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Homogenization on Finitely Ramified Fractals 

Takashi Kumagai 

Abstract. 

Let Xt be a continuous time Markov chain on some finitely ram
ified fractal graph given by putting i.i.d. random resistors on each 
cell. We prove that under an assumption that a renormalization map 
of resistors has a non-degenerate fixed point, a-n Xr"'t converges in 
law to a non-degenerate diffusion process on the fractal as n - oo, 
where a is a spatial scale and T is a time scale of the fractal. Es
pecially, when the fixed point of the renormalization map is unique, 
the diffusion is a constant time change of Brownian motion on the 
fractal. These results improve and extend our former results in [10]. 

§1. Introduction 

In this paper, we consider the homogenization problem on uniform 
finitely ramified fractals, which is a class of finitely ramified fractals 
with a unique spatial scaling rate. We put random resistors on each cell 
of the fractal graph and set Xt be the corresponding continuous time 
Markov chain. Our aim is to show that a-n Xr"'t converges in law to a 
non-degenerate diffusion process on the fractal as n --+ oo. Here a is the 
spatial scale and T is a time scale of the fractal. 

Homogenization of a diffusion process is interpreted as a limit theo
rem of a random process for changing scales. For Rd case, it is discussed 
that EXtfe2 converges to a constant time change of Brownian motion as 
E --+ 0 under a condition that Xt has random diffusion coefficients or it 
moves in some random environment such as random scatterers. (See [8] 
for general references on homogenization of differential operators.) The 
martingale method has been well developed for this problem. 

For the case of fractals, typical diffusions are sub-diffusive, in the 
sense that E[IBtiJ ~ tlfdw as t--+ oo for some dw > 2. Those diffusions 
are not semi-martingales, thus we need a different approach. In [10], we 

Received February 17, 2003. 
Partially supported by Grant-in-Aid for Scientific Research {C)(2) 

14540113. 



190 T. Kumagai 

developed a theory to be applied for homogenization problem on nested 
fractals, a class of finitely ramified fractals with good symmetries. In 
this paper, we inherits the basic approach of [10], which we now explain. 

We first consider a Dirichlet form corresponding to the continu
ous time Markov chain with random resistors which are almost surely 
bounded from above and below by some non-degenerate resistor (this 
corresponds to the uniform ellipticity condition for the operator) and 
the distributions are i.i.d. for each cell. As a solution of a variation 
problem of the Dirichlet form, we induce a renormalization map F on 
the space of matrices, by which we can produce a new form that is a 
renormalization of the original one. We assume that there is a non
degenerate fixed point of the map. Then, what we should prove are the 
following: 
1) Convergence of the iteration of the renormalization map to a fixed 
point and convergence of the forms. 
2) Convergence of finite dimensional distributions and tightness. 

In [10], we prove 1) under certain condition for an adjoint of a 
Frechet derivative of the renormalization map at a fixed point (see Re
mark 3.6 1) for details). Unfortunately, the condition is not easy to 
check in general and there are examples (even for nested fractals) that 
the condition does not hold. On the other hand, the dynamics of the 
iteration of the renormalization map has been well studied recently for 
the finitely ramified fractals (see [16, 13, 15] etc.). In this paper, we 
apply the results to improve our former results in [10]. In Section 4, we 
will prove 1) under a very mild condition on the renormalization map 
(see Assumption 2.3). We note that the map F we study is on a infinite 
dimensional space since we have infinite number of resistors, whereas the 
renormalization map F studied in [16, 13, 15] is on a finite dimensional 
space. We thus make some efforts to show the stability of the map F 
from that of F. 

In general, non-degenerate fixed points of the renormalization map 
are not necessarily unique. When the uniqueness (up to constant multi
ples) is guaranteed, we can further show that the diffusion obtained as 
the limit is a constant time change of some special diffusion (which can 
be called Brownian motion) for the fractal. Especially, when we con
sider random resistors which are invariant under all reflection maps on 
a nested fractal, then the diffusion obtained is a constant time change 
of Brownian motion on the fractal. 

For the proof of 2), uniform Harnack inequality and uniform heat 
kernel estimates of the Markov chains play important roles. Here we can 
adopt stability results of parabolic Harnack inequalities and heat kernel 
estimates which are actively studied recently for the fractal graph cases 
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(see [2, 3, 4, 5)). In this paper, we skip the proof of 2) since we can 
apply the same argument as in [10], but note that we can shorten the 
proof by applying the results in [5]. 

The organization of the paper is as follows. In Section 2, we de
fine uniform finitely ramified fractals (graphs), renormalization maps of 
resistors on them and briefly mention about Dirichlet forms and their 
heat kernel estimates on the fractals. In Section 3, we give our main 
theorem on homogenization. Section 4 is for the proof of 1) above. In 
Section 5, we state main propositions concerning 2) above. In Appen
dix, we give the proof of the stability results of the (finite dimensional) 
renormalization map F studied in [16, 13, 15]. 

§2. Uniform finitely ramified graphs and their Dirichlet forms 

2.1. Uniform finitely ramified graphs 

For a > 1 and I = {1, 2, · · · , N}, let {W"iher be a family of a

similitudes on RD. An a-similitude is a map Wix = a-1 Uix + /i, x E 
R D where Ui is a unitary map and /i E RD. We will impose several 
assumption on this family. First, we assume 
(H-0) {W"iher satisfies the open set condition, 
i.e., there is a non-empty, bounded open set W such that {w.(W)hEI 
are disjoint and UieiW'i(W) C W. As {W',}ier is a family of contraction 
maps, there exists a unique non-void compact set k such that k = 
UieiWi(k). We assume 
(H-1) k is connected. 

