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Ichiro Shigekawa 
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The Meyer equivalence on an abstract Wiener space states that 
the £P-norm of square root of the Ornstein-Uhlenbeck operator is 
equivalent to £P-norm of the Malliavin derivative. We prove the 
equivalence in the framework of Orlicz space. We also discuss the 
logarithmic Sobolev inequality in £P setting and higher order loga,
rithmic Sobolev inequality. 

§1. Introduction 

Let {B, H, p,) be an abstract Wiener space: B is a separable real 
Banach space, H is a separable real Hilbert space which is embedded 
densely and continuously in B and p, is a Gaussian measure with 

L exp{H B·(l,x)B}JL(dx) = exp{-~lllk· }. l E B* ~ H*. 

On an abstract Wiener space, the Ornstein-Uhlenbeck semigroupis de
fined as 

{1) Ttf(x) = L f(e-tx + V1- e-2ty)p,(dy). 

The generator of the semigroup {Tt} is called the Ornstein-Uhlenbeck 
operator and we denote it by L. Then the following Meyer equivalence 
is well-known: for any 1 < p < oo, there exists positive constants cl 
and C2 such that 
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Here D is the Malliavin H-derivation and II liP is the LP-norm. The 
constants cl and c2 depend only on p. 

In this paper we show that similar inequalities hold in the framework 
of Orlicz space, i.e., the above inequalities hold for the Orlicz norm in 
place of V-norm. Typical example we are in mind is V lor! L. As an 
application, we discuss the logarithmic Sobolev inequality in V setting 
and higher order logarithmic Sobolev inequality. 

§2. Orlicz space 

In this section, we review the Orlicz space {see, e.g., [1] or [8] for 
details). First we need the notion of Young function. Young function is 
a function ~ defined as 

{3) ~(x) = 1x cjJ(t)dt, x ~ 0 

where cjJ is a non-negative, right continuous, non-decreasing function. If, 
in addition, cjJ satisfies cjJ{O) = 0, cjJ(t) > 0 fort> 0, cjJ(oo) = oo, then~ 
is called a nice Young function or N-function. Define 1/J by 

'1/J(u) = inf{t; cjJ(t) > u}. 

1/J is right continuous and non-decreasing. The function "\11 defined by 

"\lt(y) = 1Y '1/J(u)du, y ~ 0 

is called a complementary function. The following properties are funda
mental. 

{4) 

{5) 

xy :::; ~(x) + "\lt(y), 

xcjJ(x) = ~(x) + "\lt(cjJ(x)). 

( 4) is called the Young inequality. 
The Orlicz space associated with~ is defined as follows. Let (M, m) 

be a measure space and~ be a nice Young function. Define a norm 1111<11 
by 

{6) 11!11<11 := in£{>. > 0; JM ~(1!1/ >.)dm :::; 1 }. 

L<I1(m) is the set of all measurable functions f which satisfy 11!11<11 < oo. 
We call L <11 { m) an Orlicz space. It is a Banach space with the norm 
1111<11· If~ satisfies the Ll2 condition, i.e., there exists a constant C such 



Orlicz norm equivalence 303 

that 4>(2x) :::; C4>(x), then the dual space is identified with L'~~(m), W 
being the complementary function of 4>. 

We introduce some classes of functions. 

Definition 2.1. For non-negative constant a, we define a set of 
functions L(a), U(a) as follows: 

(i) ¢> E L(a) ~ acp(t) :::; tcf>'(t), 'it> 0. 

(ii) ¢> E U(a) ~ tcf>'(t):::; acf>(t), 'it> 0. 

The following inequality for semimartingales is important in our 
later argument. 

Let (Zt) (t E [0, oo]) be a non-negative submartingale. We assume 
that (Zt) is right continuous and has left hand limits. By the Doob
Meyer decomposition theorem, (Zt) can be decomposed as 

where (Mt) is a martingale and (At) is an increasing process. We assume 
that (At) is continuous and A0 = 0. If 4> E U(a), then the following 
inequality holds (see [4, Theorem Vl.99]): 

(7) 

Further, a generalization of the Doob's inequality also holds. It 
is stated as follows (see [4, Chapter VI, Section 3]). We assume that 
4> E L( a) for an a > 1. Then, setting z; := sup Z s, it holds that 

s~t 

(8) E[4>(ZC:,)]:::; E[4>(aZ00 )]. 

