Crystal Bases and Diagram Automorphisms

Satoshi Naito and Daisuke Sagaki

Abstract

. We prove that the action of an ω-root operator on the set of all paths fixed by a diagram automorphism ω of a Kac-Moody algebra \mathfrak{g} can be identified with the action of a root operator for the orbit Lie algebra \mathfrak{g}. Moreover, we prove that there exists a canonical bijection between the elements of the crystal base $\mathcal{B}(\infty)$ for \mathfrak{g} fixed by ω and the elements of the crystal base $\breve{\mathcal{B}}(\infty)$ for $\breve{\mathfrak{g}}$. Using this result, we give twining character formulas for the "negative part" of the quantized universal enveloping algebra $U_{q}(\mathfrak{g})$ and for certain modules of Demazure type.

§0. Introduction.

Let $\mathfrak{g}:=\mathfrak{g}(A)$ be the Kac-Moody algebra over \mathbb{Q} associated to a symmetrizable generalized Cartan matrix $A=\left(a_{i j}\right)_{i, j \in I}$ with Cartan subalgebra \mathfrak{h} and Weyl group $W=\left\langle r_{i} \mid i \in I\right\rangle$. A path is, by definition, a piecewise linear, continuous map $\pi:[0,1] \rightarrow \mathfrak{h}^{*}$ such that $\pi(0)=0$, where $[0,1]:=\{t \in \mathbb{Q} \mid 0 \leq t \leq 1\}$. We denote by \mathbb{P} the set of all paths (modulo reparametrization). In [13], Littelmann defined root operators $e_{i}, f_{i}: \mathbb{P} \cup\{\theta\} \rightarrow \mathbb{P} \cup\{\theta\}$, where θ is an extra element, and introduced the notion of Lakshmibai-Seshadri paths of shape λ, where $\lambda \in \mathfrak{h}^{*}$ is a dominant integral weight. By using root operators, we can make the set $\mathbb{B}(\lambda)$ of Lakshmibai-Seshadri paths of shape λ into a crystal which is isomorphic to the crystal base $\mathcal{B}(\lambda)$ of an integrable highest weight $U_{q}(\mathfrak{g})$-module of highest weight λ (see [3] and [10]), where $U_{q}(\mathfrak{g})$ is the quantized universal enveloping algebra of \mathfrak{g} over $\mathbb{Q}(q)$.

Let $\omega \in \operatorname{Aut}(\mathfrak{g})$ be a diagram automorphism of \mathfrak{g}, and $\omega^{*}: \mathfrak{h}^{*} \rightarrow \mathfrak{h}^{*}$ the contragredient map of the restriction $\left.\omega\right|_{\mathfrak{h}}$ of ω to \mathfrak{h}. For a path $\pi \in \mathbb{P}$, we define a path $\omega(\pi) \in \mathbb{P}$ by $(\omega(\pi))(t):=\omega^{*}(\pi(t))$ for $t \in[0,1]$. In [20] and [21], we introduced ω-root operators \widetilde{e}_{i} and \widetilde{f}_{i} (see (2.2.2)), and then proved that the Lakshmibai-Seshadri paths fixed by ω can be
identified with the Lakshmibai-Seshadri paths for the orbit Lie algebra $\breve{\mathfrak{g}}$, which is a certain Kac-Moody algebra corresponding to ω.

In this paper, we first prove that the action of an ω-root operator on the set of all paths fixed by ω can be identified with the action of a root operator for the orbit Lie algebra $\breve{\mathfrak{g}}$, generalizing results in [20] and [22]. Then, using results in [20] and [21], we show that there exists a canonical bijection between the elements of the crystal base $\mathcal{B}(\infty)$ of the negative part $U_{q}^{-}(\mathfrak{g})$ of $U_{q}(\mathfrak{g})$ fixed by ω and the elements of the crystal base $\breve{\mathcal{B}}(\infty)$ of the negative part $U_{q}^{-}(\breve{\mathfrak{g}})$ of $U_{q}(\breve{\mathfrak{g}})$. In addition, we give twining character formulas for $U_{q}^{-}(\mathfrak{g})$ and for certain modules $\left(U_{w}^{-}\right)_{q}(\mathfrak{g})$ of Demazure type.

Let us explain our results more precisely. We set $\left(\mathfrak{h}^{*}\right)^{0}:=\left\{\lambda \in \mathfrak{h}^{*} \mid\right.$ $\left.\omega^{*}(\lambda)=\lambda\right\}, \widetilde{W}:=\left\{w \in W \mid \omega^{*} w=w \omega^{*}\right\}$. Note that there exist a natural \mathbb{Q}-linear isomorphism $P_{\omega}^{*}: \widehat{\mathfrak{h}} \rightarrow\left(\mathfrak{h}^{*}\right)^{0}$ and a group isomorphism $\Theta: \widehat{W} \rightarrow \widetilde{W}$, where $\widehat{\mathfrak{h}}$ is the Cartan subalgebra of the orbit Lie algebra $\breve{\mathfrak{g}}$ and \widehat{W} is the Weyl group of $\breve{\mathfrak{g}}$. Denote by $\widehat{\mathbb{P}}$ the set of all paths (modulo reparametrization) for the orbit Lie algebra $\breve{\mathfrak{g}}$, and by $\widehat{e}_{i}, \widehat{f}_{i}$: $\widehat{\mathbb{P}} \cup\{\theta\} \rightarrow \widehat{\mathbb{P}} \cup\{\theta\}$ root operators for $\breve{\mathfrak{g}}$. For a path $\widehat{\pi} \in \widehat{\mathbb{P}}$, we define a path $P_{\omega}^{*}(\widehat{\pi}) \in \mathbb{P}$ by $\left(P_{\omega}^{*}(\widehat{\pi})\right)(t):=P_{\omega}^{*}(\widehat{\pi}(t))$ for $t \in[0,1]$, and set $P_{\omega}^{*}(\theta)=\theta$.

In [20] and [22], we proved that the equalities $\widetilde{e}_{i} \circ P_{\omega}^{*}=P_{\omega}^{*} \circ \widehat{e}_{i}$ and $\tilde{f}_{i} \circ P_{\omega}^{*}=P_{\omega}^{*} \circ \widehat{f}_{i}$ hold on a certain subset of $\widehat{\mathbb{P}}$. In this paper, we extend this result to the whole of $\widehat{\mathbb{P}}$.

Theorem 1. The set $\mathbb{P}^{0} \cup\{\theta\}$ is stable under the ω-root operators, where $\mathbb{P}^{0}:=\{\pi \in \mathbb{P} \mid \omega(\pi)=\pi\}$. Furthermore, we have $\widetilde{e}_{i} \circ P_{\omega}^{*}=P_{\omega}^{*} \circ \widehat{e}_{i}$ and $\widetilde{f}_{i} \circ P_{\omega}^{*}=P_{\omega}^{*} \circ \widehat{f_{i}}$ on $\widehat{\mathbb{P}}$.

Denote by $e_{i}, f_{i}: \mathcal{B}(\infty) \cup\{0\} \rightarrow \mathcal{B}(\infty) \cup\{0\}$ the Kashiwara operators for the crystal base $\mathcal{B}(\infty)$. Let $w \in W$, and $w=r_{i_{1}} r_{i_{2}} \cdots r_{i_{k}}$ its reduced expression. We define a subset $\mathcal{B}_{w}(\infty)$ of $\mathcal{B}(\infty)$ by

$$
\mathcal{B}_{w}(\infty):=\left\{f_{i_{1}}^{m_{1}} f_{i_{2}}^{m_{2}} \ldots f_{i_{k}}^{m_{k}} \bar{v}_{\infty} \mid m_{j} \in \mathbb{Z}_{\geq 0}\right\}
$$

where \bar{v}_{∞} is the (unique) highest weight element of $\mathcal{B}(\infty)$. We know from [8] that $\mathcal{B}_{w}(\infty)$ is the crystal base of the following module $\left(U_{w}^{-}\right)_{q}(\mathfrak{g})$ of Demazure type:

$$
\left(U_{w}^{-}\right)_{q}(\mathfrak{g})=\sum_{m_{j} \in \mathbb{Z}_{\geq 0}} \mathbb{Q}(q) y_{i_{1}}^{m_{1}} y_{i_{2}}^{m_{2}} \cdots y_{i_{k}}^{m_{k}} \subset U_{q}^{-}(\mathfrak{g})
$$

where $y_{i}, i \in I$, are the Chevalley generators corresponding to negative roots. We also know that $\mathcal{B}_{w}(\infty)$ (and hence $\left(U_{w}^{-}\right)_{q}(\mathfrak{g})$) does not depend on the choice of the reduced expression of w.

There exists a canonical $\mathbb{Q}(q)$-algebra automorphism $\omega \in \operatorname{Aut}\left(U_{q}(\mathfrak{g})\right)$ of $U_{q}(\mathfrak{g})$ induced from the diagram automorphism ω. Since the crystal lattice $\mathcal{L}(\infty)$ of $U_{q}^{-}(\mathfrak{g})$ is stable under ω, we obtain a \mathbb{Q}-linear automorphism $\omega: \mathcal{L}(\infty) / q \mathcal{L}(\infty) \rightarrow \mathcal{L}(\infty) / q \mathcal{L}(\infty)$ induced from $\omega: \mathcal{L}(\infty) \rightarrow$ $\mathcal{L}(\infty)$. Note that the crystal base $\mathcal{B}(\infty)$ and its subset $\mathcal{B}_{w}(\infty)$ for $w \in \widetilde{W}$ are stable under ω. We set

$$
\mathcal{B}^{0}(\infty):=\{b \in \mathcal{B}(\infty) \mid \omega(b)=b\}, \quad \mathcal{B}_{w}^{0}(\infty):=\left\{b \in \mathcal{B}_{w}(\infty) \mid \omega(b)=b\right\}
$$

We denote by $\widehat{e}_{i}, \widehat{f_{i}}: \breve{\mathcal{B}}(\infty) \cup\{0\} \rightarrow \breve{\mathcal{B}}(\infty) \cup\{0\}$ the Kashiwara operators for the crystal base $\breve{\mathcal{B}}(\infty)$, and by $\breve{\mathcal{B}}_{\widehat{w}}(\infty)$ the crystal base of the module $\left(U_{\widehat{w}}^{-}\right)_{q}(\breve{\mathfrak{g}})$ of Demazure type corresponding to $\widehat{w} \in \widehat{W}$.

By using results in [20] and [21], we prove the following theorem.
Theorem 2. The set $\mathcal{B}^{0}(\infty) \cup\{0\}$ is stable under the ω-Kashiwara operators, defined in the same way as (2.2.2). Moreover, there exists a canonical bijection $P_{\infty}: \mathcal{B}^{0}(\infty) \xrightarrow{\sim} \breve{\mathcal{B}}(\infty)$ such that

$$
\begin{aligned}
& \left(P_{\omega}^{*}\right)^{-1}(\mathrm{wt}(b))=\mathrm{wt}\left(P_{\infty}(b)\right) \quad \text { for } b \in \mathcal{B}^{0}(\infty) \\
& P_{\infty} \circ \widetilde{e}_{i}=\widehat{e}_{i} \circ P_{\infty} \quad \text { and } \quad P_{\infty} \circ \widetilde{f}_{i}=\widehat{f}_{i} \circ P_{\infty}
\end{aligned}
$$

In addition, we have $P_{\infty}\left(\mathcal{B}_{w}^{0}(\lambda)\right)=\breve{\mathcal{B}}_{\widehat{w}}(\infty)$ for each $w \in \widetilde{W}$, where $\widehat{w}:=\Theta^{-1}(w)$.

