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Abstract. 

This note discusses two topics; one is the notion of the multiple 
Wiener integral and the other is the Levy-Ito decomposition of a Levy 
process. 

Both have been taken up by Professor K. Ito showing the sig
nificance in stochastic analysis. The extensive development of the 
stochastic analysis at present largely depends on these discoveries by 
him. 

It seems to be a good time to remind his profound ideas and to 
discuss some of future directions in probability theory. 
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§1. Introduction 

The White Noise Analysis has extensively developed in the last quar
ter of a century and now it is the time to be in search of further directions 
of research which will be still in line with the Ito's original contribution 
toward stochastic analysis. 

Two directions are proposed in this line. 

(1) Analysis of white noise functionals parameterized by a contour 
or a surface, namely some kinds of random fields. 
Those fields are assumed to live in the Hilbert space (L2) of 
white noise functionals (or of Brownian functionals). In order 
to analyze those functionals we shall appeal to the variational 
calculus for the random fields, and there is requested to intro
duce a suitable class of generalized white noise functionals. A 
good tool from the stochastic analysis for this purpose is the 
direct sum decomposition of the Hilbert space (£2 ) in terms of 
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the subspaces of multiple Wiener integrals (see [2]) or of those 
involving homogeneous chaos. 
We then come to introduce classes of generalized white noise 
functionals, where we should note that our generalization can 
be done for each subspace given by the decomposition men
tioned above. Representations of those functionals can be given 
by the so-called S-transform which looks like an infinite dimen
sional analogue of the Laplace transform. 
To discuss a variational calculus for random fields in question 
some more probabilistic interpretation is necessary; however 
the decomposition of the basic Hilbert space is the milestone 
of the further study of random fields formed by white noise 
functionals. 

{2) Reduction of random complex systems. 
Given a random, evolutional complex system, we first try to 
obtain the innovation of the system. Under some reasonable 
conditions, we may assume that the innovation comes from a 
Levy process. Some concrete results on this topic can be seen 
in [5]. 
Then, we are naturally led to the decomposition of the Levy 
process established by Ito (see [1]). The decomposition itself 
was obtained earlier, by taking a relaxed view of rigor. When 
nonlinear functionals of innovation are considered, finer and 
rigorous results on the decomposition are necessary, so that 
the results in [1] are quite helpful. This fact can be seen as 
soon as we come to the analysis of nonlinear functionals of 
Poisson process (which is an elemental process) or of compound 
Poisson noise. It is noted that interesting results are obtained 
by viewing dissimilarity to the Gaussian case. 

§2. Topic (1) 

2.1. Decomposition of the white noise space 

Let J.L be the standard white noise measure on a space E* of gener
alized functions on R, and let L 2 (E*, J.L) = (L2) be the space of white 
noise functionals. One of the basic tools for the analysis on (L2 ) is the 
direct sum decomposition due to Ito and Wiener: 

where Hn is the space of multiple Wiener integrals or homogeneous chaos 
of degree n. 
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Another tool is the so-called S-transform (see e.g. I. Kubo and S. 
Takenaka [8) or [4, Chapt. 2) ) defined by 

(Scp)(~) = exp[-~11~11 2 ) { exp[(x, ~)]cp(x)dtL(x), 
2 jE* 

where cp is an (£2 )-functional. The S-transform gives a nice representa
tion of white noise functionals. Indeed, the transform plays fundamental 
roles in two ways; one is that a visualized representation of cp is given, 
and the other is that it helps to introduce generalized white noise func
tionals which are very important in advanced white noise analysis. 

2.2. The isomorphism 

Hn ~ £2(l~n)''\ 

(up to vlnf), where L 2 (JRn)"' denotes the subspace of L 2 (JRn) containing 
only symmetric functions. This isomorphism extends to 

where Hm(JRn)" is the subspace of the Sobolev space of order m involv
ing symmetric functions. Define a space (£2)- of generalized functionals 
by 

(L2 )- = fficnH;;, 

where Cn is a certain sequence of positive numbers such that en ---+ 0. 
For details, we refer to the literature [4, Chapt.3.A). It is noted that 
the choice of the {en} depends on the singularity of functionals to be 
discussed. 

Another space (S)* of generalized functional is defined by a Gel'fand 
triple 

(S) c (£2 ) c (S)*, 

which is an infinite dimensional analogue of the triple to define the 
Schwartz distributions. The Rigorous definition and the properties of 
(S)* are found in [4, Chapt.4). Also see [9, Chapt.4). 