From this inequality, we can have the following maximal ergodic inequal
ity. 

(9) r 4>(sup ITtf(x)l)~t(dx):::; r 4>(alf(x)l)~t(dx). 
JB t>O JB 

Here {Tt} is the Ornstein-Uhlenbeck semigroup on an abstract Wiener 
space (B, H, fL). 

§3. Littlewood-Paley inequality 

Let ( B, H, IL) be an abstract Wiener space and K be a separable 
Hilbert space. {Tt} is the Ornstein-Uhlenbeck semigroup on LP(E, jL; K) 
defined by (1). For a > 0, set 

T (a) _ -atT 
t - e t· 
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Then the generator of {Tt(a)} is L-a. We further define a semigroup 

{ Q~a)} by subordination as follows: 

Q~a) = 100 T~a)At(ds) = 100 e-asT8 At(ds). 

Here At is a probability measure on [0, oo) whose Laplace transform is 
given by 100 e--rs_xt(ds) = e-v'ft. 

When a = 0, Q~o) is simply denoted by Qt and called the Cauchy 
semigroup. For F E L if? ( B, J-ti K), it holds that 

and {Q~a)} is a strongly continuous semigroup on LiP. The generator 
will be denoted by -v'a- L. 

We denote by P(K) a set of all functions f: B -+ K which can be 
expressed as 

f(x) = LPi( (h, x) ), ... , (ln, x) )ki 
i 

where Pi is a polynomial on lRn and k17 ... , kn E K, h, ... , ln E B*. 
For f E P(K), define 

g-f(x,t) = l8tQ~a)(x,f)IK, 

gr f(x, t) = IDQ~a)(x, f)IHs, 

gf(x, t) = J g- f(x, t)2 + gr f(x, t)2. 

Here Qia) (~,f) = Qia) f(x) and the norm I IHs denotes the Hilbert
Schmidt norm. g-J, gr J, gf all depend on a but we fix it throughout 
the argument and suppress it for simplicity. We further define 

roo 1/2 
a- f(x) = {lo tg- f(x, t) 2dt} , 

roo 1/2 
ar f(x) = {lo tgr f(x, t) 2dt} , 

roo 1/2 
Gf(x) = {Jo tgf(x, t) 2dt} . 

We call them Littlewood-Paley G-functions. 
Our aim in this section is to prove the following theorem. 
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Theorem 3.1. Assume that <I> E L(a) n U((3) for constants 1 < 
a < (3. Further assume that ¢ is either convex or concave. Then we 
have 

(10) 

(11) 
II<I>(Gf)ll1 ~ II<I>(Ifl)lll, 
II<I>(Ifl)lll ~ II<I>(G-f)lh-

In the above theorem, A ~ B stands for A ~ C B for a positive 
constant C that is independent of f. We use this convention in the 
sequel without mentioning. 

We give a probabilistic proof. To do this, we take the Ornstein
Uhlenbeck process (Xt) on B, i.e., the diffusion process generated by 

L. We also take a process (Bt) on lR generated by £,. We assume 
that the initial distribution of (Xt) is the stationary measure J-L so that 
the process becomes stationary. We denote the starting point of the 
Brownian motion (Bt) by N. EN stands for the integration with respect 
to this measure. Later we let N---+ oo. 

Now, for f E P(K), set u(x, a)= Q~a)(x, f). Then u(x, a) satisfies 

(12) { u(x,O) = f(x) 
Lxu(x, a)+ 8~u(x, a) - au(x, a) = 0. 

Define a stopping time 7 by 

7 = inf { t > 0 I Bt = 0}. 

Then we can think of u(Xt, Bt) for t ~ 7. Set 

Mt = QB,"'" (Xt/\n f)- a 1t/\r QB. (Xs, f)ds 

t/\r 
= u(Xt/\r, Bt/\r)- a Jo QB,(Xs, f)ds. 