The twining character $\operatorname{ch}^{\omega}\left(U_{q}^{-}(\mathfrak{g})\right)$ of $U_{q}^{-}(\mathfrak{g})$ is defined to be the following formal sum:

$$
\operatorname{ch}^{\omega}\left(U_{q}^{-}(\mathfrak{g})\right)=\sum_{\chi \in\left(\mathfrak{h}^{*}\right)^{0}} \operatorname{tr}\left(\left.\omega\right|_{\left(U_{q}^{-}(\mathfrak{g})\right)_{\chi}}\right) e(\chi)
$$

For each $w \in \widetilde{W}$, we define the twining character $\operatorname{ch}^{\omega}\left(\left(U_{w}^{-}\right)_{q}(\mathfrak{g})\right)$ of $\left(U_{w}^{-}\right)_{q}(\mathfrak{g})$ by

$$
\operatorname{ch}^{\omega}\left(\left(U_{w}^{-}\right)_{q}(\mathfrak{g})\right):=\sum_{\chi \in\left(\mathfrak{h}^{*}\right)^{0}} \operatorname{tr}\left(\left.\omega\right|_{\left(\left(U_{w}^{-}\right)_{q}(\mathfrak{g})\right)_{\chi}}\right) e(\chi)
$$

As a corollary of Theorem 2, we obtain the following.
Corollary 3. Let $w \in \widetilde{W}$, and set $\widehat{w}:=\Theta^{-1}(w)$. Then we have

$$
\operatorname{ch}^{\omega}\left(U_{q}^{-}(\mathfrak{g})\right)=P_{\omega}^{*}\left(\operatorname{ch} U_{q}^{-}(\breve{\mathfrak{g}})\right), \quad \operatorname{ch}^{\omega}\left(\left(U_{w}^{-}\right)_{q}(\mathfrak{g})\right)=P_{\omega}^{*}\left(\operatorname{ch}\left(U_{\widehat{w}}^{-}\right)_{q}(\breve{\mathfrak{g}})\right)
$$

This paper is organized as follows. In $\S 1$, we fix our notation for Kac-Moody algebras, and then recall some basic facts about diagram automorphisms and orbit Lie algebras. In §2, we recall the definition of an ω-root operator, and prove Theorem 1. In §3, we study the elements of some crystal bases fixed by a diagram automorphism, and show Theorem 2. In $\S 4$, we obtain Corollary 3 as an application of Theorem 2.

§1. Preliminaries.

1.1. Kac-Moody algebras and diagram automorphisms.

Let $\mathfrak{g}:=\mathfrak{g}(A)$ be the Kac-Moody algebra over \mathbb{Q} associated to a symmetrizable generalized Cartan matrix $A=\left(a_{i j}\right)_{i, j \in I}$, with Cartan subalgebra \mathfrak{h}, simple roots $\Pi=\left\{\alpha_{i}\right\}_{i \in I} \subset \mathfrak{h}^{*}$, simple coroots $\Pi^{\vee}=$ $\left\{\alpha_{i}^{\vee}\right\}_{i \in I} \subset \mathfrak{h}$, Chevalley generators $\left\{x_{i}, y_{i} \mid i \in I\right\}$, where $\mathfrak{g}_{\alpha_{i}}=\mathbb{Q} x_{i}$ and $\mathfrak{g}_{-\alpha_{i}}=\mathbb{Q} y_{i}$, and Weyl group $W=\left\langle r_{i} \mid i \in I\right\rangle$.

Let $\omega: I \rightarrow I$ be a bijection of order N such that $a_{\omega(i), \omega(j)}=a_{i j}$ for all $i, j \in I$, which we call a (Dynkin) diagram automorphism. Then ω naturally induces a Lie algebra automorphism $\omega \in \operatorname{Aut}(\mathfrak{g})$ of order N such that $\omega(\mathfrak{h})=\mathfrak{h}$, and $\omega\left(x_{i}\right)=x_{\omega(i)}, \omega\left(y_{i}\right)=y_{\omega(i)}, \omega\left(\alpha_{i}^{\vee}\right)=\alpha_{\omega(i)}^{\vee}$ for $i \in I$ (see $[23, \S 1.1]$). We define a \mathbb{Q}-linear automorphism $\omega^{*}: \mathfrak{h}^{*} \rightarrow \mathfrak{h}^{*}$ by $\left(\omega^{*}(\lambda)\right)(h):=\lambda\left(\omega^{-1}(h)\right)$ for $\lambda \in \mathfrak{h}^{*}, h \in \mathfrak{h}$, and set

$$
\begin{equation*}
\mathfrak{h}^{0}:=\{h \in \mathfrak{h} \mid \omega(h)=h\}, \quad\left(\mathfrak{h}^{*}\right)^{0}:=\left\{\lambda \in \mathfrak{h}^{*} \mid \omega^{*}(\lambda)=\lambda\right\} . \tag{1.1.1}
\end{equation*}
$$

We also set

$$
\begin{equation*}
\widetilde{W}:=\left\{w \in W \mid \omega^{*} w=w \omega^{*}\right\} \tag{1.1.2}
\end{equation*}
$$

Note that $\omega^{*} r_{i}\left(\omega^{*}\right)^{-1}=r_{\omega(i)}$ for every $i \in I$.

1.2. Orbit Lie algebras.

We set $c_{i j}:=\sum_{k=0}^{N_{j}-1} a_{i, \omega^{k}(j)}$ for $i, j \in I$, where $N_{i}:=\#\left\{\omega^{k}(i) \mid\right.$ $k \geq 0\}$. We choose a complete set \widehat{I} of representatives of the ω-orbits in I, and set $\breve{I}:=\left\{i \in \widehat{I} \mid c_{i i}>0\right\}$.

Remark 1.2.1 (cf. [2, §2.2]). Assume that $c_{i i}>0$. Then $c_{i i}=1$ or 2. If $c_{i i}=1$, then $a_{i, \omega^{N_{i} / 2}(i)}=-1$ and $a_{i, \omega^{k}(i)}=0$ for any other $1 \leq k \leq N_{i}-1, k \neq N_{i} / 2$, with N_{i} even. Hence the Dynkin diagram corresponding to the ω-orbit of the i is of type $A_{2} \times \cdots \times A_{2}$ ($N_{i} / 2$ times). If $c_{i i}=2$, then $a_{i, \omega^{k}(i)}=0$ for all $1 \leq k \leq N_{i}-1$. Hence the Dynkin diagram corresponding to the ω-orbit of the i is of type $A_{1} \times \cdots \times A_{1}$ (N_{i} times).

We set $\widehat{a}_{i j}:=2 c_{i j} / c_{j}$ for $i, j \in \widehat{I}$, where $c_{i}:=c_{i i}$ if $i \in \breve{I}$, and $c_{i}:=2$ otherwise. We know from [1, Lemma 2.1] that a matrix $\widehat{A}=\left(\widehat{a}_{i j}\right)_{i, j \in \widehat{I}}$ is a symmetrizable Borcherds-Cartan matrix, and its submatrix $\breve{A}=$ $\left(\widehat{a}_{i j}\right)_{i, j \in \breve{I}}$ is a symmetrizable generalized Cartan matrix. Let $\widehat{\mathfrak{g}}:=\mathfrak{g}(\widehat{A})$ be the generalized Kac-Moody algebra over \mathbb{Q} associated to \widehat{A}, with Cartan subalgebra $\widehat{\mathfrak{h}}$, simple roots $\widehat{\Pi}=\left\{\widehat{\alpha}_{i}\right\}_{i \in \widehat{I}}$, simple coroots $\widehat{\Pi}^{\vee}=$ $\left\{\widehat{\alpha}_{i}^{\vee}\right\}_{i \in \hat{I}}$, Chevalley generators $\left\{\widehat{x}_{i}, \widehat{y}_{i} \mid i \in \widehat{I}\right\}$, and Weyl group $\widehat{W}=$ $\left\langle\widehat{r}_{i} \mid i \in \breve{I}\right\rangle$. The orbit Lie algebra $\breve{\mathfrak{g}}$ is defined to be the subalgebra of $\widehat{\mathfrak{g}}$ generated by $\widehat{\mathfrak{h}} \cup\left\{\widehat{x}_{i}, \widehat{y}_{i} \mid i \in \breve{I}\right\}$, which is a Kac-Moody algebra associated to \breve{A}.

As in $[1, \S 2]$, we obtain \mathbb{Q}-linear isomorphisms $P_{\omega}: \mathfrak{h}^{0} \rightarrow \widehat{\mathfrak{h}}$ and $P_{\omega}^{*}: \widehat{\mathfrak{h}}^{*} \rightarrow\left(\mathfrak{h}^{0}\right)^{*} \cong\left(\mathfrak{h}^{*}\right)^{0}$ such that

$$
\begin{cases}P_{\omega}\left(\widetilde{\alpha}_{i}^{\vee}\right)=\widehat{\alpha}_{i}^{\vee}, P_{\omega}^{*}\left(\widehat{\alpha}_{i}\right)=\widetilde{\alpha}_{i} & \text { for each } i \in \widehat{I} \tag{1.2.1}\\ \left(P_{\omega}^{*}(\widehat{\lambda})\right)(h)=\widehat{\lambda}\left(P_{\omega}(h)\right) & \text { for } \widehat{\lambda} \in \widehat{\mathfrak{h}}^{*} \text { and } h \in \mathfrak{h}^{0}\end{cases}
$$

where

$$
\begin{equation*}
\widetilde{\alpha}_{i}^{\vee}:=\frac{1}{N_{i}} \sum_{k=0}^{N_{i}-1} \alpha_{\omega^{k}(i)}^{\vee} \in \mathfrak{h}^{0}, \quad \widetilde{\alpha}_{i}:=\frac{2}{c_{i}} \sum_{k=0}^{N_{i}-1} \alpha_{\omega^{k}(i)} \in\left(\mathfrak{h}^{*}\right)^{0} \tag{1.2.2}
\end{equation*}
$$

We also know from [1, §3] that there exists a group isomorphism Θ : $\widehat{W} \rightarrow \widetilde{W}$ such that $\Theta(\widehat{w})=P_{\omega}^{*} \circ \widehat{w} \circ\left(P_{\omega}^{*}\right)^{-1}$ for each $\widehat{w} \in \widehat{W}$.

§2. Properties of ω-root Operators.

2.1. Root operators.

In this subsection, we recall the definition of a root operator from [13]. A path is, by definition, a piecewise linear, continuous map π : $[0,1] \rightarrow \mathfrak{h}^{*}$ such that $\pi(0)=0$, where $[0,1]:=\{t \in \mathbb{Q} \mid 0 \leq t \leq 1\}$. We regard two paths π and π^{\prime} as equivalent if there exist piecewise linear, nondecreasing, surjective, continuous maps $\psi, \psi^{\prime}:[0,1] \rightarrow[0,1]$ (reparametrization) such that $\pi \circ \psi=\pi^{\prime} \circ \psi^{\prime}$. Denote by \mathbb{P} the set of (representatives of) equivalence classes of all paths under this equivalence relation. For $\pi \in \mathbb{P}$ and $i \in I$, we set

$$
\begin{equation*}
h_{i}^{\pi}(t):=(\pi(t))\left(\alpha_{i}^{\vee}\right), \quad m_{i}^{\pi}:=\min \left\{h_{i}^{\pi}(t) \mid t \in[0,1]\right\} \tag{2.1.1}
\end{equation*}
$$

For convenience, we introduce an extra element θ (corresponding to " 0 " of a crystal).