Let Fix be the set of fixed points of the W'i's, i E I. A point x E Fix 
is called an essential fixed point if there exist i, j E I, i "1- j and y E Fix 
such that w,(x) = W';(y). Let Ip be the set of i E I for which the fixed 
point of Wi is an essential fixed point. We write Vo for the set of essential 
fixed points. Denote Wi1 , .•. ,i,. = Wi1 o · · · o wi,.· We further assume the 
following finitely ramified property. 
(H-2) If { i1, ... , in}, {ji. ... , in} are distinct sequences, then 

w · · (k) n w · · (k) - w · · (Vro) n w · · (Vro) 'll,···,'Ln Jl,•··,Jn - 1.}, ... ,'1-n ]l,··•,Jn • 

Definition 2.1. ([5)) A {compact) uniform finitely ramified frac
tal (u.f.r. fractal for short) k is a set determined by a-similitudes 
{wiher satisfying the assumption (H-0}, {H-1}, {H-2} and that UVo ?: 2. 

If we further assume the following symmetry condition, then k is 
called a (compact) nested fractals introduced in [12]. 
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{SYM) If x, y E VQ, then the reflection in the hyperplane Hxy = {z E 

RD : lz- xl = lz- Yl} maps Vn to itself, where 

{2.1) 

Thus, u.f.r. fractals form a class of fractals which is wider than nested 
fractals, and is included in the class of p.c.f. self-similar sets {[9]). 

For each n ;:::: 0 and i 1 , · · · , in E I, we call a set of the form 
Wi1 , ... ,in(Vo) ann-cell and "Wi""·,in(K) ann-complex. For x,y E K, 
{xo, · · · ,xm} is called an-chain from x toy if xo = x,xm = y, Xj E Vn 
for 1 ::; j ::; m - 1 and Xi, Xi+l are in the same n-complex for 0 ::; 
i ::; m- 1. We then have the following topological properties of u.f.r. 
fractals. 

Lemma 2.2. 
1} Each element in Vo belongs to only one n-cell for each n;:::: 0. 
2} Any 1-cell contains at most one element ofVQ. 
3) For each X E V1 and y E VQ, there exists a 1-chain { Xo, · · · , Xm} from 
x toy such that x1, · · · , Xm-1 rf. Vo. 

Proof. 1) and 2) can be proved in the same way as [11] (Lemma 2.8 
and Proposition 2.9) and [12] (Proposition IV.13 and Corollary IV.14). 
{They discuss for nested fractals, but the symmetry assumption is not 
used there.) For 3), we first note that any 1-junction is not an element of 
Vo due to 1), where X E v-1 is called a 1-junction if there exist i =I= j E I 
such that x E wi{Vo) n Wj{V0 ). Using (H-1) and (H-2), we can choose 
a 1-chain {xo,··· ,xm} such that x1,··· ,Xm-1 are 1-junctions. Since 
1-junction is not an element of VQ, we obtain the result. Q.E.D. 

Next we define unbounded u.f.r. fractals. We assume without loss of 
generality that w1(x) = a11x and 0 belongs to VQ. Set K = u~=1ank. 
Then, clearly w1 {K) = K. We call K an unbounded uniform finitely 
ramified fractal. Let V = Vo = U~=0anvn and Vn = a-nv for n E Z. 
(Note that this labelling is the opposite to the one given in [5]. As n 
gets bigger, the graph distance between each vertex of Vn gets smaller 
and Vn-1 C Vn.) Then, K = Cl{UnEZ Vn)· For n E Z, we define n-cells 
and n-complexes similarly as the compact fractals. 

We now introduce uniform finitely ramified graphs. These will be 
graphs with vertices V and a collection of edges B. In order to define 
the edges, we first define Eo := {{x, y} : x =/= y E V0 }. Then inside 
each 0-cell we place a copy of Eo and we denote by B the set of all 
the edges determined in this way. We call the graph (V, B) a uniform 
finitely ramified (u.f.r.) graph. If we construct the graph starting from 
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a nested fractal, then it will be called a nested fractal graph. Let 

n {wE Iz: there is annE z such that Wk = 1,k 2 n}, 

n+ {wE IN: there is annE N such that Wk = 1,k 2 n}. 

Then, there is a continuous map 1f : n -t RD such that tr(w) 
limn-+oo anwWn (W'wn-1 (· .. (W'w_n (0)) ... )). It is easy to see K = tr(O). 
For any wEn+ and i E IF, let [w, i] denotes an element of n given by 

[w,i](k) = { w~, 
~, 

Then, V = {tr([w, i]): wE 0+, i E IF}. 

2.2. Renormalization maps 

k21 
k ~ 0. 