Then (Mt) is a martingale with M 0 = QB0 f(Xo). The quadratic varia
tion is given as 

(13) 

Therefore we have 

(14) dlul2 = 2(u, dM) + 2alul 2dt + (dM, dM) 

= 2(u, dM) + (2alul 2 + 2gf2 )dt 
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Now set 
Zt = lu(Xti\T, Bti\TW· 

(Zt) is a non-negative submartingale. To compute <I>( ..[Z;), we approx
imate it as follows. Take any c > 0 and set F(x) = <P(Jx +c). Recall 
that ¢ is either convex or concave. We divide into tow cases. 

(i) ¢ is concave. 
We need the following proposition. 

Proposition 3.2. Assume <I> E L(a) (a > 1}. Then it holds that, 
foru, v ~ 0, 

(15) <P(v)::::; - 1- (~¢'(u)v2 + <P(u)). 
a -1 2 

Proof. From the assumption, a<P(x) ::::; x¢(x) holds. Since ¢ is 
concave, <P(x) ~ ~x¢(x) which leads to a::::; 2. Hence (15) clearly holds 
when u ~ v. 

If v ~ u, we have 

1 
l{(x, y); 0::::; x::::; u, ¢(x) ::::; y::::; ¢(u)}l ::::; 2u¢(u) 

l{(x, y); 0::::; x::::; u, ¢(u)::::; y::::; ¢(v)}l::::; u(¢(v)- ¢(u))::::; u¢'(u)(v- u) 
1 

l{(x, y); u::::; x::::; v, ¢(x)::::; y::::; ¢(v)}l::::; 2 (v- u) 2¢'(u). 

These are easily obtained by observing the graph. 
Summing up three terms of the left-hand side and <P(v), we have 

v¢( v). Therefore 

~u¢(u) + u¢'( u)(v- u) + ~(v- u) 2¢'(u) + <P(v) ~ v¢(v) ~ a<P(v). 

Hence we have 

(a- 1)<P(v)::::; ~u¢(u) + ¢'(u)(v- u) ( u + ~v- ~u) 

= ~u¢(u) + ~¢'(u)(v2 - u2 ) 

1 
::::; <P(u) + 2¢'(u)v2 

which is the desired result. 

The derivatives of F(x) =<I>( v'x +c) are 

F' (X) = <I>' ( v' X + c) ~, 
2 X+ c 

Q.E.D. 
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, By the Ito formula, 

d<I>(VZt+c)= <I>'(~)dZt 
2vZt+c 

+ ~ { <I>" ( ~) - ~<I>' ( ~) } (dZ dZ) 
2 4(Zt+c) 4 JZt+c3 ' 

= ¢( Jlul2 +c) {2(u, dM) + 2(nlul 2 + gf2)dt} 
2y'lul2 +c 

+ ~ { ¢'(.../,-[u=l2-:-+-c.) _ ~ ¢( Jlul2 +c) }(dZ dZ) 

2 4(lul2 +c) 4 Jlul2 + / ' 
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= ¢(Jiul2+c)(u dM)+ ¢(y'lul2+c)(nlul2+gf2)dt 
Jlul2 + c ' Jlul2 + c 

+ ~ 1 {¢'( v'lul2 +c)-¢( J,.-lu=l2-+-c) }(dZ, dZ). 
8lul 2 + c Jlul2 + c 

Now we note (dZ, dZ) ~ 4lul2 (dM, dM) = 8lul 2gj2dt. Further 
¢'(t) ~ ¢(t)/t since¢ is concave. We therefore have 

Integrating from 0 to T and taking expectation, we have 

We will give an estimate from below of the right-hand side. We note 
that f*(x) := SUPt;:::o ITtf(x)l 2: SUPa;:::o iu(x, a)!. 