For each $i \in I$, the raising root operator $e_{i}: \mathbb{P} \cup\{\theta\} \rightarrow \mathbb{P} \cup\{\theta\}$ is defined as follows. We set $e_{i} \theta:=\theta$, and $e_{i} \pi:=\theta$ for $\pi \in \mathbb{P}$ with $m_{i}^{\pi}>-1$. If $m_{i}^{\pi} \leq 1$, then we can take the following points:

$$
\begin{align*}
& t_{1}=\min \left\{t \in[0,1] \mid h_{i}^{\pi}(t)=m_{i}^{\pi}\right\} \\
& t_{0}=\max \left\{t^{\prime} \in\left[0, t_{1}\right] \mid h_{i}^{\pi}(t) \geq m_{i}^{\pi}+1 \text { for all } t \in\left[0, t^{\prime}\right]\right\} \tag{2.1.2}
\end{align*}
$$

Choose a partition $t_{0}=s_{0}<s_{1}<\cdots<s_{r}=t_{1}$ of $\left[t_{0}, t_{1}\right]$ such that either of the following holds:
(1) $h_{i}^{\pi}\left(s_{k-1}\right)=h_{i}^{\pi}\left(s_{k}\right)$ and $h_{i}^{\pi}(t) \geq h_{i}^{\pi}\left(s_{k-1}\right)$

$$
\begin{equation*}
\text { for } t \in\left[s_{k-1}, s_{k}\right] \tag{2.1.3}
\end{equation*}
$$

(2) $h_{i}^{\pi}(t)$ is strictly decreasing on $\left[s_{k-1}, s_{k}\right]$ and $h_{i}^{\pi}(t) \geq h_{i}^{\pi}\left(s_{k-1}\right)$ for $t \in\left[s_{0}, s_{k-1}\right]$.

Remark 2.1.1. We deduce from the definition of t_{0} (resp. t_{1}) that $h_{i}^{\pi}(t)$ is strictly decreasing on $\left[s_{0}, s_{1}\right]$ (resp. $\left[s_{r-1}, s_{r}\right]$). Namely, $\left[s_{0}, s_{1}\right]$ and $\left[s_{r-1}, s_{r}\right]$ are of type (2).

We set
$\left(e_{i} \pi\right)(t):= \begin{cases}\pi(t) & \text { if } 0 \leq t \leq t_{0}=s_{0}, \\ \pi(t)-\left(h_{i}^{\pi}\left(s_{k-1}\right)-m_{i}^{\pi}-1\right) \alpha_{i} & \text { if } t \in\left[s_{k-1}, s_{k}\right] \text { of type (1), } \\ \pi(t)-\left(h_{i}^{\pi}(t)-m_{i}^{\pi}-1\right) \alpha_{i} & \text { if } t \in\left[s_{k-1}, s_{k}\right] \text { of type (2) }, \\ \pi(t)+\alpha_{i} & \text { if } s_{r}=t_{1} \leq t \leq 1 .\end{cases}$
The lowering root operator $f_{i}: \mathbb{P} \cup\{\theta\} \rightarrow \mathbb{P} \cup\{\theta\}$ is defined in a similar way: We set $f_{i} \theta:=\theta$, and $f_{i} \pi:=\theta$ for $\pi \in \mathbb{P}$ with $h_{i}^{\pi}(1)-m_{i}^{\pi}<1$. If $h_{i}^{\pi}(1)-m_{i}^{\pi} \geq 1$, then we can take the following points:

$$
\begin{align*}
t_{0} & =\max \left\{t \in[0,1] \mid h_{i}^{\pi}(t)=m_{i}^{\pi}\right\} \tag{2.1.5}\\
t_{1} & =\min \left\{t^{\prime} \in\left[t_{0}, 1\right] \mid h_{i}^{\pi}(t) \geq m_{i}^{\pi}+1 \text { for all } t \in\left[t^{\prime}, 1\right]\right\} .
\end{align*}
$$

Choose a partition $t_{0}=s_{0}<s_{1}<\cdots<s_{r}=t_{1}$ of $\left[t_{0}, t_{1}\right]$ such that either of the following holds:
(1) $h_{i}^{\pi}\left(s_{k-1}\right)=h_{i}^{\pi}\left(s_{k}\right)$ and $h_{i}^{\pi}(t) \geq h_{i}^{\pi}\left(s_{k-1}\right)$

$$
\begin{equation*}
\text { for } t \in\left[s_{k-1}, s_{k}\right] \tag{2.1.6}
\end{equation*}
$$

(2) $h_{i}^{\pi}(t)$ is strictly increasing on $\left[s_{k-1}, s_{k}\right]$ and $h_{i}^{\pi}(t) \geq h_{i}^{\pi}\left(s_{k}\right)$ for $t \in\left[s_{k}, s_{1}\right]$.

We set

$$
\left(f_{i} \pi\right)(t):= \begin{cases}\pi(t) & \text { if } 0 \leq t \leq t_{0}=s_{0} \tag{2.1.7}\\ \pi(t)-\left(h_{i}^{\pi}\left(s_{k-1}\right)-m_{i}^{\pi}\right) \alpha_{i} & \text { if } t \in\left[s_{k-1}, s_{k}\right] \text { of type (1) } \\ \pi(t)-\left(h_{i}^{\pi}(t)-m_{i}^{\pi}\right) \alpha_{i} & \text { if } t \in\left[s_{k-1}, s_{k}\right] \text { of type (2) } \\ \pi(t)-\alpha_{i} & \text { if } s_{r}=t_{1} \leq t \leq 1\end{cases}
$$

For $\pi \in \mathbb{P}$ and $r \in \mathbb{Q}$, we define a path $r \pi \in \mathbb{P}$ by $(r \pi)(t):=r \pi(t)$ for $t \in[0,1]$. Also, we define the "dual path" $\pi^{\vee} \in \mathbb{P}$ of a path $\pi \in \mathbb{P}$ by $\pi^{\vee}(t):=\pi(1-t)-\pi(1)$ for $t \in[0,1]$. Let us recall the following lemma from [13, Lemmas 2.1 and 2.4].

Lemma 2.1.2. (1) We have $\left(f_{i} \pi\right)^{\vee}=e_{i} \pi^{\vee}$ and $\left(e_{i} \pi\right)^{\vee}=f_{i} \pi^{\vee}$ for all $\pi \in \mathbb{P}$.
(2) We have $n\left(e_{i} \pi\right)=e_{i}^{n}(n \pi)$ and $n\left(f_{i} \pi\right)=f_{i}^{n}(n \pi)$ for all $\pi \in \mathbb{P}$ and $n \in \mathbb{Z}_{\geq 0}$.

2.2. ω-root operators.

For a path $\pi \in \mathbb{P}$, we define a path $\omega(\pi) \in \mathbb{P}$ by $(\omega(\pi))(t):=\omega^{*}(\pi(t))$ for $0 \leq t \leq 1$, and set $\omega(\theta):=\theta$. We set

$$
\begin{equation*}
\mathbb{P}^{0}:=\{\pi \in \mathbb{P} \mid \omega(\pi)=\pi\} . \tag{2.2.1}
\end{equation*}
$$

Let us recall the following definition of the ω-root operators \widetilde{e}_{i} and \widetilde{f}_{i} for $i \in \breve{I}$ from [20, §3.1] (cf. Remark 1.2.1):

$$
\tilde{X}_{i}= \begin{cases}\prod_{k=1}^{N_{i} / 2}\left(X_{\omega^{k}(i)} X_{\omega^{k+N_{i} / 2}(i)}^{2} X_{\omega^{k}(i)}\right) & \text { if } c_{i i}=1 \tag{2.2.2}\\ \prod_{k=1}^{N_{i}} X_{\omega^{k}(i)} & \text { if } c_{i i}=2\end{cases}
$$

where X is either e or f.
Denote by $\widehat{\mathbb{P}}$ the set of all paths (modulo reparametrization) for the orbit Lie algebra $\breve{\mathfrak{g}}$. For $i \in \breve{I}$, we denote by $\widehat{e}_{i}: \widehat{\mathbb{P}} \cup\{\theta\} \rightarrow \widehat{\mathbb{P}} \cup\{\theta\}$ and $\widehat{f}_{i}: \widehat{\mathbb{P}} \cup\{\theta\} \rightarrow \widehat{\mathbb{P}} \cup\{\theta\}$ the raising root operator and the lowering root operator for $\breve{\mathfrak{g}}$, respectively. For a path $\widehat{\pi} \in \widehat{\mathbb{P}}$, we define a path $P_{\omega}^{*}(\widehat{\pi}) \in \mathbb{P}^{0}$ by $\left(P_{\omega}^{*}(\widehat{\pi})\right)(t):=P_{\omega}^{*}(\widehat{\pi}(t))$ for $t \in[0,1]$, and set $P_{\omega}^{*}(\theta)=\theta$.

In [20] and [22], we showed that the equalities $\widetilde{e}_{i} \circ P_{\omega}^{*}=P_{\omega}^{*} \circ \widehat{e}_{i}$ and $\widetilde{f}_{i} \circ P_{\omega}^{*}=P_{\omega}^{*} \circ \widehat{f_{i}}$ hold on a certain subset of $\widehat{\mathbb{P}}$. Here we extend this
result to the whole of $\widehat{\mathbb{P}}$. The proof below essentially follows the same line as those of [20, Theorem 3.1.2] and [22, Theorem 2.1.2]; however, it is a little simplified by virtue of Lemma 2.1.2.

Theorem 2.2.1. The set $\mathbb{P}^{0} \cup\{\theta\}$ is stable under the ω-root operators. In addition, we have $\widetilde{e}_{i} \circ P_{\omega}^{*}=P_{\omega}^{*} \circ \widehat{e}_{i}$ and $\widetilde{f}_{i} \circ P_{\omega}^{*}=P_{\omega}^{*} \circ \widehat{f_{i}}$ for each $i \in \breve{I}$.