Let Q be the set of Q = {Qij E R : i,j E IF x IF} such that 
Qii = Qji for any i,j E IF and that EjEIF Qii = 0, i E IF. Q is a 
vector space with an inner product ( ·, ·) Q given by 

(Q, Q')Q = L QjkQJk =Trace QtQ', Q,Q' E Q. 
j,kEIF 

For a set A, we denote l(A) ={!:A-t R}. Let Q+ be the set of Q E Q 
such that SQ(~,~) 2 0 for any~ E l(IF), where 

A ~ 1~ 2 
SQ(~,~) =- ~ Qii~i~i = 2 ~ Qii(~i- ~i) · 

i,jElF i,jEIF 

2 A 2 ° 
Set IIQII = sup€El(IF) SQ(~,~)/(EiEIF ~i ). Note that there eXIst c2.1, 
c2.2 > 0 such that c2.I!IQII 2 ~ (Q, Q)Q ~ c2.2IIQII 2 for all Q E Q+· We 

sometimes denote SQ(~, 0 as SQ(~). Let QM be the set of Q E Q such 
that Qij 2 0 for any i, j E IF with i =f. j. Also, let Qirr be the set of 
Q E QM such that SQ(~, ~) = 0 if and only if~ is constant. Note that 
Qirr C QM C Q+. 

Take Q* E Int(QM) := {Q E QM : Qij > 0 for any i =f. j E 
IF} and let X+ = {X E C(n+, Q+) : there exists C0 > 0 such that 
Sx(w)(~,~) ~ CoSQ.(~,~) for any wEn+ and~= (~j)jEJF}. Also, let 
XM = X+nC(O+, QM), Xirr = X+nC(O+, Qirr) andlnt(XM) = X+n 
C(n+, Int(QM)). Then X+ and XM are convex cones. For any X EX+, 
let Sx denote a non-negative definite bilinear form on L 2 (V, dv0 ) given 
by 

1 ~ A 2 
Sx(u,u) = 2 ~ Sx(w)(u(tr([w, ·])),u(tr([w, ·]))), u E L (V,dvo). 

wE!1+ 
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Here v0 is a measure on V so that v0 {{x}) = 1/N for all x E V. If 
X E XM, then Sx is a Dirichlet form on L 2 (V, dvo). So there is a 
Markov process which we denote by {P.X : x E V}. We introduce an 
order relation ~ in X+ as follows. 

X~Y if Sx(u,u)~Sy(u,u) forall uEL2 (V,dvo). 

The norm on X+ is given by IIXII 2 =sup,.EL2(V,dvo)Sx{u, u)JIIulii,2(V,dvo)" 

For any X EX+, letS~: L2{V,dv0 )--+ [O,oo) be given by 

S~(u) = inf{Sx(v,v): v E L 2 (V,dv0 ), v(ax) = u(x), x E V}. 

Let S~(u, v) = HB~(u + v)- S~(u)- S~(v)), u, v E L2 {V, dvo). Then 
we see that S~ is a Dirichlet form on L2{V, dv0 ). Moreover, by the self
similarity of K, we see that there is a renormalization map F : X+ --+ X+ 
such that S~(u) = Sp(x)(u,u) for all X EX+ and u E L 2{V,dv0 ). Let 
~: Q+ --+X+ be such that ~(Q)(w) = Q for all w E 0+ and Q E Q+. 
We define a renormalization map F: Q+ --+ Q+ as F(Q) = F(~(Q))(w) 
for wEn+ {it is independent of the choice of wEn+)· Note that F, F 
is in general a non-linear map. By Schauder's fixed point theorem, we 
know that there exists Q. E QM (with (Q.)ii > 0 for some i =1- j) and 
PQ. > 0 such that F(Q.) = P(J!Q •. Throughout this paper, we assume 
the following. 

Assumption 2.3. 1} For each Q E Qim there exists l = l(Q) EN 
such that frn(Q) E Int(QM) for all n;:::: l. 
2} There exists Qo E Int(QM) and PQo > 0 such that F(Qo) = P(J!Qo. 

Remark 2.4. 1} By Corollary 6.20 of [1], PQo > 0 is uniquely 

determined, i.e., if Ql, Q2 E Qirr satisfies F(Qj) = P(J~Qi (j = 1, 2} 
with PQ 1 , PQ2 > 0, then PQ 1 = PQ2 = PQo. In the class of fractal gmphs 
we consider, we can prove PQo > 1 (see [9) etc.). 
2} A sufficient condition for Assumption 2.3 1} is the following. 
(H-3} There exists l EN such that for each x, y E Vo, there is a l-chain 
{x0 , • • · , Xm} from x toy such that for each 1 ~ i ~ m- 2, there is a 
l-cell containing Xi and Xi+l that does not contain any element of Vo. 

Indeed, if {H-3} holds, it is easy to show frn(Q) E Int(QM) forn;:::: l, 

Q E Qirr by observing the corresponding Markov chain on Vn. 
3} Every nested fractals satisfy Assumption 2.3 1} and 2). Indeed, {H-3} 
can be shown for nested fractals using (SYM} and [11] Lemma 2.10 {[12] 
Proposition IV.ll}, so that 1} holds. 2} is proved in [11] Theorem 3.10 
and in [12] Theorem V.5. 
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Set F = pqJ' X+ -t X+ and S_k(u) = pq0 S~(u) for u E 
2 ~ -

L (V, dvo). Set F = pq0 F in the same way. 

2.3. Dirichlet forms and heat kernel estimates 
For u, v E l(Vn), define 

(2.2) Sq (u o W · · v o w · · ) 0 ~t, ... ,'l.n' Zl,•·•,'Ln ' 

Let i/ be a normalized Hausdorff measure on k. Then, the following is 
known (see for example, [6, 9]). 