EN [1r ¢'( v'iul 2 + c)gf2dt] = 11100 

¢'( v'lul 2 + c)gf2( ·, a)(a 1\ N)dall
1 

2: 111oo ¢'( J f*2 + c)gf2(. 'a)(a 1\ N)dat 
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(". · q/ is non-increasing) 

Combining this with (16) and letting N-+ oo 

II~~>( JIJI2 + c)ll1 2: 111oo ¢'( J f*2 + c)gf2(-, a)adall1 

=II¢'( J !*2 + c)G/2II1 

Now we use the inequality IJ>(v) ~ "'~ 1 (~¢'(u)v2 + IJ>(u)) in Proposi
tion 3.2 and get 

II~~>(G/)111 ;S II¢'( J !*2 + c)GJ2II1 +II~~>( J !*2 + c)ll1 

~ II~~>( vl/12 + c)lh +II~~>( J !*2 + c)ll1-

Letting c-+ 0 and using the maximal ergodic inequality (9), we have 

II~~>(Gf)ll1 .S 11~~>(1!1)111 + 11~~>(!*)111 .S 11~~>(1!1)111· 

This completes the proof in the case that ¢ is concave. 

(ii) ¢ is convex. 

Set ~(x) = ll>(y'x). Then~ is convex. In fact, by differentiating, 
we have 

.!£ ~~> ( vx) = ~~>' ( vx) -1- = ¢( v'x) . 
dx 2y'x 2y'x 

The function is increasing since ¢ is convex and so the convexity of ~ 
follows. Further~ E U(a/2) since 

x~' ( x) x!J>' ( y'x) y'xl!>' ( y'x) 
= = 

~(x) 2y'xll>(y'x) 21J>(y'x) · 

The submartingale Zt = lu(Xt/\nBt/\7")12 is decomposed as a sum 
of a martingale and an increasing process as in (14). By using (7), we 
get 

(17) EN[~(17 
gf(Xs,Bs)2ds)] ;S EN[~(Zoo)] = EN[~(If(Xr)l 2 )] 

= EN [!J>(IJ(Xr) I)] = II~J>(IJI) lh 

Now we introduce H-functions as follows. 
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Then we have 

II<I>(Hf)lll = II~(H/2 )111 

= J~=~~~ (1= Qagf(-, a) 2 (a 1\ N)da) 11
1 

= J~=l ~(EN[foT gf2 (Xt,Bt)dt'XT=x])JL(dx) 

~ J~=L EN[~(foT gp(xt,Bt)dt)ixT =x])JL(dx) 

~ J~= EN [~(loT gf2 (Xt, Bt)dt)] 

~ II<I>(IJI)IIl· (": (17)) 
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It is well-known that Gf is dominated by Hf (see [7]) and so (10) 
follows. (11) can be shown by a standard duality argument. This com
pletes the proof of Theorem 3.1. 

Using this theorem, the Meyer equivalence in Orlicz space, which 
is of our main interest, follows easily. In fact, the same proof as in £P 
setting works (see e.g., [9]). 

Theorem 3.3. Assume that <I> E L(a) n U(f3) for 1 < a < {3 and 
that ¢ is either convex or concave. Then there exist positive constants 
C1 and C2 such that 

§4. Examples 

We give some example of nice Young functions that satisfy the con
dition of Theorem 3.3. For indicies p > 1, {3 E IR, k ~ 1, we set 

(19) 

and define 

(20) <I>p,,B,k(x) =fox c/Jp,,B,k(y)dy. 



310 I. Shigekawa 

We regards this as a Young function. The function does not satisfy the 
condition of Young function in general since (3 might be negative. We 
see when it is a Young function. To avoid complexity, we simply denote 
¢and i1> in place of ¢p,/3,k and il>p,f3,k, respectively. Differentiating¢, we 
have 

We look for the condition so that ¢' is positive. To do this, set 

{21) 
X 

f(x) = (k + x) log{k + x)" 

If k = 1, f takes its maximum 1 at x = 0. If k > 1, f takes its maximum 
at x = o: where o: is the solution of k log{k + x)- x = 0. We can see 
that f{o:) ~ Hl~gk" Therefore, in all cases of k, it holds that 

{22) 
X 1 

O< ) < . 
- (k+x log(k+x)- 1+logk 

Now it is easy to see that il>is a nice Young function if p( 1+ 1 +~og k) ~ 
1. Further we easily have the following proposition. 