Proof. Let us show the following claim, which generalizes [20, Theorem 3.1.2].
Claim. Let $\pi \in \mathbb{P}^{0}$. If $m_{i}^{\pi}>-1$, then $\widetilde{e}_{i} \pi=\theta$. If $m_{i}^{\pi} \leq-1$, then we have
$\left(\widetilde{e}_{i} \pi\right)(t):= \begin{cases}\pi(t) & \text { if } 0 \leq t \leq t_{0}=s_{0}, \\ \pi(t)-\left(h_{i}^{\pi}\left(s_{k-1}\right)-m_{i}^{\pi}-1\right) \widetilde{\alpha}_{i} & \text { if } t \in\left[s_{k-1}, s_{k}\right] \text { of type (1), } \\ \pi(t)-\left(h_{i}^{\pi}(t)-m_{i}^{\pi}-1\right) \widetilde{\alpha}_{i} & \text { if } t \in\left[s_{k-1}, s_{k}\right] \text { of type (2), } \\ \pi(t)+\widetilde{\alpha}_{i} & \text { if } s_{r}=t_{1} \leq t \leq 1,\end{cases}$
where t_{0}, t_{1} are the points given by (2.1.2) for $\pi \in \mathbb{P}^{0}$ and $i \in \breve{I}$, and $t_{0}=s_{0}<s_{1}<\cdots<s_{r}=t_{1}$ is a partition of $\left[t_{0}, t_{1}\right]$ satisfying Condition (2.1.3) for $\pi \in \mathbb{P}^{0}$ and $i \in \breve{I}$.
(Proof of Claim.) It is obvious that $\widetilde{e}_{i} \pi=\theta$ if $m_{i}^{\pi}>-1$. We will show Equality (2.2.3). If $c_{i i}=2$, then Equality (2.2.3) immediately follows from the definition of root operators and Remark 1.2.1. Assume that $c_{i i}=1$. For simplicity, we assume that the Dynkin diagram corresponding to the ω-orbit of the i is of type A_{2} (cf. Remark 1.2.1). For $\pi \in \mathbb{P}^{0}$, we set $h(t):=h_{i}^{\pi}(t)=h_{j}^{\pi}(t)$ and $m:=m_{i}^{\pi}=m_{j}^{\pi}$ with $j:=\omega(i)$. Since $m \leq-1$, it follows from the definition of the raising root operator e_{i} that

$$
\begin{aligned}
& \eta_{1}(t):=\left(e_{i} \pi\right)(t)= \\
& \qquad \begin{array}{ll}
\pi(t) & \text { if } 0 \leq t \leq t_{0}=s_{0} \\
\pi(t)-\left(h\left(s_{k-1}\right)-m-1\right) \alpha_{i} & \text { if } t \in\left[s_{k-1}, s_{k}\right] \text { of type (1) } \\
\pi(t)-(h(t)-m-1) \alpha_{i} & \text { if } t \in\left[s_{k-1}, s_{k}\right] \text { of type (2) } \\
\pi(t)+\alpha_{i} & \text { if } s_{r}=t_{1} \leq t \leq 1
\end{array}
\end{aligned}
$$

By definition, we have

$$
h_{j}^{\eta_{1}}(t)= \begin{cases}h(t) & \text { if } 0 \leq t \leq t_{0}=s_{0} \tag{2.2.4}\\ h(t)+h\left(s_{k-1}\right)-m-1 & \text { if } t \in\left[s_{k-1}, s_{k}\right] \text { of type }(1) \\ 2 h(t)-m-1 & \text { if } t \in\left[s_{k-1}, s_{k}\right] \text { of type }(2) \\ h(t)-1 & \text { if } s_{r}=t_{1} \leq t \leq 1\end{cases}
$$

Subclaim 1. We have $m_{j}^{\eta_{1}}=m-1$ and $t_{1}=\min \left\{t \in[0,1] \mid h_{j}^{\eta_{1}}(t)=\right.$ $\left.m_{j}^{\eta_{1}}\right\}$.

It is obvious that $h_{j}^{\eta_{1}}(t)=h(t)-1 \geq m-1$ for $t \in\left[t_{1}, 1\right]$, and that $h_{j}^{\eta_{1}}\left(t_{1}\right)=m-1$. So it suffices to show that $h_{j}^{\eta_{1}}\left(t_{1}\right)>m-1$ for all $t \in\left[0, t_{1}\right)$. By the definition of t_{0}, we have $h_{j}^{\eta_{1}}(t)=h(t) \geq m+1>m-1$ for $t \in\left[0, t_{0}\right]$. Suppose that $h_{j}^{\eta_{1}}(t) \leq m-1$ for some $t \in\left[t_{0}, t_{1}\right)$. If t is in $\left[s_{k-1}, s_{k}\right.$] of type (1), then we have $h(t)+h\left(s_{k-1}\right)-m-1 \leq m-1$, and hence $h\left(s_{k-1}\right) \leq m$, since $h(t) \geq h\left(s_{k-1}\right)$ for all $t \in\left[s_{k-1}, s_{k}\right]$ (see (2.1.3)). This contradicts the definition of t_{1} (notice that $s_{k-1}<s_{r}=$ t_{1}). Similarly, if t is in $\left[s_{k-1}, s_{k}\right]$ of type (2), then we have $h(t) \leq m$, which is a contradiction. Thus we conclude that $h_{j}^{\eta_{1}}(t)>m-1$ for all $t \in\left[0, t_{1}\right)$.
Subclaim 2. We have $t_{0}=\max \left\{t^{\prime} \in\left[0, t_{1}\right] \mid h_{j}^{\eta_{1}}(t) \geq m_{j}^{\eta_{1}}+2\right.$ for all $t \in$ $\left.\left[0, t^{\prime}\right]\right\}$.

It is obvious from the definition of t_{0} and Subclaim 1 that $h_{j}^{\eta_{1}}(t)=$ $h(t) \geq m+1=m_{j}^{\eta_{1}}+2$ for all $t \in\left[0, t_{0}\right]$. We deduce from Remark 2.1.1 and (2.2.4) that $h_{j}^{\eta_{1}}\left(t_{0}+\varepsilon\right)<h_{j}^{\eta_{1}}\left(t_{0}\right)=m_{j}^{\eta_{1}}+2$ for sufficiently small $\varepsilon>0$. Now, Subclaim 2 immediately follows from these facts.

Set $\eta_{1}^{\prime}:=\frac{1}{2} \eta_{1}$. It follows from Subclaims 1 and 2 that t_{0}, t_{1} are the points given by (2.1.2) for $\eta_{1}^{\prime} \in \mathbb{P}$ and $j \in I$. In addition, we deduce from (2.2.4) that $t_{0}=s_{0}<s_{1}<\cdots<s_{r}=t_{1}$ is a partition of $\left[t_{0}, t_{1}\right]$ satisfying Condition (2.1.3) with $\pi=\eta_{1}^{\prime}$ and $i=j$. Therefore, we have

$$
\begin{aligned}
& \left(e_{j} \eta_{1}^{\prime}\right)(t)= \\
& \begin{cases}\eta_{1}^{\prime}(t) & \text { if } 0 \leq t \leq t_{0}=s_{0} \\
\eta_{1}^{\prime}(t)-\left(h_{j}^{\eta_{1}^{\prime}}\left(s_{k-1}\right)-m_{j}^{\eta_{1}^{\prime}}-1\right) \alpha_{j} & \text { if } t \in\left[s_{k-1}, s_{k}\right] \text { of type (1) } \\
\eta_{1}^{\prime}(t)-\left(h_{j}^{\eta_{1}^{\prime}}(t)-m_{j}^{\eta_{1}^{\prime}}-1\right) \alpha_{j} & \text { if } t \in\left[s_{k-1}, s_{k}\right] \text { of type (2) } \\
\eta_{1}^{\prime}(t)+\alpha_{j} & \text { if } s_{r}=t_{1} \leq t \leq 1\end{cases}
\end{aligned}
$$

$$
= \begin{cases}\frac{1}{2} \pi(t) & \text { if } 0 \leq t \leq t_{0}=s_{0} \\ \frac{1}{2} \pi(t)-\frac{1}{2}\left(h\left(s_{k-1}\right)-m-1\right)\left(\alpha_{i}+2 \alpha_{j}\right) & \text { if } t \in\left[s_{k-1}, s_{k}\right] \text { of type (1) } \\ \frac{1}{2} \pi(t)-\frac{1}{2}(h(t)-m-1)\left(\alpha_{i}+2 \alpha_{j}\right) & \text { if } t \in\left[s_{k-1}, s_{k}\right] \text { of type (2) } \\ \frac{1}{2} \pi(t)+\frac{1}{2} \alpha_{i}+\alpha_{j} & \text { if } s_{r}=t_{1} \leq t \leq 1\end{cases}
$$

Because $e_{j}^{2} \eta_{1}=2\left(e_{j} \eta_{1}^{\prime}\right)$ by Lemma 2.1.2 (2), we get

$$
\begin{aligned}
& \eta_{2}(t):=\left(e_{j}^{2} \eta_{1}\right)(t)= \\
& \qquad \begin{cases}\pi(t) & \text { if } 0 \leq t \leq t_{0}=s_{0} \\
\pi(t)-\left(h\left(s_{k-1}\right)-m-1\right)\left(\alpha_{i}+2 \alpha_{j}\right) & \text { if } t \in\left[s_{k-1}, s_{k}\right] \text { of type (1) } \\
\pi(t)-(h(t)-m-1)\left(\alpha_{i}+2 \alpha_{j}\right) & \text { if } t \in\left[s_{k-1}, s_{k}\right] \text { of type (2), } \\
\pi(t)+\alpha_{i}+2 \alpha_{j} & \text { if } s_{r}=t_{1} \leq t \leq 1\end{cases}
\end{aligned}
$$

Since $h_{i}^{\eta_{2}}(t)=h(t)$, we obtain

$$
\begin{aligned}
& \left(\widetilde{e}_{i} \pi\right)(t):=\left(e_{i} \eta_{2}\right)(t)= \\
& \quad \begin{cases}\pi(t) & \text { if } 0 \leq t \leq t_{0}=s_{0} \\
\pi(t)-2\left(h\left(s_{k-1}\right)-m-1\right)\left(\alpha_{i}+\alpha_{j}\right) & \text { if } t \in\left[s_{k-1}, s_{k}\right] \text { of type }(1) \\
\pi(t)-2(h(t)-m-1)\left(\alpha_{i}+\alpha_{j}\right) & \text { if } t \in\left[s_{k-1}, s_{k}\right] \text { of type }(2) \\
\pi(t)+2\left(\alpha_{i}+\alpha_{j}\right) & \text { if } s_{r}=t_{1} \leq t \leq 1\end{cases}
\end{aligned}
$$

This completes the proof of Claim.
It immediately follows from the claim above that $\mathbb{P}^{0} \cup\{\theta\}$ is stable under \widetilde{e}_{i}. Also, we deduce from Lemma 2.1.2 (1) that $\mathbb{P}^{0} \cup\{\theta\}$ is stable under \widetilde{f}_{i}, since $\widetilde{f}_{i} \pi=\left(\widetilde{e}_{i} \pi^{\vee}\right)^{\vee}$ for all $\pi \in \mathbb{P}^{0}$ (remark that if $\pi \in \mathbb{P}^{0}$, then so is $\left.\pi^{\vee}\right)$. Moreover, because $\left(\left(P_{\omega}^{*}(\widehat{\pi})\right)(t)\right)\left(\alpha_{i}^{\vee}\right)=(\widehat{\pi}(t))\left(\widehat{\alpha}_{i}^{\vee}\right)$ for $\widehat{\pi} \in \widehat{\mathbb{P}}$ and $i \in \breve{I}$ (cf. (1.2.1)), we can easily check that $\widetilde{e}_{i} \circ P_{\omega}^{*}=P_{\omega}^{*} \circ \widehat{e}_{i}$ by using (2.2.3). Since $P_{\omega}^{*}\left(\widehat{\pi}^{\vee}\right)=\left(P_{\omega}^{*}(\widehat{\pi})\right)^{\vee}$ for all $\widehat{\pi} \in \widehat{\mathbb{P}}$, we get by Lemma 2.1.2 (1) that for each $\widehat{\pi} \in \widehat{\mathbb{P}}$,

$$
\begin{aligned}
\widetilde{f}_{i}\left(P_{\omega}^{*}(\widehat{\pi})\right) & =\left(\widetilde{e}_{i}\left(P_{\omega}^{*}(\widehat{\pi})\right)^{\vee}\right)^{\vee}=\left(\widetilde{e}_{i}\left(P_{\omega}^{*}\left(\widehat{\pi}^{\vee}\right)\right)\right)^{\vee} \\
& =\left(P_{\omega}^{*}\left(\widehat{e}_{i} \widehat{\pi}^{\vee}\right)\right)^{\vee}=P_{\omega}^{*}\left(\left(\widehat{e}_{i} \widehat{\pi}^{\vee}\right)^{\vee}\right)=P_{\omega}^{*}\left(\widehat{f_{i}} \widehat{\pi}\right) .
\end{aligned}
$$

Therefore we get $\tilde{f}_{i} \circ P_{\omega}^{*}=P_{\omega}^{*} \circ \widehat{f_{i}}$. This completes the proof of the theorem.

