a.(x) = M(r(x) n r.) / a(x) uniformly as t: ~ 0. In particular, 
the only way that the third line of (1.9) could hold is that a. be constant 
for each E > 0, which means that a itself would have to be constant. Of 
course, one can object that this example is a little ridiculous since it is 
easy to carry out Ito's construction whenever x "-"'+ M(x, ~n) is bounded, 
even if the third line of (1.9) fails. On the other hand, one can over­
come this objection by considering M(x, ·) = :L:=o am(x)83-,. where 
each Gm E Cb'(~;(O,oo)) satisfies llnmllc~(IR;JR)::::: csm. Proceeding as 

before, we know that M{fm(x)) = am(x) and, M-almost everywhere, 
F(x, ·) = :L:=o 3-'"'lr,.(x), where fm(x) = {y : F(x, y) = 3-'"'}. 
Hence, if M,(dy) = 1r, (y)M(dy), then 

{ iF(xi,Y)- F(xo,Y)i 2 M(dy) lr, 
00 

= L 9-m( M,(rm(xl)) + M.(rm(xi))- 2M,(rm(xo) n rm(xi))) 
m=O 

00 

- 2 L 3-m L 3-n ( M, (rm(xo) n fn(xi)) + M, (rn(xo) n fm(xl))) 
m=O n>m 

00 

~ L 9-m( M,(rm(xi)) + M,(rm(xi))- 2M,(rm(xo) n rm(xl))) 
m=O 

2 00 

- 3 L 9-m ( M, (rm(xo) n fm(xl)C) + M, (rm(XI) n rm(xo)C)) 
m=O 
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1 00 

= 3 ~ g-m ( M, (r,.,.(xo) U r,.,.(xl)) - M, (rm(xo) n fm(x1))) 
m=O 

1 00 

~ 3 ~ g-miM.(rm(x1))- M,(rm(x1))1· 
==0 

Hence, by the same argument as the one just used, the third line of (1.9) 
can hold only if each of the O:m 's is constant. 

In view of the preceding example, it is interesting to note that the 
problems encountered there disappear if the measure has a sufficiently 
strong absolutely continuous part. To be more precise, let {3 : !Rn x 
sn-1 ---t (0, 00) be a function which satisfies the conditions in (1.2)­
(1.4), and suppose that (x, w) ._ J.t(x, w, ·) is a measurable map from 
]Rn X §n-1 into measures on (0, oo) such that 

(2.1) 

J.t(x,w, dr) = {3(x,w, r) dr + v(x,w, dr) where 

sup f ~ v(x,w,dr) < oo 
(z,w) J(o,oo) 1 + r 

lim sup f r2 v(x,w,dr)=0= lim supv(x,w,[R,oo)). 
R'\,0 (z,w) J(o,R] R-+oo (z,w) 

Further, assume that x ._ {3(x,w,r) and x ._ v(x,w, (r,oo)) are con­
tinuously differentiable for each ( x, r) E !Rn x ( 0, oo). Finally, choose 
"'E Cg"((O,oo); (O,oo)) with total integral!, set 

{3,(x,w,r)={3(x,w,r)+ f .,,(s-r)v(x,w,ds) forfE(O,l], 
J(o,oo) 

where .,,(s) = c 1"1 (!),and assume that, for each R E (O,oo), 

(2.2) 1 (~r,oo) lgrad.,{3,( ·, w, s) Ids) 2 

sup dr < oo. 
(z,w) (O,R] {3(x, w, r) 

•E(0,1] 

Next, given a probability measure J.t on sn-1 ' define p. : !Rn X sn-1 ---t 

(0, oo) and F, : !Rn X !Rn ---t !Rn relative to {3, by the prescription used in 
§1 (cf. the discussion preceding (1.6)). By the arguments used in §1, we 
know that, when F and {3 are replaced throughout by F, and {3., then 
everything in (0.2) as well as the Lipschitz continuity of the associated 
c, in (1.8) can be controlled in terms of quantity in (1.5). But clearly the 



Some comments about Ito's construction procedure 327 

quantity in (1.5) is dominated uniformly fore E (0, 1] by the quantity in 
(2.2). At the same time, if 

(2.3) M(x,r) = { ( { lr(rw)J.L(x,w,dr)) J.L(dw), 
Jsn-1 J(o,oo) 

then Fe _____... F where F(x, · ).M = M(x, · ). Hence, when x .,.. M(x, ·) 
is given by (2.3) for any J.L E M1(§n-1 ) and a (x,w) ERn x sn-1 ~-----+ 

J.L(x,w, ·) E M 1 ((0, oo)) which satisfies (2.1) and (2.2), then a choice of 
F satisfying (0.2) is available. 