Proposition 4.1. ¢ satisfies following inequalities: 

{23) (p- 1)¢(x) ~ x¢'(x) ~ (P- 1 + 1 :iog k)¢(x), for (3 ~ 0, 

(24) (P- 1 + 1 :iogk)¢(x) ~ x¢'(x) ~ (p -1)¢(x), for (3 < 0. 

Similar inequalities hold for i1>. To see this, we need the following 
proposition. 

Proposition 4.2. For positive constant o:, it holds that 

{i) if¢ E L{o:), then i1> E L{o: + 1), 
{ii) if¢ E U(o:), then i1> E U(o: + 1). 

Proof. Suppose¢ E L{o:), i.e., o:¢(t) ~ t¢'(t). By integrating both 
hands, we have 

{25) o:il>(x) ~fox t¢'(t)dt. 
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On the other hand, since (t<P(t))' = <jJ(t) + t<P'(t), we have 

x</J(x) = 1x {<fJ(t) +t<P'(t)}dt 

and hence 

x</J(x)- cl>(x) = 1x t<P'(t)dt. 

This combined with (25) leads 

x<P(x) ~(a+ 1)cl>(x). 

(ii) can be shown similarly. 

Now the following proposition easily follows. 

Proposition 4.3. The following inequalities hold: 

(26) pcl>(x) :$ xci>'(x) :$ p(1 + 1 +~ogk)c~>(x), ({3 ~ 0), 

(27) p( 1 + 1 +~og k)c~>(x) :$ xcl>'(x) :$ pcl>(x), ({3 < 0). 
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Q.E.D. 

Lastly, we will see the asymptotic behavior of the complementary 
function W. We use the notation f "'g when limx-+oo ~f=~ = 1 holds. 

Proposition 4.4. Assume p > 1 and let q be the conjugate exponent 
of p: i + ~ = 1. Then it holds that 

(28) 

(29) 

pcl>(x) "'xP logP/3 x, 

(q- 1)qf3qw(x) "'xq log-q/3 x. 

Proof. By the l'Hopital theorem, we have 

lim pcl>(x) = lim p</J(x) 
x ..... oo xP logP/3 x x-+oo pxP-llogP/3 x + xPp{j(logP.B x)jx 

. pxP-liogP.B(k + x) = hm ----=-----;;---=----'---'----,--:-
x-+oo pxP-1 logPf3 X+ p{jxP-1 logPf3-l X 

= lim logP.B(k + x) 
x-+oo logP/3 X + {jlogP/3-l X 

=1 

which shows (28). 
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As for 'Ill, we have, by the l'Hopital theorem, 

1. q'lll(x) 
lm -----''--'-;;-

X-+OO Xq log -q{3 X 

= lim q'lll(cf>(x)) 
x-+oo cf>(x)q log-qf3 cf>(x) 

= lim q'll!'(cf>(x))cf>'(x) 
x-+oo qcf>(x)q-lcf>'(x) log-qf3 cf>(x) + cf>(x)q( -q,B){log-qf3-l cf>(x )}cf>'(x) /cf>(x) 

. X 
= hm 

x-+oo cf>(x)q-llog-qf3 cf>(x)- ,B¢(x)q-llog-qf3-l cf>(x) 
. X 

= hm ------,,---------
x-+oo cf>(x)q-1Iog-qf3 cf>(x)(1- ,8/logcf>(x)) 

= lim x 
x-+oo cf>(x)q-llog-qf3 cf>(x) 

= lim x 
x-+oo {xP-llogPf3(k + x)}q-llog-qf3(xP-llogPf3(k + x)) 

= lim x 
x-+oo x(p-l)(q-1) logPf3(q-l) (k + x){(p- 1) log x + p,B log log(k + x)}-qf3 

= lim { (p- 1) log x + p,Blog log(k + x)}qf3 (-.· (p _ 1)(q _ 1) = 1) 
x-+oo logPf3(q-l)(k+x) 

= ll·m {{(p-1)logx+p,Bloglog(k+x)}qf3 
x-+oo log(k + x) 

(-.· q = p(q- 1)) 

= (p- 1)qf3 

which shows (29). Q.E.D. 