Remark 2.2.2. We can easily check that

$$
\begin{equation*}
\omega \circ e_{i}=e_{\omega(i)} \circ \omega \quad \text { and } \quad \omega \circ f_{i}=f_{\omega(i)} \circ \omega \quad \text { on } \mathbb{P} \tag{2.2.5}
\end{equation*}
$$

Therefore we deduce from Theorem 2.2.1 that the ω-root operators on \mathbb{P}^{0} do not depend on the choice of a representative of the ω-orbit of $i \in I$ with $c_{i i}>0$.

We define $\widetilde{e}(n)_{i}$ and $\tilde{f}(n)_{i}$ for $i \in \breve{I}$ and $n \in \mathbb{Z}_{\geq 0}$ by

$$
\tilde{X}(n)_{i}:= \begin{cases}\prod_{k=1}^{N_{i} / 2}\left(X_{\omega^{k}(i)}^{n} X_{\omega^{k+N_{i} / 2}(i)}^{2 n} X_{\omega^{k}(i)}^{n}\right) & \text { if } c_{i i}=1 \tag{2.2.6}\\ \prod_{k=1}^{N_{i}} X_{\omega^{k}(i)}^{n} & \text { if } c_{i i}=2\end{cases}
$$

where X is either e or f. As an application of Theorem 2.2.1, we can give a shorter proof of (a generalization of) [22, Proposition 2.1.3].

Corollary 2.2.3. On \mathbb{P}^{0}, we have $\left(\widetilde{e}_{i}\right)^{n}=\widetilde{e}(n)_{i}$ and $\left(\widetilde{f_{i}}\right)^{n}=\widetilde{f}(n)_{i}$ for each $n \in \mathbb{Z}_{\geq 0}$ and $i \in I$.

Proof. Let $\pi \in \mathbb{P}^{0}$, and set $\pi^{\prime}=\frac{1}{n} \pi \in \mathbb{P}^{0}$. We deduce that

$$
\begin{aligned}
\tilde{e}(n)_{i} \pi & =n\left(\widetilde{e}_{i} \pi^{\prime}\right) \quad \text { by Lemma 2.1.2 }(2) \\
& =n\left(P_{\omega}^{*} \circ \widehat{e}_{i} \circ\left(P_{\omega}^{*}\right)^{-1}\left(\pi^{\prime}\right)\right) \quad \text { by Theorem 2.2.1 } \\
& =P_{\omega}^{*}\left(n \widehat{e}_{i}\left(\left(P_{\omega}^{*}\right)^{-1}\left(\pi^{\prime}\right)\right)\right) \\
& =P_{\omega}^{*}\left(\left(\widehat{e}_{i}\right)^{n}\left(n\left(P_{\omega}^{*}\right)^{-1}\left(\pi^{\prime}\right)\right)\right) \quad \text { by Lemma 2.1.2 }(2) \\
& =P_{\omega}^{*} \circ\left(\widehat{e}_{i}\right)^{n} \circ\left(P_{\omega}^{*}\right)^{-1}(\pi) \\
& =\left(P_{\omega}^{*} \circ \widehat{e}_{i} \circ\left(P_{\omega}^{*}\right)^{-1}\right)^{n}(\pi) \\
& =\left(\widetilde{e}_{i}\right)^{n} \pi \quad \text { by Theorem 2.2.1. }
\end{aligned}
$$

Therefore we get $\widetilde{e}(n)_{i}=\left(\widetilde{e}_{i}\right)^{n}$. The equality $\widetilde{f}(n)_{i}=\left(\widetilde{f}_{i}\right)^{n}$ can be shown similarly.

Let $P \subset \mathfrak{h}^{*}$ be an ω^{*}-stable integral weight lattice such that $\alpha_{i} \in P$ for all $i \in I$, and set $P_{+}:=\left\{\lambda \in P \mid \lambda\left(\alpha_{i}^{\vee}\right) \in \mathbb{Z}_{\geq 0}\right.$ for all $\left.i \in I\right\}$. For $\lambda \in$ P_{+}, we denote by $\mathbb{B}(\lambda)$ the set of Lakshmibai-Seshadri paths of shape λ. Recall from $[13, \S 4]$ that $\mathbb{B}(\lambda) \cup\{\theta\}$ is stable under the root operators, and that every element π of $\mathbb{B}(\lambda)$ is of the form $\pi=f_{i_{1}} f_{i_{2}} \cdots f_{i_{k}} \pi_{\lambda}$ for some $i_{1}, i_{2}, \ldots, i_{k} \in I$, where $\pi_{\lambda}(t):=t \lambda$ for $t \in[0,1]$. Let $w \in W$, and $w=r_{i_{1}} r_{i_{2}} \cdots r_{i_{k}}$ its reduced expression. We put
$(2.2 .7) \mathbb{B}_{w}(\lambda):=\left\{f_{i_{1}}^{m_{1}} f_{i_{2}}^{m_{2}} \cdots f_{i_{k}}^{m_{k}} \pi_{\lambda} \mid m_{1}, m_{2}, \ldots, m_{k} \in \mathbb{Z}_{\geq 0}\right\} \backslash\{\theta\}$.

We know that $\mathbb{B}_{w}(\lambda)$ does not depend on the choice of the reduced expression of w (cf. [12, §5] and [11, §6.1]).

If $\lambda \in P_{+} \cap\left(\mathfrak{h}^{*}\right)^{0}$, then $\mathbb{B}(\lambda)$ is stable under ω (cf. (2.2.5)). Furthermore, we deduce from (2.2.5) that $\omega\left(\mathbb{B}_{w}(\lambda)\right)=\mathbb{B}_{\omega^{*} w\left(\omega^{*}\right)^{-1}}(\lambda)$. Hence, if $w \in \widetilde{W}$, then $\mathbb{B}_{w}(\lambda)$ is stable under ω. We set

$$
\begin{align*}
& \mathbb{B}^{0}(\lambda):=\{\pi \in \mathbb{B}(\lambda) \mid \omega(\pi)=\pi\} \\
& \mathbb{B}_{w}^{0}(\lambda):=\left\{\pi \in \mathbb{B}_{w}(\lambda) \mid \omega(\pi)=\pi\right\} \tag{2.2.8}
\end{align*}
$$

We have the following theorem (see [20, Theorem 3.2.4] and [21, Theorem 4.2]).

Theorem 2.2.4. Let $\lambda \in P_{+} \cap\left(\mathfrak{h}^{*}\right)^{0}$ and $w \in \widetilde{W}$. Set $\widehat{\lambda}:=$ $\left(P_{\omega}^{*}\right)^{-1}(\lambda)$ and $\widehat{w}:=\Theta^{-1}(w)$.
(1) The set $\mathbb{B}^{0}(\lambda) \cup\{\theta\}$ is stable under the ω-root operators.
(2) Each element $\pi \in \mathbb{B}^{0}(\lambda)$ is of the form $\pi=\widetilde{f}_{i_{1}} \tilde{f}_{i_{2}} \cdots \widetilde{f}_{i_{k}} \pi_{\lambda}$ for some $i_{1}, i_{2}, \ldots, i_{k} \in \breve{I}$.
(3) We have $\mathbb{B}^{0}(\lambda)=P_{\omega}^{*}(\breve{\mathbb{B}}(\widehat{\lambda}))$ and $\mathbb{B}_{w}^{0}(\lambda)=P_{\omega}^{*}\left(\breve{\mathbb{B}}_{\widehat{w}}(\widehat{\lambda})\right)$, where $\breve{\mathbb{B}}(\widehat{\lambda})$ is the set of Lakshmibai-Seshadri paths of shape $\hat{\lambda}$ for the orbit Lie algebra $\breve{\mathfrak{g}}$, and $\breve{\mathbb{B}}_{\widehat{w}}(\widehat{\lambda})$ is the subset of $\breve{\mathbb{B}}(\widehat{\lambda})$ corresponding to $\widehat{w}(c f$. (2.2.7)).

§3. Crystal Bases and Diagram Automorphisms.

3.1. Crystal bases $\mathcal{B}(\lambda)$ and $\mathcal{B}_{w}(\lambda)$.

Set $P^{\vee}:=\operatorname{Hom}_{\mathbb{Z}}(P, \mathbb{Z}) \subset \mathfrak{h}$. Let $U_{q}(\mathfrak{g})=\left\langle x_{i}, y_{i}, q^{h} \mid i \in I, h \in P^{\vee}\right\rangle$ be the quantized universal enveloping algebra of \mathfrak{g} over the field $\mathbb{Q}(q)$ of rational functions in q, and $U_{q}^{+}(\mathfrak{g})$ (resp. $\left.U_{q}^{-}(\mathfrak{g})\right)$ the $\mathbb{Q}(q)$-subalgebra of $U_{q}(\mathfrak{g})$ generated by $\left\{x_{i} \mid i \in I\right\}$ (resp. $\left\{y_{i} \mid i \in I\right\}$).

For $\lambda \in P_{+}$, let $V(\lambda)=\bigoplus_{\chi \in P} V(\lambda)_{\chi}$ be the integrable highest weight $U_{q}(\mathfrak{g})$-module of highest weight λ. Denote by e_{i} and f_{i} the raising Kashiwara operator and the lowering Kashiwara operator for $V(\lambda)$, respectively, by $(\mathcal{L}(\lambda), \mathcal{B}(\lambda))$ the crystal base of $V(\lambda)$, and by $\left\{G_{\lambda}(b) \mid b \in \mathcal{B}(\lambda)\right\}$ the global base of $V(\lambda)$ (see [6]).

For $w \in W$, let $V_{w}(\lambda)=U_{q}^{+}(\mathfrak{g}) V(\lambda)_{w(\lambda)}$ be the quantum Demazure module of lowest weight $w(\lambda)$. We know from $[8$, Proposition 3.2.3] that there exists a subset $\mathcal{B}_{w}(\lambda)$ of $\mathcal{B}(\lambda)$ such that $V_{w}(\lambda)=$ $\bigoplus_{b \in \mathcal{B}_{w}(\lambda)} \mathbb{Q}(q) G_{\lambda}(b)$. We see from [8, Proposition 3.2.3] that if $w=$ $r_{i_{1}} r_{i_{2}} \cdots r_{i_{k}}$ is a reduced expression of w, then

$$
\begin{equation*}
\mathcal{B}_{w}(\lambda)=\left\{f_{i_{1}}^{m_{1}} f_{i_{2}}^{m_{2}} \cdots f_{i_{k}}^{m_{k}} \bar{v}_{\lambda} \mid m_{1}, m_{2}, \ldots, m_{k} \in \mathbb{Z}_{\geq 0}\right\} \backslash\{0\} \tag{3.1.1}
\end{equation*}
$$

where \bar{v}_{λ} is the image of a (nonzero) highest weight vector v_{λ} of $V(\lambda)$ in $\mathcal{L}(\lambda) / q \mathcal{L}(\lambda)$.