Theorem 2.5. Let Q0 E Int(QM) be as in Assumption 2.3 2}, i.e. 
F(Qo) = Qo. Then, there is a local regular Dirichlet form (E,F) in 
L 2(K, dv) satisfying the following, 

F {u E C(K,R): supE~0 (u,u) < oo}, 
n 

E(u, v) = lim Eqn (u,v) 
n-+oo 0 

for u,v E F. 

For each m E N, let Km = am k and define am : C(Km, R) -t 

C(K,R) by amu(x) = u(amx) for x E k. Set F<m> = a_mF, 
t:<m>(u, v) = P"Q";E(amu, amv) for u, v E F<m>· Let l/ be a Hausdorff 

measure on K such that vlk = i/ and Nv = v o w;:-1 . Now let 

F = {uEl(K):uiK,.,.,EF<m>forall mEN, 

lim t:<m>(uiK,.,.,,uiK,.,.,) < oo}nL2 (K,dv) 
m--+oo 

t:(u,v) = lim t:<m>(uiK,.,.,,viK,.,.,) for u,v E F. 
m--+oo 

Then the following holds. 

Theorem 2.6. (t:, F) is a local regular Dirichlet form on L2 (K, dv). 
F C C(K, R) and this form has the following scaling property, 

for u,v E F. 

Finally, we will mention heat kernel estimates for Markov chains on 
u.f.r. graphs. For X E Int(XM) and x =/= y E V, define 

Rx(x,y) = (inf{Sx(u,u): u E l(V),u(x) = l,u(y) = 0})- 1 . 

Let Rx(x,x) = 0 for x E V. Then, Rx(·, ·)is a metric which is called a 
resistance metric. By simple modifications of the proof of Corollary 4.12 
in [5], the following holds (note that as we will mention later in Remark 
3.6 4), Assumption 2.3 of [5] always holds under our Assumption 2.3). 
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Theorem 2. 7. For each X E Int( X M), let Pr (-, ·) be the heat kernel 
of the discrete time Markov chain which is induced from the continuous 
time Markov chain corresponding to (Sx,L2 (V,dv0 )). Then, there exists 
c2 .3 , · · · , c2 .6 > 0 (which depend on X) and 0 < 'Yl :::; 'Y2 such that for 
each x,y E V and k ~ d(x,y), 

Pr (x, y) < C2.3k- S~l exp ( -C2.4 ( Rx(x~y)S+l) ')'l)' 
Pr (x, y) + PrH (x, y) > C2.5k- S~l exp ( -c2.6 ( Rx(x~y)S+l) '1'•) ' 

where S = log N / log PQo and d( ·, ·) is a graph distance. 

We note that similar heat kernel estimates for ( £, F) and ( t:, F) 
(given in Theorem 2.5 and 2.6) can be also obtained (cf. [6]). 

Let (3 > 0. We say ( S x, L 2 (V, dv0 )) satisfies (PH I ((3)), a parabolic 
Harnack inequality of order (3 if whenever u( n, x) ~ 0 is defined on 
[0, 4N] x B(y, 2r) and satisfies 

u(n + 1, x)- u(n, x) = .Cu(n, x) (n, x) E [0, 4N] x B(y, 2r), 

(.C is the corresponding difference operator), then 

max u(n, x) :::; c2.7 min (u(n, x) + u(n + 1, x)), 
N<n<2N 3N<n<4N 
"'EB(y,r) xEB(i/,r) 

where N ~ 2r and c2.8 rf3 :::; N :::; c 2 .9 rf3 (cf. [2, 3, 4, 5]). By Theorem 
2.7 and a standard argument, we can deduce the following. 

Proposition 2.8. 
(Sx, L2 (V, dv0 )) satisfies (PHI(S + 1)) w.r.t. the resistance metric. 

§3. Homogenization 

In this section, we will state our main theorem. First, we give some 
definition for later use. Let Vo = {ai: i E Ip}. For Q* E Int(QM), we 
define a matrix Ak,Q* E l(V0 ), k E I by 

(3.1) 

where w 1 is a Markov chain on V1 whose transition probability is deter
mined by Q* and Ty0 = inf{n ~ 0: w;, E V0 }. Then, by Lemma 2.2 3), 
the following clearly holds for u.f.r. graphs. 

Lemma 3.1. 0 < (Ak,Q* )ij < 1 if k i= i and (Ak,Q* )kj = Dkj· 
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For any X E X+ and any Q* E Int(QM) with F(Q*) = Q*, let 
sj{Q· : L2 (V, dv0 )--; [0, oo) be given by 

where v E L2 (V, dv0 ) satisfies v(ax) = u(x), x E V, and v is Q*
harmonic on V \ (a-1 V), i.e., 

v(7r([w · i,j])) = L (Ai,Q.)jkU(7r([w, k])) for i E I, j E IF. 
kElp 

Here w . i E n+ is given by (w . i)n = Wn-1, n 2:: 2 and (w . i)t 
i. In the same way as we did for S~, we can define a Dirichlet form 

Sj{Q• (·,·)on L 2 (V; dvo). It is easy to see that Sj{Q· (u) = SHQ. (X)(u, u) 

where HQ.(X)(w) = PQol:kEitAk,Q.X(w · k)Ak,Q. for all X EX+ 
2 A A 

and u E L (V,dv0 ). We define a map HQ. : Q+--; Q+ as HQ.(Q) = 
HQ. (t(Q))(w) for wEn+ (it is independent of the choice of wE 0+)· 

Definition 3.2. 
Let J.L be a probability measure on X M satisfying the following. 
1) {X ( w) : w E 0+} are independently identically distributed QM -valued 
random variables under J.L. 
2} J.L({X E XM : X(w) E Qc1 Q 0 ,c2 Qa for all wE 0+}) = 1 for some 
Ct,Cz > 0, where Qc1 Q0 ,C2 Q0 := {Q E QM: CtQo S Q S CzQo}. 