We denotes the Orlicz space Lit? associated with <P by LP logPf3 L. 
We do not specify k since it does not affect the asymptotic behavior at 
infinity. Since the Wiener measure is finite, LP logPf3 L is independent 
of k. The above theorem means that the dual space of LP logPf3 L is 
Lq log-qf3 L. 

§5. Logarithmic Sobolev inequality 

The logarithmic Sobolev inequality in LP setting was discussed by 
D. Bakry-P. A. Meyer [3] and higher order Logarithmic Sobolev inequal
ity was discussed by G. F. Feissner [5] and R. A. Adams [2]. They all 
used the interpolation theorem. Here we take a different approach. 
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The following logarithmic Sobolev inequality holds for the Ornstein
Uhlenbeck process. 

Here E [ ] stands for the integration with respect to p,. Hereafter we 
use this notation. Recall that JB(Df,Dg)H•dp, is the Dirichlet form 
associated with the Ornstein-Uhlenbeck process. We remark that the 
following argument works for the diffusion Dirichlet form satisfying the 
logarithmic Sobolev inequality if we assume the Dirichlet form is of the 
gradient type. 

We introduce a new Young function. Set 

(30) O(x) = {x2log(e + x2)}(P-2)/4 logPf3/4 (k + x2log(e + x)) 

and define 

(31) 9(x) = 1"' O(y)dy. 

Then we have the following proposition. 

Proposition 5.1. For sufficient large k if necessary, there exists a 
positive constant K such that 

(32) xP logPI2(e + x2) logPf312(k + x2log(e + x2)) 

~ K8(x)2log(e + 8(x)2 ). 

Proof. We divide the proof into two cases. 
(a) {3 2:: 0, k = 1. 

Let us see the asymptotic behavior as x ~ 0. 

LHS "' xP • x(P/3/2)2 = xP(l+/3). 

On the other hand, 

O(x) "'x(p-2)/2+(pf3)/2 = xP(/3+1)/2-1. 

and hence 

8(x) "' 2 Xp(/3+1)/2 
p({3 + 1) 

9(x)2"' 4 xP(/3+1) 
p2(f3 + 1)2 . 

Thus both hands have the same asymptotic behavior. 
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As x---+ oo, 

On the other hand, 

O(x) rv xCP-2)12 2(p-2)14 (log(p-2)/4 x)2P/3/4 logPN4 x 

8(x) rv (2/p)2(p+p/3-2)14 xPI2 log(P+P/3-2)/4 x 

8(x)2log(e + 8(x)2) rv p-22(P+Pi3+2)12xP(log(P+P/3-2)/2 x)plogx 

= p-1 2(p+p/3+2)/2Xp log(P+Pf3l/2 X. 

Hence they have the same asymptotic behavior. 
(b) (3 < 0 and large k. 

The asymptotic behavior at x = oo can be obtained similarly as in 
the case (3 ~ 0. 

As x---+ 0, LHS rv xP is clear. Further we have 

Thus we have the desired result. Q.E.D. 

We recall the following fact. Let U and V be a non-negative func
tions on a measure space (M, m). Assume that 

JM U c/J(U)dm < oo, 

JM U cjJ(U)dm ~ JM V cjJ(U)dm +C. 

Then it follows that 

(33) JM iP(U)dm ~ JM iP(V)dm + C. 

For the proof, see [4, Lemma Vl.98]. Now we have the following theorem. 
In the sequel, we denote by !Pp,/3 in place of 1Pp,/3,k because the index k 
is not essential. 
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Proposition 5.2. For p > 2, (3 E IR, there exists a positive constant 
C such that 
(34) 

E[<I>p,(.B+l)/2(1!1)]:::; CE[<I>p,(l+.B)/2-(1/p)(lfl)] + CE[<I>p,,l3/2(1Dfl)]. 