Let $U_{q}(\breve{\mathfrak{g}})=\left\langle\widehat{x}_{i}, \widehat{y}_{i}, q^{\widehat{h}} \mid i \in \breve{I}, \widehat{h} \in \widehat{P}^{\vee}\right\rangle$ be the quantized universal enveloping algebra of the orbit Lie algebra $\breve{\mathfrak{g}}$, where $\widehat{P}^{\vee}:=\operatorname{Hom}_{\mathbb{Z}}(\widehat{P}, \mathbb{Z})$ with $\widehat{P}:=\left(P_{\omega}^{*}\right)^{-1}\left(P \cap\left(\mathfrak{h}^{*}\right)^{0}\right)$. Denote by $\breve{\mathcal{B}}(\widehat{\lambda})$ the crystal base of the integrable highest weight $U_{q}(\breve{\mathfrak{g}})$-module $\breve{V}(\widehat{\lambda})$ of dominant integral highest weight $\widehat{\lambda}$, and by \widehat{e}_{i} (resp. \widehat{f}_{i}) the raising (resp. lowering) Kashiwara operator for $\breve{\mathcal{B}}(\widehat{\lambda})$. For $\widehat{w} \in \widehat{W}$, we denote by $\breve{\mathcal{B}}_{\widehat{w}}(\widehat{\lambda})$ the crystal base of the quantum Demazure module $\breve{V}_{\widehat{w}}(\widehat{\lambda}) \subset \breve{V}(\widehat{\lambda})$ of lowest weight $\widehat{w}(\widehat{\lambda})$.

3.2. Fixed point subsets of $\mathcal{B}(\lambda)$ and $\mathcal{B}_{w}(\lambda)$.

Since P^{\vee} is ω-stable, we obtain a $\mathbb{Q}(q)$-algebra automorphism $\omega \in$ $\operatorname{Aut}\left(U_{q}(\mathfrak{g})\right)$ such that $\omega\left(x_{i}\right)=x_{\omega(i)}, \omega\left(y_{i}\right)=y_{\omega(i)}$, and $\omega\left(q^{h}\right)=q^{\omega(h)}$ for $i \in I$ and $h \in P^{\vee}$ (cf. [23, Lemma 1.2]). Remark that $U_{q}^{-}(\mathfrak{g})$ is stable under ω. If $\lambda \in P_{+} \cap\left(\mathfrak{h}^{*}\right)^{0}$, then we have a $\mathbb{Q}(q)$-linear automorphism $\omega: V(\lambda) \rightarrow V(\lambda)$ induced from $\omega: U_{q}^{-}(\mathfrak{g}) \rightarrow U_{q}^{-}(\mathfrak{g})$. Because

$$
\begin{equation*}
\omega \circ e_{i}=e_{\omega(i)} \circ \omega \quad \text { and } \quad \omega \circ f_{i}=f_{\omega(i)} \circ \omega \tag{3.2.1}
\end{equation*}
$$

on $V(\lambda)$ (see [22, Lemma 2.3.2]), the crystal lattice $\mathcal{L}(\lambda)$ is stable under ω. Therefore, we have a \mathbb{Q}-linear automorphism $\omega: \mathcal{L}(\lambda) / q \mathcal{L}(\lambda) \rightarrow$ $\mathcal{L}(\lambda) / q \mathcal{L}(\lambda)$ induced from $\omega: \mathcal{L}(\lambda) \rightarrow \mathcal{L}(\lambda)$. We deduce from (3.2.1) that the crystal base $\mathcal{B}(\lambda)$ is stable under ω. Moreover, we obtain by (3.1.1) and (3.2.1) that $\omega\left(\mathcal{B}_{w}(\lambda)\right)=\mathcal{B}_{\omega^{*} w\left(\omega^{*}\right)^{-1}}(\lambda)$. Hence, if $w \in \widetilde{W}$, then $\mathcal{B}_{w}(\lambda)$ is stable under ω. We set

$$
\begin{align*}
& \mathcal{B}^{0}(\lambda):=\{b \in \mathcal{B}(\lambda) \mid \omega(b)=b\} \\
& \mathcal{B}_{w}^{0}(\lambda):=\left\{b \in \mathcal{B}_{w}(\lambda) \mid \omega(b)=b\right\} \tag{3.2.2}
\end{align*}
$$

We see from [13] that $\mathbb{B}(\lambda)$ has a natural (normal) crystal structure for each $\lambda \in P_{+}$. We know from [3, Corollary 6.4.27] or [10, Theorem 4.1] that there exists an isomorphism $\Phi_{\lambda}: \mathbb{B}(\lambda) \xrightarrow{\sim} \mathcal{B}(\lambda)$ of crystals, and from $[11, \S 5.6]$ that $\Phi\left(\mathbb{B}_{w}(\lambda)\right)=\mathcal{B}_{w}(\lambda)$ for every $w \in W$. If $\lambda \in P_{+} \cap$ $\left(\mathfrak{h}^{*}\right)^{0}$, then we obtain the following commutative diagram (cf. (2.2.5) and (3.2.1)):

Therefore, we obtain $\Phi_{\lambda}\left(\mathbb{B}^{0}(\lambda)\right)=\mathcal{B}^{0}(\lambda)$ and $\Phi_{\lambda}\left(\mathbb{B}_{w}^{0}(\lambda)\right)=\mathcal{B}_{w}^{0}(\lambda)$ for each $\lambda \in P_{+} \cap\left(\mathfrak{h}^{*}\right)^{0}$ and $w \in \widetilde{W}$. Combining this fact with Theorems 2.2.1 and 2.2.4, we get the following proposition.

Proposition 3.2.1. Let $\lambda \in P_{+} \cap\left(\mathfrak{h}^{*}\right)^{0}$ and $w \in \widetilde{W}$. Set $\widehat{\lambda}:=$ $\left(P_{\omega}^{*}\right)^{-1}(\lambda)$ and $\widehat{w}:=\Theta^{-1}(w)$.
(1) The set $\mathcal{B}^{0}(\lambda) \cup\{0\}$ is stable under the ω-Kashiwara operators \widetilde{e}_{i} and $\widetilde{f_{i}}$, defined in the same way as (2.2.2).
(2) Each element $b \in \mathcal{B}^{0}(\lambda)$ is of the form $b=\tilde{f}_{i_{1}} \tilde{f}_{i_{2}} \cdots \tilde{f}_{i_{k}} \bar{v}_{\lambda}$ for some $i_{1}, i_{2}, \ldots, i_{k} \in \breve{I}$.
(3) There exists a canonical bijection $P_{\lambda}: \mathcal{B}^{0}(\lambda) \xrightarrow{\sim} \breve{\mathcal{B}}(\widehat{\lambda})$ such that

$$
\begin{align*}
& \left(P_{\omega}^{*}\right)^{-1}(\operatorname{wt}(b))=\operatorname{wt}\left(P_{\lambda}(b)\right) \quad \text { for each } b \in \mathcal{B}^{0}(\lambda), \\
& P_{\lambda} \circ \widetilde{e}_{i}=\widehat{e}_{i} \circ P_{\lambda} \quad \text { and } \quad P_{\lambda} \circ \widetilde{f}_{i}=\widehat{f}_{i} \circ P_{\lambda} \quad \text { for all } i \in \breve{I} . \tag{3.2.4}
\end{align*}
$$

In addition, we have $P_{\lambda}\left(\mathcal{B}_{w}^{0}(\lambda)\right)=\breve{\mathcal{B}}_{\widehat{w}}(\widehat{\lambda})$.

3.3. Crystal bases $\mathcal{B}(\infty)$ and $\mathcal{B}_{w}(\infty)$.

We denote by e_{i} and f_{i} the raising Kashiwara operator and the lowering Kashiwara operator for $U_{q}^{-}(\mathfrak{g})$, respectively, and by $(\mathcal{L}(\infty), \mathcal{B}(\infty))$ the crystal base of $U_{q}^{-}(\mathfrak{g})$. Denote by $\{G(b) \mid b \in \mathcal{B}(\infty)\}$ the global base of $U_{q}^{-}(\mathfrak{g})$ (see [6]).

Let $Q_{+}:=\sum_{i \in I} \mathbb{Z}_{\geq 0} \alpha_{i}$, and set $Q_{+}(n):=\left\{\alpha \in \mathbb{Q}_{+} \mid \operatorname{ht}(\alpha) \leq n\right\}$ for each $n \in \mathbb{Z}_{\geq 0}$, where $\operatorname{ht}(\alpha):=\sum_{i \in I} k_{i}$ for $\alpha=\sum_{i \in I} k_{i} \alpha_{i} \in Q_{+}$. Let us recall the following theorem from [6, Theorem 5 and Corollary 4.4.5].

Theorem 3.3.1. Let $\varphi_{\lambda}: U_{q}^{-}(\mathfrak{g}) \rightarrow V(\lambda)$ be the canonical $U_{q}^{-}(\mathfrak{g})$ module homomorphism sending 1 to v_{λ}.
(1) We have $\varphi_{\lambda}(\mathcal{L}(\infty))=\mathcal{L}(\lambda)$. Hence we have a \mathbb{Q}-linear homomorphism

$$
\begin{equation*}
\bar{\varphi}_{\lambda}: \mathcal{L}(\infty) / q \mathcal{L}(\infty) \rightarrow \mathcal{L}(\lambda) / q \mathcal{L}(\lambda) \tag{3.3.1}
\end{equation*}
$$

induced from $\varphi_{\lambda}: \mathcal{L}(\infty) \rightarrow \mathcal{L}(\lambda)$. The restriction of $\bar{\varphi}_{\lambda}$ to $\mathcal{B}(\infty) \backslash$ $\bar{\varphi}_{\lambda}^{-1}(\{0\})$ is a bijection from $\mathcal{B}(\infty) \backslash \bar{\varphi}_{\lambda}^{-1}(\{0\})$ to $\mathcal{B}(\lambda)$.
(2) We have $f_{i} \circ \bar{\varphi}_{\lambda}=\bar{\varphi}_{\lambda} \circ f_{i}$ for each $i \in I$. In addition, if $b \in \mathcal{B}(\infty)$ satisfies $\bar{\varphi}_{\lambda}(b) \neq 0$, then $e_{i} \bar{\varphi}_{\lambda}(b)=\bar{\varphi}_{\lambda}\left(e_{i} b\right)$ for each $i \in I$.
(3) Fix $n \in \mathbb{Z}_{\geq 0}$. If $\lambda\left(\alpha_{i}^{\vee}\right) \gg 0$ for all $i \in I$, then, for every $\xi \in Q_{+}(n)$, the restriction of $\bar{\varphi}_{\lambda}$ to $\mathcal{B}(\infty)_{-\xi}$ is a bijection from $\mathcal{B}(\infty)_{-\xi}$ to $\mathcal{B}(\lambda)_{\lambda-\xi}$. Here, for a crystal \mathcal{B}, we denote by \mathcal{B}_{μ} the set of elements of weight μ in \mathcal{B}.