§3 Uniqueness for the Martingale Problem 

Suppose that ( cf. (1. 7)) 

(3.1) 
1 n n 

Lcp(x) = 2 L a(x)ii8i8icp(x) + L b(x)i + KMcp(x) 
i,j=1 i=1 

for cp E c;(Rn; R), where x .,.. a(x) and x .,.. b(x) are continuous map­
pings into, respectively, non-negative definite, symmetric n x n-matrices 
and Rn and x.,.. M(x, ·)takes its values in Levy measures and satisfies 

1 IYI2 
sup 1 ll2 M(x, dy) < oo for all R E (0, oo). 

lxi:5R Rn\{0} + Y 

Let D([O, oo ); Rn) be the space ofright continuous paths p : [0, oo) _____... 
Rn which possess a left limit p(t-) at each t E (O,oo), and use Bt 
to denote the a-algebra over D([O,oo);Rn) generated by p.,.. p(r) for 
r E [0, t]. We will say that lP E M 1 (D([O, oo);Rn)) solves the martingale 
problem for L if 

( cp(p(t)) -1t Lcp(p(r)) dr, Bt, lP) is a martingale 

for all cp E c;(Rn;R). If, in addition, !P(p(O) = x) = 1, then we will say 
that lP solves the martingale problem for L starting from x. 

In §3.1.5 of [3], it is shown that when L admits a representation of 
the form in (0.1) with uniformly Lipschitz continuous a and b and an 
x.,.. F(x, ·)satisfying (0.2), Ito's construction leads to a solution to the 
martingale problem for L starting from x. On the other hand, there are 
lots of other ways in which one might go about constructing solutions 
to this martingale problem. (In fact, even if one restricts ones attention 
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to Ito's method, there is are lots of choices of a and F, and each one 
gives rise to a different construction.) Thus, it is of some importance to 
determine conditions which guarantee that there is only one solution to 
the martingale problem for a given L starting from a given x. 

Under the condition that M = 0, the problem of determining when 
uniqueness holds for the martingale problem was studied systematically 
in Chapter 6 of [4]. The methods used there are of two types. Methods 
of the first type work by duality and yield ( cf. Theorem 6.3.2 in op cit) 
uniqueness for solutions to the martingale problem as a consequence of 
existence of solutions to the evolution equation 

(3.2) Btu = Lu with u(O, ·) = c.p 

for sufficiently many c.p's. This duality method is quite powerful and 
leads to the most refined results obtained in [4]. For example, when 
M = 0 and a and b have two bounded, continuous derivatives, it is shown 
in §3.2 of [4] that (3.2) admits classical solutions for c.p E c.;(Rn; R), 
and this is more than enough to check uniqueness for the associated 
martingale problem. In §4.2 of [3], this sort of reasoning is extended to 
situations with M # 0, when the quantities a and b entering (0.1) have 
two bounded, continuous derivatives and x ""* F(x, ·) has continuous 
second derivatives which satisfies appropriate (cf. (H2) 2 in op cit) mean 
square bounds. For example, these conditions are often met by F's of 
the sort constructed in §1. Unfortunately, they seem unlikely to hold for 
situations requiring the extension introduced in §2. 

The second method introduced in [4] is more directly dependent on 
Ito's theory. Namely, when M = 0, it is shown there (cf. Theorem 5.3.2 
in op cit) that any solution to the martingale problem can be realized as 
the solution of an Ito stochastic integral equation. Thus, when M = 0 
and a and b are Lipschitz continuous, uniqueness for the martingale 
problem comes quite easily as a consequence of Ito's theory. (This is 
the result which was refined in [6].) In this concluding section, we will 
examine possible extensions of this line of reasoning to the case when 
M#O. 

Suppose that IP' solves the martingale problem for L starting from x. 
Using the techniques developed in §1 of [5], one can make an Ito decom­
postion of the paths p into their "continuous" and "discontinuous parts" 
parts. More precisely, given p E D([O, oo); Rn), arE B[o,oo) X BJRn with 

([0, oo) X {0}) n f' = 0, define v(f;p) to be the number ofT E (0, oo) 

such that (T,p(T)- p(T-)) E r. One can then show that there exists 

a measurable map p E D([O, oo); Rn) f----+ p 1 E D([O, oo); Rn) such that 
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{cf. {1.7)) 

{3.4) Pl(t) = !~ jj (yv(drxdy;p)-1/J(y)drxM(p(r),dy)), 

[O,t) X BR" (O,r)C 

uniformly for t's in compacts, in ~?-probability. Moreover, if Po = p-p 1 , 

then 

(a) PoE C([D,oo);IRn) 1?-almost surely, 
(b) for each cp E C~(IRn;IR), 

( cp(po(t)) -lot Locp(p(r)) dr, Bt, I?) 
is a martingale, where 

l n n 

Locp(x) = 2 L a(x)ijaiajcp(x) + Lb(x)i8icp(x), 
i,j=l i=l 

(c) for each cp E C~{IRn;IR), 

(cp(p1(t)) -lot KMcp(p(r))dr,Bt,l?) 

is a martingale. 