The following properties are easy, but important. 

Proposition 3.3. Let Q0 ,Q* E Int(QM) be as above. 
1} F: XM--; XM and HQ.: XM--; XM are continuous maps. 
2} F(t(Qo)) = t(Q0 ), F(t(Q*)) = HQ.(t(Q*)) = t(Q*). 
3} If X, Y E X+ and X S Y, then F(X) S F(Y) and HQ.(X) < 
HQ.(Y). 
4) F(X) S HQ.(X) for all X EX+. 
5} For any X, Y EX+ and a, b 2:: 0, F(aX +bY) 2:: aF(X) + bF(Y) and 
HQ.(aX +bY)= aHQ.(X) + bHQ.(Y). 
6} EJL[F(X)] S F(E~'[X]) for all X EX+. 

Note that the same results hold for F and iiQ •. 
Let Fn be the n-th iteration of F. Then we have the following key 

theorem. 

Theorem 3.4. Under Assumption 2.3, there exists Q JL E Int( QM) 
such that for all w E n+, 

(3.2) QJL = lim Fn(X)(w) 
n--+oo 
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Since F( Q 1-') = Q 1-' E Int( QM), we can construct a local regular 
Dirichlet form on K using Ql-' (see Theorem 2.6). We denote the corre
sponding diffusion as (XI-', {P;'}o:eK)· We now state our main theorem. 

Theorem 3.5. Let J.L be the probability measure on X M as in Def
inition 3.2 and let TQ 0 := PQ0 N. Under Assumption 2.3, the following 
holds. 

in probability under J.L, for any f E Cb(D([O, oo), K) ---+ R) and any 
sequence {xn}~=l C V with a-nxn ---+ X00 E K as n---+ oo. Here the 
expectations are taken over wE D((O, oo), K). 

Further, if there is a convex cone X sub C X irr such that the following 
holds; a) F(Xsub) C Xsub, b) there exists a unique (up to constant 
multiples} Q E Xsubnint(XM) which satisfies F(Q) = Q, c) the support 
of J.L is in Xsub· Then PI-' is a constant time change of the diffusion 
constructed from Q on K. 

Remark 3.6. 1} In (10], similar statement is given under the as
sumption that there exists Ql E Qirr such that Hq0 ( Ql) = Ql where 

Hq0 is an adjoint operator of fiQo in Q {(10] Assumption 3.1). In gen
eral, it is not easy to check this assumption and there is a example in 
nested fractals that this does not hold. 
2} Let II be the set of all bijective maps a on I such that a(IF) = Ip, 
and let G be a subgroup ofii. Then, as in (10] Section 7, we can obtain 
similar results for random resistors on X~, a subcone of X M which 
consists of G-invariant elements, if a), b), c) in Theorem 3.5 holds for 
X~. Especially, we can prove the following; For nested fractals, let Go 
be a subgroup of I I generated by all the reflection maps and suppose that 
the support of J.L is in X~. Then PI-' in Theorem 3. 5 is a constant time 
change of Brownian motion on the nested fractal. (This is because, it 
is known that a non-degenerate fixed point for Go -invariant resistors on 
nested fractals is unique up to constant multiples; see (16, 13, 15].) 
3} Note that non-degenerate fixed points ofF is not necessarily unique 
even for nested fractals. In [1] Example 6.13, one parameter family of 
non-degenerate fixed points on the Vicsek set are given. The homoge
nization problem for this particular fractal is studied in [7]. 
4) By Theorem 3.4 (or Proposition 4.1}, we see that Assumption 2.3 in 
[5] always holds under our Assumption 2.3. 
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§4. Convergence of Dirichlet forms 

In this section, we will prove Theorem 3.4 and show a convergence 
of the corresponding forms (Proposition 4.4). 

The next proposition is a restricted version of the result by Peirone 
([15]), whose original ideas come from Sabot ([16]). For completeness, 
we give the proof in Appendix A. 

Proposition 4.1. Under Assumption 2.3, for each ME Qirn there 
exists Q M E Int( QM) such that 

(4.1) 

For the proof of Theorem 3.4, we use two lemmas in [10]. Let H'Q. 
be the n-th iteration of HQ •. 

Lemma 4.2. Assume that Q* E Int(QM) satisfies F(Q*) = Q*. 
Then, there exist c4 .1 > 0 and 0 < E < 1 such that 

In particular, 

}_i_.~ IIH'Q.(X)(w)- H'Q.(EIL[X])(w)ll = 0, p,-a.e. X, '</wEn+. 

Proof. By the linearity of HQ., EJL[HQ. (X)(w)] = HQ. (EJL[X])(w). 
Then the proof is basically the same as that of Lemma 4.1 in [10]. 

Q.E.D. 