Let $w \in W$, and $w=r_{i_{1}} r_{i_{2}} \cdots r_{i_{k}}$ its reduced expression. We define a module $\left(U_{w}^{-}\right)_{q}(\mathfrak{g})$ of Demazure type by

$$
\begin{equation*}
\left(U_{w}^{-}\right)_{q}(\mathfrak{g}):=\sum_{m_{j} \in \mathbb{Z}_{\geq 0}} \mathbb{Q}(q) y_{i_{1}}^{m_{1}} y_{i_{2}}^{m_{2}} \cdots y_{i_{k}}^{m_{k}} \tag{3.3.2}
\end{equation*}
$$

We know from $\left[8, \quad\right.$ Proposition 3.2.5] that $\left(U_{w}^{-}\right)_{q}(\mathfrak{g})=$ $\bigoplus_{b \in \mathcal{B}_{w}(\infty)} \mathbb{Q}(q) G(b)$, where

$$
\begin{equation*}
\mathcal{B}_{w}(\infty):=\left\{f_{i_{1}}^{m_{1}} f_{i_{2}}^{m_{2}} \cdots f_{i_{k}}^{m_{k}} \bar{v}_{\infty} \mid m_{1}, m_{2}, \ldots, m_{k} \in \mathbb{Z}_{\geq 0}\right\} \tag{3.3.3}
\end{equation*}
$$

with \bar{v}_{∞} the image of $1 \in U_{q}^{-}(\mathfrak{g})$ in $\mathcal{L}(\infty) / q \mathcal{L}(\infty)$. Furthermore, we can easily show the following theorem, by using [8, Proposition 3.2.5], Theorem 3.3.1, (3.1.1), and (3.3.3).

Theorem 3.3.2. (1) The restriction of $\bar{\varphi}_{\lambda}$ to $\mathcal{B}_{w}(\infty) \backslash \bar{\varphi}_{\lambda}^{-1}(\{0\})$ is a bijection from $\mathcal{B}_{w}(\infty) \backslash \bar{\varphi}_{\lambda}^{-1}(\{0\})$ to $\mathcal{B}_{w}(\lambda)$.
(2) Fix $n \in \mathbb{Z}_{\geq 0}$. If $\lambda\left(\alpha_{i}^{\vee}\right) \gg 0$ for all $i \in I$, then, for every $\xi \in$ $Q_{+}(n)$, the restriction of $\bar{\varphi}_{\lambda}$ to $\mathcal{B}_{w}(\infty)_{-\xi}$ is a bijection from $\mathcal{B}_{w}(\infty)_{-\xi}$ to $\mathcal{B}_{w}(\lambda)_{\lambda-\xi}$.

Remark 3.3.3. It follows from Theorem 3.3.2 that $\mathcal{B}_{w}(\infty)$ (and hence $\left.\left(U_{w}^{-}\right)_{q}(\mathfrak{g})\right)$ does not depend on the choice of the reduced expression of w.

Denote by $\breve{\mathcal{B}}(\infty)$ the crystal base of $U_{q}^{-}(\breve{\mathfrak{g}}):=\left\langle\widehat{y}_{i} \mid i \in \breve{I}\right\rangle$, and by \widehat{e}_{i} (resp. \widehat{f}_{i}) the raising (resp. lowering) Kashiwara operator for $\breve{\mathcal{B}}(\infty)$. For $\widehat{w} \in \widehat{W}$, we denote by $\breve{\mathcal{B}}_{\widehat{w}}(\infty)$ the crystal base of the module $\left(U_{\widehat{w}}^{-}\right)_{q}(\breve{\mathfrak{g}})$ of Demazure type corresponding to \widehat{w}.

3.4. Fixed point subsets of $\mathcal{B}(\infty)$ and $\mathcal{B}_{w}(\infty)$.

In a way similar to the case of $V(\lambda)$, we can show that $\omega \circ e_{i}=e_{\omega(i)} \circ \omega$ and $\omega \circ f_{i}=f_{\omega(i)} \circ \omega$ on $U_{q}^{-}(\mathfrak{g})$. Thus, $\mathcal{L}(\infty)$ is stable under ω, and hence we have a \mathbb{Q}-linear automorphism $\omega: \mathcal{L}(\infty) / q \mathcal{L}(\infty) \rightarrow \mathcal{L}(\infty) / q \mathcal{L}(\infty)$ induced from $\omega: \mathcal{L}(\infty) \rightarrow \mathcal{L}(\infty)$. It is obvious that $\mathcal{B}(\infty)$ is stable under ω. Moreover we deduce that $\omega\left(\mathcal{B}_{w}(\infty)\right)=\mathcal{B}_{\omega^{*} w\left(\omega^{*}\right)^{-1}}(\infty)$ for $w \in W$. Therefore, if $w \in \widetilde{W}$, then $\mathcal{B}_{w}(\infty)$ is stable under ω. We now set

$$
\begin{align*}
& \mathcal{B}^{0}(\infty):=\{b \in \mathcal{B}(\infty) \mid \omega(b)=b\} \tag{3.4.1}\\
& \mathcal{B}_{w}^{0}(\infty):=\left\{b \in \mathcal{B}_{w}(\infty) \mid \omega(b)=b\right\}
\end{align*}
$$

Theorem 3.4.1. (1) The set $\mathcal{B}^{0}(\infty) \cup\{0\}$ is stable under the ω Kashiwara operators \tilde{e}_{i} and \widetilde{f}_{i}, defined in the same way as (2.2.2).
(2) Each element $b \in \mathcal{B}^{0}(\infty)$ is of the form $b=\widetilde{f_{i_{1}}}{\widetilde{f_{i}}}^{\cdots} \widetilde{f}_{i_{k}} \bar{v}_{\infty}$ for some $i_{1}, i_{2}, \ldots, i_{k} \in \breve{I}$.
(3) There exists a canonical bijection $P_{\infty}: \mathcal{B}^{0}(\infty) \xrightarrow{\sim} \breve{\mathcal{B}}(\infty)$ such that

$$
\begin{align*}
& \left(P_{\omega}^{*}\right)^{-1}(\mathrm{wt}(b))=\operatorname{wt}\left(P_{\infty}(b)\right) \quad \text { for each } b \in \mathcal{B}^{0}(\infty), \\
& P_{\infty} \circ \widetilde{e}_{i}=\widehat{e}_{i} \circ P_{\infty} \quad \text { and } \quad P_{\infty} \circ \widetilde{f}_{i}=\widehat{f}_{i} \circ P_{\infty} \quad \text { for all } i \in \breve{I} . \tag{3.4.2}
\end{align*}
$$

In addition, we have $P_{\infty}\left(\mathcal{B}_{w}^{0}(\lambda)\right)=\breve{\mathcal{B}}_{\widehat{w}}(\infty)$ for each $w \in \widetilde{W}$, where $\widehat{w}:=\Theta^{-1}(w)$.

Proof. Because $\omega \circ \varphi_{\lambda}=\varphi_{\lambda} \circ \omega$ for $\lambda \in P_{+} \cap\left(\mathfrak{h}^{*}\right)^{0}$, we have the following commutative diagram (cf. Theorem 3.3.1):

Thus we obtain $\bar{\varphi}_{\lambda}\left(\mathcal{B}^{0}(\infty)\right)=\mathcal{B}^{0}(\lambda) \cup\{0\}$ and $\bar{\varphi}_{\lambda}\left(\mathcal{B}_{w}^{0}(\infty)\right)=\mathcal{B}_{w}^{0}(\lambda) \cup\{0\}$ for each $\lambda \in P_{+} \cap\left(\mathfrak{h}^{*}\right)^{0}$ and $w \in \widetilde{W}$.
(1) Let $b \in \mathcal{B}^{0}(\infty)$. Assume that $\widetilde{e}_{i} b \neq 0$. Take $\lambda \in P_{+} \cap\left(\mathfrak{h}^{*}\right)^{0}$ such that $\lambda\left(\alpha_{i}^{\vee}\right) \gg 0$ for all $i \in I$. Then we deduce from Theorem 3.3.1 (2) and (3) that $\widetilde{e}_{i} \bar{\varphi}_{\lambda}(b)=\bar{\varphi}_{\lambda}\left(\widetilde{e}_{i} b\right) \neq 0$. Since $\widetilde{e}_{i} \bar{\varphi}_{\lambda}(b) \in \mathcal{B}^{0}(\lambda)$ by Proposition 3.2.1 (1), we conclude that $\widetilde{e}_{i} b \in \mathcal{B}^{0}(\infty)$. Similarly, we can show that $\widetilde{f}_{i} b \in \mathcal{B}^{0}(\infty) \cup\{0\}$.
(2) Let $b \in \mathcal{B}^{0}(\infty)$. Since $\bar{\varphi}_{\lambda}(b) \in \mathcal{B}^{0}(\lambda)$ if $\lambda \in P_{+} \cap\left(\mathfrak{h}^{*}\right)^{0}$ and $\lambda\left(\alpha_{i}^{\vee}\right) \gg \underset{\sim}{0}$ for all $i \in I$, we see from Proposition 3.2.1 (2) that $\bar{\varphi}_{\lambda}(b)=$ $\tilde{f}_{i_{1}} \tilde{f}_{i_{2}} \cdots \widetilde{f}_{i_{k}} \bar{v}_{\lambda}$ for some $i_{1}, i_{2}, \ldots, i_{k} \in \breve{I}$. By Theorem 3.3.1 (1) and (2), we get $b=\widetilde{f_{i_{1}}} \widetilde{f}_{i_{2}} \cdots{\widetilde{f_{i}}} \bar{v}_{\infty}$. Thus we have proved part (2).
(3) Let $\xi \in Q_{+} \cap\left(\mathfrak{h}^{*}\right)^{0}$, and set $\widehat{\xi}:=\left(P_{\omega}^{*}\right)^{-1}(\xi)$. Take $\lambda \in P_{+} \cap\left(\mathfrak{h}^{*}\right)^{0}$ such that $\lambda\left(\alpha_{i}^{\vee}\right) \gg 0$ for all $i \in I$, and set $\widehat{\lambda}:=\left(P_{\omega}^{*}\right)^{-1}(\lambda)$. We define a bijection $P_{\infty, \xi}: \mathcal{B}(\infty)_{-\xi} \rightarrow \breve{\mathcal{B}}(\infty)_{-\widehat{\xi}}$ as in the following commutative diagram:

We can easily check that $P_{\infty, \xi}$ does not depend on the choice of λ. Now we define $P_{\infty}: \mathcal{B}^{0}(\infty) \rightarrow \breve{\mathcal{B}}(\infty)$ by $P_{\infty}(b):=P_{\infty, \xi}(b)$ for $b \in \mathcal{B}^{0}(\infty)_{-\xi}$.

We can easily show by Proposition 3.2.1 (3) and Theorem 3.3.1 that P_{∞} has the desired properties (3.4.2). The equality $P_{\infty}\left(\mathcal{B}_{w}^{0}(\lambda)\right)=$ $\breve{\mathcal{B}}_{\widehat{w}}(\infty)$ immediately follows from the definition of P_{∞} and the equality $\bar{\varphi}_{\lambda}\left(\mathcal{B}_{w}^{0}(\infty)\right)=\mathcal{B}_{w}^{0}(\lambda) \cup\{0\}$.