Proof. Set g = J8(lfl)2 +e. Then 

Dg = 28(lfl)8'(1fi)Difl 
2J8(IJI)2 + e 

and hence IDgl :::; O(IJI)IDfl. Now, by using the logarithmic Sobolev 
inequality 

we have 

E [{8(1!1)2 + e} log(e + 8(1!1)2)] 

:::; E [8(1!1)2 + e] logE [e + 8(1!1)2] 

+ 2E [In !l2{lfl 2log(e + lfl 2)}<p-2)/2logP.BI2(k + lfl2log(e+lfl 2))] , 

and 

E [8(lfl)2log(e + 8(1!1)2)] 

:::; E [8(1!1)2] logE [e + 8(1!1)2] 

+ 2E [ID fl2{1fl2log(e + IJI2)}(p-2)/2logP.B/2(k + IJI2log(e+IJI2))] . 

We set 

Then 

¢(x) = cPpj2,,B,k(x) = x(P/2)-llogP.BI2(k + x), 

U = IJI2log(e + 1!12). 

UcfJ(U) = lfl 2log(e + 1!12) 

x {IJI2log(e + IJI2)}(p/2)-llogP.6/2(k + IJI2log(e + 1!12)) 

= IJIPlogPf2(e + 1!12) logP.B/2(k + lfl2log(e + 1!12)) 

:::; K8(lfl)2log(e + 8(1!1)2). (".· (32)) 

Combining this with the previous result, we have 
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Now, by (33), it follows that 

E[<I>(U)] :::; KE[e + 8(lfl)2]log E[e + 8(1!1)2] + 2KE[<I>(IDfl2)]. 

Here <I> is the integral of¢. Since <I> = <l>p;2,f3, 

<I>(x2) :::; c1x2¢(x2) 

:::; c1x2(x2)(p/2)-1logPf3/2(k + x2) 

:::; c1xPlogPf3/2(k+x2) 

:::; c2<I>p,f3/2(x). 

Further 

<I>(x2 log(e + x 2)) ~ c3x2 log(e + x2)¢(x2 log(e + x2)) 

and 

= c3 x2 log( e + x2){ x2log(e + x2)}(P/2)-1 

x logPf3/2(k + x2 log(e + x 2)) 

= c3 xP logPI2(e + x 2) logPf3/2(k + x 2log(e + x 2)) 

~ c4xP logP/2(e + x) logPf312(k + x) 

~ c5 xP logP(l+f3)/2(k + x) 

~ cs<I>p,(f3+1)/2(x) 

8(x)2 :::; x 20(x)2 

:::; x 2{x2 log(e + x2)}(P-2)/2 logPf3/2(k + x2 log(e + x)) 

:::; c7xP log(p-2)/2(e + x) 1ogPf312(k + x) 

:::; c7xP log(p+pf3-2)/2(k + x) 

:::; cs<I>p,(l+fJ)/2-(1/p) (x). 

Thus we have eventually obtained 

E[<I>p,(f3+1)/2 (lfl)] :::; CE[<I>p,(l+fJ)/2-(1/p) (IJI)] + C E[<I>p,f3/2(1D Jl)]. 

This completes the proof. Q.E.D. 

If p = 2 and f3 ~ 0, the above proof works as well in this case. We 
only state the result. 

Proposition 5.3. For p = 2, f3 ~ 0, there exists a positive constant 
C such that 
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In Section 3, we showed that the right hand side of (34) is equivalent 
toE [q,p,.B/2 ( v'1- Lf)]. Therefore we easily get the following theorem. 

Theorem 5.4. For p > 1, (J ~ 0, the following map is continuous: 

(36) V1 - L - 1 : LP logP.B L ---. LP logP(.B+l/2) L. 

Recall that the dual space of LP logp,B is Lq log-q,B L (see Proposi
tion 4.4). Hence, when 1 < p < 2, the above equation (36) is shown by 

the duality. By iterating the map vr=-£-1 , we can have the continuity 
of (1- L)-1 from V logP.B L to V logp(,B+1) L. 
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