In spite of the obvious ambiguity in this decomposition, we will call p0 

and p 1 the continuous part and the discontinuous part of p. 
Given a measurable x ~ a(x) satisfying a(x) = a(x)a(x)T, one can 

start from (b) above and, by mimicking the procedure in Theorem 5.3.2 
of [4], produce a Brownian motion {3 such that 

(3.5) p0 (t)=x+ lota(p(r))df3(r)+ lotb(p(r))dr, tE[O,oo). 

There are technical difficulties which arise when a becomes degenerate, 
and these necessitate the introduction of a larger probability space, one 
which is big enough to support a full blown Brownian motion. However, 
as is explained in the theorem just cited, the resolution of such difficulties 
is well understood. On the other hand, it is not so clear how to treat 
the analogous difficulties for the discontinuous part p 1 . Specifically, 
given a measurable F : IRn x IRn ~ IRn and a Levy measure2> M for 

2) For reasons which will be explained below in the concluding Remark, it is 
best to allow general reference Levy measures here rather than always taking 
Mo. 
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which F(x, · )*M = M(x, · ), it is not clear in general how one can 
use F to produce a Levy process from which p1 can be re-constructed 
via Ito's procedure. Nonetheless, when F is non-degenerate in the sense 
that, for each x E ]Rn, F(x, ·) is one-to-one from ]Rn \ {0} onto itself, 
then one can construct such a Levy process. Namely, take p- 1(x, ·)to 
be the inverse3l of F(x, · ), and set 

Qr(t,p) = !! ci>- 1 (r, y;p) (v(dr x dy;p)- dr x M(p(r), dy)), 

(O,t] xBRn (O,r)C 

where ci>- 1 (r, y;p) = F-1 (p(r- ), y). Then one can show that there 

exists a {Bt: t ;::=:: 0}-progressively measurable p E D((O,oo);lRn)--+ 
q(- ,p) E D{[O, oo); JRn) such that, as r '\. 0, qr(- ,p) --+ q( · ,p) uni­
formly on compacts in lfD-probability. Moreover, the lfD-distribution of 
p ._... q( · ,p) is that of the Levy process corresponding toM in the sense 
that, for each ~ E ]Rn, 

lElfD [ e v'=T(~,q(1 ,p))JRn] 

= exp [ { ( ev'=I<e,Y)Rn - 1- l(o,1] (IYI)(~, Y)JRn )M(dy)]. 
}JRn\{0} 

In addition, it should be clear that, lfD-almost surely, v ( · ; q( · , p)) 
ci>- 1 ( · ; p)*v( · ; p). In particular, if ci>( r, y; q) = F(q( r- ), y), then 

v(. ;p) = ci>{.; q(. ,p)tv(.; q(p)) lfD-almost surely, 

and so (cf. (3.4)) p1 (t) is equal to 

lim 
r",O !! 

(O,tj XBJRn (O,r) 

( F(p(r- ), y)v(dr x dy; q(. ;p)) 

- '!f!(y)(F(p(r),y))JRn dr X M(dy)). 

Hence, after putting this together with (3.5), the pathp can be recovered 
via Ito's procedure from a Levy process for which 

3 ) By a famous theorem due to C. Kuratowski, this inverse will be Borel 
measurable with respect to (x, y). 
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is the characteristic function of the distribution at time 1. 
These considerations yield the following uniqueness theorem. 

Theorem. Suppose that cr : lRn ---> JRn and b : JRn ---> ]Rn are 
uniformly Lipschitz continuous functions, M is a Levy measure, and the 
F : JRn x ]Rn \ {0} ---> ]Rn \ {0} is a measurable function which satis­
fies the conditions in (1.9). Further, assume that, for each x E lRn, 
F(x, ·) is one-to-one from lRn \ {0} onto itself. Then, for each starting 
point, Ito's construction yields the one and only solution to the martin­
gale problem for operator L described in {3.1) when a(x) = cr(x)cr(x)T 
and M(x, ·) = F(x, · )*M for all x E lRn. 

Remark: As distinguished from our earlier results, there is an advan­
tage to allowing reference Levy measures other than M0 when applying 
the preceding theorem. For instance, suppose that (x,w,r) """'J-t(x,w,r) 
satisfies the conditions in (2.1) and (2.2), and let x """' M(x, ·) be given 
by (2.3) for some J-t E M1(§n-1). Then the function F which was con­
structed so that M(x, ·) = F(x, · )*Mo need not be one-to-one and onto 
because the map f: §n-1 ---> §n-1 may fail to be. On the other hand, 
if we take M(dy) = IYI!+l J-t(dy), then the construction given in §1 does 

not require the use of f and leads to an F which is one-to-one and onto 
and satisfies M(x, ·) = F(x, · )*M as well as the conditions in (1.9). 
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