The spaces (£2)- and (S)* of generalized white noise functionals 
are basic concept of the white noise analysis; indeed, the choice of these 
spaces is one of the advantages of 01.1r analysis. By using these spaces 
(£2)- and (S)*, we can carry on the analysis of white noise functionals 
in sufficiently large class and find significant applications in other fields 
like quantum dynamics. Actually, to be surprising enough, we can find 
an interesting application to the non-commutative geometry (e.g. [10)). 
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§3. Topic (2) 

3.1. Elemental processes involved in innovation 

We shall discuss the analysis of stochastic processes and random 
fields. The approach is done in line with 

Reduction~ Synthesis~ Analysis. 

The step of the reduction is realized by taking the innovation for the 
random complex phenomena in question. Then, we are given a (Gauss
ian) white noise and/or a Poisson noise, both of which are elemental 
generalized stochastic processes with independent values at every time 
point, as is illustrated just below. The two cases have much similarity 
in the analysis on £ 2-spaces; however dissimilarity is also interesting. 
Hence, they are discussed separately, except those properties in com
mon. 

In the multi-dimensional parameter case, say JRd-parameter in gen
eral, innovations should still be generalized stochastic processes having 
independent values at every point in JRd. 

To fix the idea, we first take the one-dimensional parameter case. 
Then, under mild, and in fact reasonable assumptions, we may assume 
that innovation is the time derivative of some Levy process with station
ary independent increments. Let it be denoted by L(t). We may assume 
it has no non-random part. Then, the Levy-Ito decomposition gives us 
an expression of the form 

L(t) = cB(t) + X(t), 

where c is a constant, B(t) is a Brownian motion, and X(t) is a com
pound Poisson process which consists of independent Poisson processes 
with different heights of jumps (see [1]). Thus, we can conclude that a 
Brownian motion and each Poisson process being a component of the 
X(t) are all elemental Levy processes. 

After the reduction follows the step of synthesis which means the 
construction of the functionals of (Gaussian) white noise and Poisson 
noises of different heights of jumps. It is, formally speaking, easy to 
form a general space of functionals of the innovation, however we need 
profound background. Actually rigorous interpretation can be seen e.g. 
in [6]. 

The collection of S-transforms of (L2 )-functionals { rp} forms a Re
producing Kernel Hilbert space F which is isomorphic to (L2 ). In short, 
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a cp has a representation in terms of a functional (indeed, non-random 
functional) of a smooth function e. We can therefore appeal to the clas
sical theory of functional analysis in order to carry on the calculus on 
(L2) . 

3.2. Random fields 
Coming to random fields, a certain class of them is introduced. Let 

C be a class of manifolds C in Rd: 

C = { C; convex, C 00-manifold, ~ sd-l}, 

where ~ means a diffeomorphism. 
The topology is introduced to C by using the Euclidean distance. 

Given a random field X(C) = X(C,x),x E E*(J..t), indexed by C E 
C. The S-transform is now of the form 

(SX(C))(e) = exp[-~llell 2 ] L. exp[(x,e)]X(C,x)dJ..t(x), 

and it defines aU-functional: 

(SX(C))(e) = U(C, e), e E E. 

Suppose that X (C) is a linear functional of a multiple Wiener inte
gral of degree n. Then, the associated U-functional is expressed in the 
form 

U(c,e) = j F(C,u)e(u)n®dur.. 

Thus, we are ready to apply the classical theory of calculus of vari
ations to the functional U(C,e) of variable C (see [5, Chapt.6]). 

We then come to the case of a Poisson noise. 
The case offunctionals of a single Poisson process P(t), we introduce 

the U-transform following the paper by K. Saito and A. Tsoi [14]. It is 
given by the formula 

where J..Lp is the probability distribution of Poisson noise P, and where 
Cp(e) is the characteristic functional of P. Namely, 
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For simplicity, the intensity ). is taken to be 1 in this subsection. 

Fact. Under the U-transform, a discrete chaos (in Wiener's sense) 
r.p of degree n has a representation of the form 

where u = (ut, · · · , un)· (For proof see [14].) 

Generalized Poisson noise functionals can be introduced by using 
this representation. We can further play a similar game for the analysis 
of them to the Gaussian case. 

Generalization to the multi-dimensional parameter case is just 
straightforward. Also, a random field X(C) of functional of Poisson 
noise is defined, and its variation can be discussed in a similar manner 
to the Gaussian case. 

3.3. Stochastic variational equation 

First note that, as a generalization of the infinitesimal equation, 
there is given a stochastic variational equation for a random field X (C): 

8X(C) = <I>(X(C'), C' < C, Y(s), sEC, C, 8C), 

where {Y ( s), s E C} is the innovation, and where C' < C denotes that 
C' lies inside of C. 

As was explained before, we apply S-transform in the Gaussian case, 
and we are given a variational equation for U-functional. When we come 
back to a random function by using s-1 , a difficulty arises. This can be 
illustrated as follows. 