Lemma 4.3. ([10], Lemma 4.2) Let {Yn}~=l be random variables 
such that supn E[Y;] < oo. Let Y = limsupn--+oo Yn and assume that 
limn--+oo E[Yn] = E[Y]. Then limn--+oo E[IY- Ynl] = 0. 

Proof of Theorem 3.4. Let Rm = EJL[F=(X)(w)] (Rm is independent 
of w). By Proposition 4.1, for each mE N, there exists Qm E Int(QM) 
such that limn-+ co frn(Rm) = Qm and F( Qm) = Qm. On the other 
hand, by Proposition 3.3 6) we see 

(4.2) '<lm,n EN U {0}, 

so that Qm ~ Qn+m· Denote the limit of {Qm} as Q+, then F(Q+) = 
Q+. In particular, Q+ E Int(QM) due to Assumption 2.3 1). For any 
E > 0, there exists N, E N such that 

(4.3) Vm ~ N,. 
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Indeed, if this does not hold, then because Q(l+<)Q+,c2 Q0 is compact, 
there exists a subsequence {lj} such that Rli 2: (1+t:)Q+ and limj-+oo Rli 
=: R exists. On the other hand, by (4.2), we have F1i'-1i(Rli) 2: Rli' 
for all j' 2: j so that Q+ 2: R, which is a contradiction. By defi
nition of { QmJ, for each m and E > 0, there exists Lm,< such that 
(1 - t:)Qm :::; ftn(Rm) for all n 2: Lm,<· Combining these facts and 
noting H'Q+ (Rm) 2: ftn(R111 ), we have 

On the other hand, by Lemma 4.2, we have 

(4.5) 

j~~ IIH'Q+ (Fm(X))(w)- H'Q+ (t(Rm))(w)ll 

j~~ IIH'Q+ (Fm(X))(w)- H'Q+ (Rm)ll = 0 

J.L-a.e. X and for all w E 0+. Since H'Q+ (F111 (X))(w) 2: pn+m(X)(w), 
we see that the following holds for some N~,w E N, 

(4.6) 

We now consider more about fiQ+· It is easy to see 

suplllii'Q+III:=sup sup llii'Q+(Q)II<oo 
n n QEQM,IIQII=l . 

(see Lemma 4.3 in [10]). Using this, we see that the size of each Jordan 
cell corresponding to the largest eigenvalue of fiQ+ is 1. We thus obtain 
that there exists an orthogonal projection P0 : QM ----> QM so that for 
each k E N, there exists nk E N such that 

(4.7) 

By (4.4) and (4.7), we have Rm 2: PoRm 2: (1- t:)Q+ for all m 2: N<. 
Together with (4.3), we have 

(4.8) lim Rn = Q+. 
n-+oo 

Now, by Fatou's lemma and (4.8), 

(4.9) E~' [limsupSFn(X)(w)(u, u)] 2: limsupSRJu, u) = SQ+ (u, u), 
n~~ n~~ 
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for all w E n+, u E l(Vw), where Vw := { rr([w, i]) : i E lp} is a 0-cell 
whose address is w. By (4.6) and (4.9), we have 

limsupSF''(X)(w)(u,u) = Sq+(u,u), 
n--->oo 

p,-a.e. X and for all w E n+, u E l(Vw)· Applying Lemma 4.3 with 
Yn = Spn(X)(w)(u,u) andY= Sq+(u,u) (Y is non-random), we have 

Since l(Vw) is finite dimensional, we obtain (3.2) where QJ.L = Q+. 
Q.E.D. 

Using Theorem 3.4, we can prove the convergence of forms. 

Proposition 4.4. For all u E L 2 (V, dv0 ), 

Proof. When the support of u is in one 0-cell whose address is w, 
then the result is clear by Theorem 3.4. When u is compactly supported, 
we can decompose the form into finite number of forms on 0-cells, so the 
result still holds. It is then a routine work to show the result for all 
u E L2 (V, dv0 ). Q.E.D. 

We note here that there are several errors in [10] Section 4, where the 
proof of the theorem corresponding to our Theorem 3.4 is given. They 
can be fixed, but since we have given a proof of the improved theorem, 
we omit mentioning where the errors are and how to fix them. 

§5. Proof of Theorem 3.5 

Now that we obtain Proposition 4.4, the proof of Theorem 3.5 is 
basically the same as the proof of Theorem 3.6 in [10]. Here we will just 
state key propositions and briefly comments how to prove them. For 
detailed arguments, we refer to Section 5 in [10]. 

As before, define Km = o:m k. We consider processes killed at 
o:mVo \ {0}. Set Fn,m = {u E l(Vn): uiK\K,. = 0}. For u,v E Fn,m 
and X E XM, we set t''im(u,v) = Pq0 Sx(u o W']',v oW']'). Then, 
(t''im, Fn,m) is a regular Dirichlet form. We denote the corresponding 
process (Y X,n,m, { Px,n,m}xEVnnK,.) and the corresponding generator 
£(X,n,m). Also, let (YJ.L,m, { P:,m}xEK,.) denote the process correspond
ing to (t'q,., F m), where t'q,. is a form constructed from QJ.L in Theorem 
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3.4 and :Fm = {! E :F : JIK\Km = 0}. L('m) is the corresponding 
generator. 

The first key proposition is the following convergence of finite di
mensional distribution. This can be obtained by using (H-2), Theorem 
2.7 and Proposition 4.4. See Proposition 5.7 in [10] for the proof. 

Proposition 5.1. Let {xn};;,"=1 C V be a sequence such that a-nxn 
---+ X 00 E Km· Then, for all 0 < t1 < · · · < tk, 

pOt.-nzn. poooo 

E x, .. ,,. [h(wtJ · · · fk(Wtk)]---+ E ~-'·"'[h(wtJ · · · fk(Wtk)], 

in probability under J.L, for any h, · · · , fk E C(Km, R). 

For a process Z on K let T0(Z) = inf{t ~ 0 : Z(t) E V..} and 
define inductively T[(Z) = inf{t > T[_ 1(Z) : Z(t) E Vr \ Z(T[_ 1(Z))} 
fori EN. Then the following holds. 

Lemma 5.2. Let {xn}n C V be as in Proposition 5.1. Then there 
exist 'Y,cs.l,c5.2 > 0 such that the following holds for s ~ 0, J.L-a.e. X. 

limsup~upP~~~:;.,"(T[+l(YX,n,m)-T[(YX,n,m) ~s) ~ c5 . 1 e-c5.2(rqos)-'~'. 
n--->oo ·~O · 

To show this, uniform (elliptic) Harnack inequality for £(X,n,m) is 
important (see [10] Lemma 5.8). In our case, we can obtain it easily 
by using Proposition 2.8. See [10] Lemma 5.10 for the detailed proof 
(thanks to Proposition 2.8, the proof can be shortened). 

Using Lemma 5.2, the following tightness is deduced by a standard 
argument {see Proposition 5.11 in [10]). 

Proposition 5.3. Let {xn}n C V be as in Proposition 5.1. Then 

{P~~n~:;.,"; n ~ 1} is tight (pre-compact} in D([O, oo),Km) for J.L-a.e. X. 

By Proposition 5.1 and Proposition 5.3, we have the killed process 
version of Theorem 3.5. Using Lemma 5.2 again, it is easy to deduce 
the full version of Theorem 3.5. 

§Appendix A. Proof of Proposition 4.1 

To start with, we prepare several results for the proof. First, we 
define Hilbert's projective metric on Q+ (cf. [14]). For X, Y E Q+, let 

h+(X, Y) = inf{a > 0: X~ aY}, h_(X, Y) =sup{ a> 0: aY ~X}. 

Clearly, h_(X, Y) ~ h+(X, Y). Define 

h+(X, Y) 
h(X, Y) = log h_ (X, Y). 
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Note that h(aX, bY) = h(X, Y) for all a, b > 0 and h(X, Y) = 0 if and 
only if X = aY for some a > 0, so that h(·, ·) is not a metric. But 
it is a metric on {X E Q+ : IIXII = 1}. Using Proposition 3.3, it is 
easy to prove the following (cf. [13] Section 3, [15] Remark 3.2 and [16] 
Proposition 3.3). 

Proposition A.l. 
1} h+(F(X),F(Y)) ~ h+(X,Y) and h_(F(X),F(Y)):?: h_(X,Y) for 
all X, Y E Q+. In particular, h(F(X),F(Y)) ~ h(X, Y). 
2} If Q. E Int(QM) satisfies F(Q.) = Q., then for each n E N U {0} 
and each X E Qirr, h_(X,Q.)Q. ~ .Fn(X) ~ h+(X,Q*)Q •. 

For X, Y E Q+, let A±(x, Y) = {u E l("Vo) : u is non-constant, 
Sx(u,u) = h±(X, Y)Sy(u,u)}. Also, for each Q E ~rr and u E l(Vo), 
define 1tn,Q(u) as a unique function on Vn so that 

where e~(-, ·)is defined in (2.2). In other word, 1tn,Q(u) E l(Vn) is a Q

harmonic extension of u E l(Vo). By definition, Aj,Q(u) = 1i1,Q(u) o "ii!i. 
Thus the following holds for all m :?: 0 and l :?: n :?: 0. 

(A.1) 'H.m+n,FI-n(Q) ( u) o "ii!i1 ,-·· ,i,...,it,-·· .in 

Ajn,PI-n(Q) 0 ••• 0 Ajl,fr!-l(Q) ('H.m,F'(Q) ( u) 0 "ii!il>··· ,i,.J· 

We have the following (cf. [15] Proposition 3.3, (16] Lemma 5.8). 

Lemma A.2. For X, Y E Qirr, define h±,n = h±(Fn(X),Fn(Y)). 
Then. for each 0 ~ m ~ n, 

(A.2) 

(A.3) 

h+,n ~ h+,m ~ h+,O• h-,n 2:': h-,m 2:': h-,0· 

There exists lim h± n E (0, oo). 
n-+oc ' 

Further, if h±,n = h±,o, then for all u E A±(i'n(X), .Fn(Y)), we have 

(A.4) 1{. • (u)o"ii!· · n-m,F""'(X) tl, ... ,tn-m 

Proof. (A.2) is from Proposition A.1 1). (A.3) is a simple conse
quence of (A.2) and the fact h_(X, Y) ~ h+(X, Y). Next, if h±,n = h±,o 
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and u E A- (.Fn (X), frn (Y)), then we have 

SF"(X)(u) = £'ft:..7x)(?-ln-m,F"'(X)(u)) 

> h_,m£'ft:..7Y)(?-£n-m,F"'(X)(u)) 

> h_,mEft::;'Y) (1-ln-m,F"'(Y) ( u)) 

h_,mSft,.(Y)(u);:::: h_,oSF"(Y)(u). 