To fix the idea, we consider a Gaussian random field X(C) which has 
a causal representation in terms of white noise. Namely, it is a linear 
functional of x expressed in the form: 

X(C) = 1 F(C, u)x(u)dud, 
(C) 

where F( C, u) is smooth in ( C, u), and where (C) denotes the domain 
enclosed by the ovaloid C. Then, U-functional can be expressed as 

U(C, ~) = 1 F(C, u)~(u)dud. 
{C) 
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The variation of U is easily computed to have 

8U(CJ.) = 1 F(C, s)~(s)8n(s)ds + J 8F(C, u)~(u)dud, 
C (C) 

where the 8F is the variation of F in the variable C which is defined in 
the classical sense, and where ds is the surface element over C. 

In what follows, the representation of X(C) in the above form is 
assumed to be canonical. Namely, the sigma-field Bc(X) generated by 
X(C') with C' inside of Cis equal to the sigma-field Bc(x) generated 
by x ( u), u being inside of C for every C. 

Theorem. The variation 8X(C) is given by 

8X(C) = 1 F(C, s)x(s)8n(s)ds + J 8F(C, u)x(u)dud. 
C (C) 

The innovation is obtained from the first term of the right side. 

Proof This result may be thought of as an easy consequence of the 
definition of 8X ( C, x), but not quite. A rigorous proof needs, in addition 
to the functional analysis, the following considerations on the restriction 
of the parameter and the choice of C. Hence, what follow in Subsection 
3.4 are to be included in the proof. For details, see [5]. 

3.4. Other variations 
Restriction of the parameter. 

i) Gaussian case. 
Given an ~d parameter white noise (E*, J.L). For f E L2 (~d) the 

stochastic bilinear form (x, !), x E E*, is defined which is subject to a 
Gaussian distribution N(O, 11!11 2). Take f to be an indicator function 
such that 

ft(u) = XI(t)(u), t = (tl> t2, · · · , td),I(t) = IIJ[O, tj]· 

Then, X(I(t)) = (x, ft) is a Brownian sheet, that is, 

E[X(J(t))] = O,E[X(I(t)) · X(I(s))] = IT1(t1 1\ s1). 

Set td = 1. Then, we are given an ~d- 1-dimensional parameter 
Brownian sheet. It is now ready to have an ~d-1-dimensional param
eter white noise by applying partial derivatives. Similarly, much lower 
dimensional parameter Brownian sheet and white noise can be derived. 

The idea is the same for the restriction of the parameter to a hyper
surface C which is a smooth ovaloid. 
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Proposition. The restriction of the parameter of white noise can 
be done with the help of Brownian sheet. 

ii) Poisson case 
For the Poisson noise the same trick can be applied as is easily 

shown. Just remind that the characteristic functional Cp(~) of a Poisson 
noise with JRd-parameter is 

Cp(~) = exp[A /(eif.(t) -l)dtd], 

where A > 0 is the intensity. The associated measure on E* is denoted 
by J.Lp· 

Take ~ to be I ( t) as above, and form a stochastic bilinear form 
( x, ft), x E E* (J.Lp), which is to be a Poisson sheet. A restriction of 
the parameter to a hyperplane defines a lower dimensional parameter 
Poisson noise. Also a restriction to a hypersurface is given. 

As in the Gaussian case we can state a proposition. Since it is 
similar, so that we omit. 

It is noted that observation of on a Poisson sheet, we can see in
variance of Poisson noise under some transformations of the parameter 
space. This will be reported later. 

Choice of the C. 

One may ask why the parameter C for a random field should be 
taken to be a smooth ovaloid (convex, closed, without boundary). For 
one thing, the deformation of C will be done by members of a known 
transformation group acting on JRd. For another reason, a white noise 
parameterized by a point in C should be defined. Indeed, as soon as the 
variational calculus is applied we are naturally led to define an innovation 
or white noise with parameter set C, as we have seen in Subsection 3.3. 
For this purpose a Gel'fand triple of functions spaces on C should be 
defined. Our assumptions for C guarantees the existence of a Gel'fand 
triple to be requested. 

With the considerations mentioned above, we can deal with vari
ational equations, not only for a Gaussian type field reviewed in this 
section, but also more general non-Gaussian fields and even in the case 
where X( C) is a nonlinear functional of Poisson noise. 

The above considerations are more significant if functionals of Pois
son noise are discussed. For example we take a causal and linear func
tional of a homogeneous chaos, sample function of which is denoted by 
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x. It is expressed in the form 

X(C) = 1 F(C,u)x(u)dud. 
(C) 

Note that, the canonical property (which is an easy generalization of 
the notion on canonical property discussed in [3, II [8]]) of the above rep
resentation follows easily under the assumption that the kernel F( C, u) 
never vanishes. Hence, the innovation can immediately be obtained. 
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