Thus all the inequalities above are in fact equalities. By the uniqueness 
of the harmonic extension, we obtain the (-)-version of ( A.4). ( + )
version of (A.4) can be proved similarly. Q.E.D. 

We next mention a convergence result on positive matrices ( cf. [15] 
Proposition 3.5). 

Lemma A.3. Let B be a finite set. Suppose A1, · · · , An,··· , Aoo 
are positive matrices from l(B) to itself and suppose there exists a sub
sequence {a(n)}n such that 

(A.5) for all i,j E B. 

Then, for each family of non-negative non-zero vectors {vn}n C l(B), 

(A.6) 
A1 o · · · o A v l . n n 

lm 
n->oo jjA1 o · · · o Anvnll 

exists and it is a positive vector. 

Proof For p, r ;:::: 0, define Tp,r = Ap+l o · · · o Ap+r· By (A.5) 
and Theorem 3.6 in [17], limr_,00 (Tp,r)ij/O:=sEB(Tp,r)is) exists for each 
i, j E B, p;:::: 0 and it is independent of i and p (in [17], such a property 
is called strongly ergodic). Using Lemma 3.3 in [17], we obtain the 
result. Q.E.D. 

We now give a key lemma (cf. [15] Lemma 3.6, [16] Section 5.3). 

Lemma A.4. Let X E Qirr· Then, F(X) =X if and only if 

(A.7) h(Fn(X), _Fn+l(X)) = h(X, F(X)) for all n EN. 

Proof We will assume (A. 7) and prove F(X) = X (since the other 
direction is clear). First, note that there exist j E lp and a subsequence 
{s(n)}n so that we can take U±,n E A±(frs(n)(X), frs(n)+l(X)) with 
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U±,n(aj) = minxu±,n(x) = 0 (aj is a fixed point of Wj)· Then by 
LemmaA.2, 

(A 8) '1.J ( ) ,y,s{n)-rn . U±,n,rn := fLs(n)-rn,F"'(X) U±,n 0 '>l'j 

'H.s(n)-rn,fr=+'(X)(u±,n) o "lllj(n)-rn E A±(frrn(X), _frrn+l(X)), 

for all m:::; s(n) where "lllj is a n-th iteration of Wj. By (A.1), we have 

(A.9) U±,n;rn Aj,F"'(X) o · · · o Aj,F•<nl-'(X)(u±,n) 

Aj,F"'+'(X) o · · · o Aj,F•<nl(X)(u±,n)· 

Now choose N0 large enough so that frrn(X) E Int(QM) for all m ~ 
No (we use Assumption 2.3 1) here). Using Lemma 3.1, we see that 
{(Aj,F"'{X))In}rn;::No are positive matrices from l(B) to itself where B := 

V0 \ { aj}. Since all the elements of the matrices are less than 1 (due to 
Lemma 3.1) and ~B < oo, we see that (A.5) holds. We can thus apply 
Lemma A.3 and obtain that 

exists form ~ N0 . By (A.9), this limit is independent of m ~ N0 , we 
thus denote it as U±. 

We now regard u± as a function on Vo. Then, by the choice of 
U±,n, u±(aj) = 0 so that U± is non-constant. By (A.8), we see that 

U± E A±(frrn(X), frrn+ 1 (X)) for all m ~ N0 . Thus, SF"'(X)(u±) = 
A A +1 A 

h±(Frn(X), prn (X))Sfr=+'(X)(u±)· On the other hand, by (A.7), 

h+(frrn(X),frrn+l(X))/L(Frn(X),Frn+l(X)) ~ 1 is independent of 
m ~ 0 which we denote by (3. Then, we obtain 

~fr=+'(X)(u+) = (3_ 1 ~F"'{X)(u+) = ... = (3-(rn+l-No) ~frNo(X)(u+)' 
Sfr=+'(X)(u-) SF"'(X)(u_) SfrNo(x)(u_) 

for all m ~ N 0 . If (3 > 1, it contradicts to Proposition A.1 2). So, (3 = 1 
which means h(X, F(X)) = 0 (by taking m = 0). Thus, F(X) =eX for 
some c > 0. Using Remark 2.4 1), we have c = 1. Q.E.D. 

Proof of Proposition 4.1. First, since c1Qo:::; frn(M):::; c2Qo for all 
n EN, there exists a subsequence (which could depend on M) {a(n)}n 
and Q M E Qirr such that 

(A.10) lim _fra(n)(M) = QM. 
n--+oo 
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On the other hand, by Lemma A.2, the following limit exists, 

h± := lim h±(Fn(M), .frn+l(M)) E (0, oo). 
n-+oo 

Thus, 

h(Fm(QM ), .frm+l(QM)) 

= lim h(fi'm+u(n) (M), pm+Hu(n) (M)) =log h+' 
n-+oo h_ 

for all m E N. By Lemma A.4, this implies F( Q M) = Q M. In particular, 
QM E Int(QM) due to Assumption 2.3 1). Using Lemma A.2 again, 
limn-+ooh±(QM,fi'n(M)) exists and the limit is 1 due to (A.10). By 
Proposition A.1 2), this implies (4.1). Q.E.D. 
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