Remark 3.4.2. It immediately follows from Theorem 3.4.1 that there exists an injection from the global base of $U_{q}^{-}(\breve{g})$ to the global base of $U_{q}^{-}(\mathfrak{g})$. Therefore we have an embedding $U_{q}^{-}(\breve{g}) \hookrightarrow U_{q}^{-}(\mathfrak{g})$ of vector spaces.

§4. Twining Character Formulas.

4.1. Definitions.

The twining character $\operatorname{ch}^{\omega}\left(U_{q}^{-}(\mathfrak{g})\right)$ of $U_{q}^{-}(\mathfrak{g})$ is defined to be the following formal sum:

$$
\begin{equation*}
\operatorname{ch}^{\omega}\left(U_{q}^{-}(\mathfrak{g})\right)=\sum_{\chi \in\left(\mathfrak{h}^{*}\right)^{0}} \operatorname{tr}\left(\left.\omega\right|_{\left(U_{q}^{-}(\mathfrak{g})\right)_{\chi}}\right) e(\chi) \tag{4.1.1}
\end{equation*}
$$

For each $w \in \widetilde{W}$, we define the twining character $\operatorname{ch}^{\omega}\left(\left(U_{w}^{-}\right)_{q}(\mathfrak{g})\right)$ of $\left(U_{w}^{-}\right)_{q}(\mathfrak{g})$ by

$$
\begin{equation*}
\operatorname{ch}^{\omega}\left(\left(U_{w}^{-}\right)_{q}(\mathfrak{g})\right):=\sum_{\chi \in\left(\mathfrak{h}^{*}\right)^{0}} \operatorname{tr}\left(\left.\omega\right|_{\left(\left(U_{\bar{w}}^{-}\right)_{q}(\mathfrak{g})\right)_{\chi}}\right) e(\chi) . \tag{4.1.2}
\end{equation*}
$$

4.2. Twining character formulas.

Corollary 4.2.1. Let $w \in \widetilde{W}$, and set $\widehat{w}:=\Theta^{-1}(w)$. Then $w e$ have

$$
\begin{align*}
& \operatorname{ch}^{\omega}\left(U_{q}^{-}(\mathfrak{g})\right)=P_{\omega}^{*}\left(\operatorname{ch} U_{q}^{-}(\breve{\mathfrak{g}})\right), \tag{4.2.1}\\
& \operatorname{ch}^{\omega}\left(\left(U_{w}^{-}\right)_{q}(\mathfrak{g})\right)=P_{\omega}^{*}\left(\operatorname{ch}\left(U_{\widehat{\boldsymbol{w}}}^{-}\right)_{q}(\breve{\mathfrak{g}})\right)
\end{align*}
$$

In order to prove this corollary, we need the following lemma, which can be shown in exactly the same way as [23, Lemma 3.4].

Lemma 4.2.2. We have $\omega(G(b))=G(\omega(b))$ for all $b \in \mathcal{B}(\infty)$. Therefore, we see that the global base $\{G(b) \mid b \in \mathcal{B}(\infty)\}$ of $U_{q}^{-}(\mathfrak{g})$ is stable under ω, and that $\omega(G(b))=G(b)$ if and only if $b \in \mathcal{B}^{0}(\infty)$.

Proof of Corollary 4.2.1. We give a proof only for the first equality of (4.2.1), since the proof for the second one is similar. Remark that for each $\chi \in\left(\mathfrak{h}^{*}\right)^{0},\left\{G(b) \mid b \in \mathcal{B}(\infty)_{\chi}\right\}$ is a basis of $U_{q}^{-}(\mathfrak{g})_{\chi}$, which is stable under ω. Therefore we have

$$
\operatorname{tr}\left(\left.\omega\right|_{\left(U_{q}^{-}(\mathfrak{g})\right)_{\chi}}\right)=\#\left\{G(b) \mid \omega(G(b))=G(b), b \in \mathcal{B}(\infty)_{\chi}\right\}
$$

for each $\chi \in\left(\mathfrak{h}^{*}\right)^{0}$ (note that if an endomorphism f on a finitedimensional vector space V stabilizes a basis of V, then the trace of f on V is equal to the number of the basis elements fixed by f). By Lemma 4.2.2, we get

$$
\operatorname{tr}\left(\left.\omega\right|_{\left(U_{q}^{-}(\mathfrak{g})\right)_{\chi}}\right)=\#\left(\mathcal{B}(\infty)_{\chi} \cap \mathcal{B}^{0}(\infty)\right)
$$

and hence

$$
\begin{equation*}
\operatorname{ch}^{\omega}\left(U_{q}^{-}(\mathfrak{g})\right)=\sum_{b \in \mathcal{B}^{0}(\infty)} e(\mathrm{wt}(b)) \tag{4.2.2}
\end{equation*}
$$

Therefore we obtain

$$
\begin{aligned}
\operatorname{ch}^{\omega}\left(U_{q}^{-}(\mathfrak{g})\right) & =\sum_{b \in \mathcal{B}^{0}(\infty)} e(\mathrm{wt}(b)) \quad \text { by (4.2.2) } \\
& =P_{\omega}^{*}\left(\sum_{\breve{b} \in \breve{\mathcal{B}}(\infty)} e(\mathrm{wt}(\breve{b}))\right) \quad \text { by Theorem 3.4.1 (3) } \\
& =P_{\omega}^{*}\left(\operatorname{ch} U_{q}^{-}(\breve{\mathfrak{g}})\right),
\end{aligned}
$$

as desired.
Remark 4.2.3. Let $U_{q}^{-}(\mathfrak{g})_{\mathbb{Z}}$ be the $\mathbb{Z}\left[q, q^{-1}\right]$-subalgebra of $U_{q}^{-}(\mathfrak{g})$ generated by the divided powers $\left\{y_{i}^{(n)} \mid i \in I, n \in \mathbb{Z}_{\geq 0}\right\}$ (see [6, §6.1]), and set

$$
\begin{equation*}
\left(U_{w}^{-}\right)_{q}(\mathfrak{g})_{\mathbb{Z}}:=\sum_{m_{j} \geq 0} \mathbb{Z}\left[q, q^{-1}\right] y_{i_{1}}^{\left(m_{1}\right)} y_{i_{2}}^{\left(m_{2}\right)} \cdots y_{i_{k}}^{\left(m_{k}\right)} \subset\left(U_{w}^{-}\right)_{q}(\mathfrak{g}) \tag{4.2.3}
\end{equation*}
$$

for $w \in W$ with $w=r_{i_{1}} r_{i_{2}} \cdots r_{i_{k}}$ its reduced expression. Now, for $\lambda \in P_{+}$and $w \in \widetilde{W}$, we set $V(\lambda)_{\mathbb{Z}}:=U_{q}^{-}(\mathfrak{g})_{\mathbb{Z}} v_{\lambda} \subset V(\lambda)$ and $V_{w}(\lambda)_{\mathbb{Z}}:=$ $\left(U_{w}^{-}\right)_{q}(\mathfrak{g})_{\mathbb{Z}} v_{\lambda} \subset V_{w}(\lambda)$ (cf. [8, Corollary 3.2.2]). Assume that $\lambda \in P_{+} \cap$ $\left(\mathfrak{h}^{*}\right)^{0}$ and $w \in \widetilde{W}$. We can easily check that the $\mathbb{Z}\left[q, q^{-1}\right]$-forms $U_{q}^{-}(\mathfrak{g})_{\mathbb{Z}}$, $\left(U_{w}^{-}\right)_{q}(\mathfrak{g})_{\mathbb{Z}}, V(\lambda)_{\mathbb{Z}}$, and $V_{w}(\lambda)_{\mathbb{Z}}$ are stable under the action of ω. Hence we can define the twining characters of them in a way similar to (4.1.1) and (4.1.2). Using the fact that the global bases are $\mathbb{Z}\left[q, q^{-1}\right]$-bases of these $\mathbb{Z}\left[q, q^{-1}\right]$-forms, we can prove twining character formulas for these $\mathbb{Z}\left[q, q^{-1}\right]$-forms in exactly the same way as Corollary 4.2 .1 (see also [23]).

Let $M(\lambda)$ be the Verma module of highest weight $\lambda \in \mathfrak{h}^{*}$ over \mathfrak{g} with (nonzero) highest weight vector v_{λ}. For $w \in W$ with $w=r_{i_{1}} r_{i_{2}} \ldots r_{i_{k}}$
its reduced expression, we define a module $M_{w}(\lambda) \subset M(\lambda)$ of Demazure type by

$$
\begin{equation*}
M_{w}(\lambda):=\sum_{m_{j} \in \mathbb{Z}} \mathbb{Q} y_{i_{1}}^{m_{1}} y_{i_{2}}^{m_{2}} \cdots y_{i_{k}}^{m_{k}} v_{\lambda} \tag{4.2.4}
\end{equation*}
$$

We see that $M_{w}(\lambda)$ does not depend on the choice of the reduced expression of w.

Assume that $\lambda \in\left(\mathfrak{h}^{*}\right)^{0}$. Then we have a \mathbb{Q}-linear automorphism $\omega: M(\lambda) \rightarrow M(\lambda)$ induced from the \mathbb{Q}-algebra automorphism $\omega \in$ $\operatorname{Aut}(U(\mathfrak{g}))$ of the universal enveloping algebra of \mathfrak{g} (cf. §1.1). We can easily check that $M_{w}(\lambda)$ is stable under ω if $w \in \widetilde{W}$. The twining characters $\operatorname{ch}^{\omega}(M(\lambda))$ and $\operatorname{ch}^{\omega}\left(M_{w}(\lambda)\right)$ are defined in the same way as (4.1.1) and (4.1.2), respectively (see also [1, Definition 2.3]).

Corollary 4.2.4. Let $\lambda \in\left(\mathfrak{h}^{*}\right)^{0}$, and $w \in \widetilde{W} . \operatorname{Set} \widehat{\lambda}:=\left(P_{\omega}^{*}\right)^{-1}(\lambda)$, and $\widehat{w}:=\Theta^{-1}(w)$. Then we have

$$
\begin{align*}
& \operatorname{ch}^{\omega}(M(\lambda))=P_{\omega}^{*}(\operatorname{ch} \breve{M}(\widehat{\lambda})) \\
& \operatorname{ch}^{\omega}\left(M_{w}(\lambda)\right)=P_{\omega}^{*}\left(\operatorname{ch} \breve{M}_{\widehat{w}}(\widehat{\lambda})\right) \tag{4.2.5}
\end{align*}
$$

where $\breve{M}(\widehat{\lambda})$ is the Verma module of highest weight $\hat{\lambda}$ over the orbit Lie algebra $\breve{\mathfrak{g}}$, and $\breve{M}_{\widehat{w}}(\widehat{\lambda}) \subset \breve{M}(\widehat{\lambda})$ is the module of Demazure type for $\breve{\mathfrak{g}}$ corresponding to \widehat{w}.

Proof. We give a proof only for the first equality $\operatorname{ch}^{\omega}(M(\lambda))=$ $P_{\omega}^{*}(\operatorname{ch} \breve{M}(\widehat{\lambda}))$ of (4.2.5), since the proof of the second one is similar. We see easily that $\operatorname{ch}^{\omega}(M(\lambda))=e(\lambda) \operatorname{ch}^{\omega}(M(0))$ and $\operatorname{ch} \breve{M}(\widehat{\lambda})=e(\widehat{\lambda}) \operatorname{ch} \breve{M}(0)$. Hence we need only show that $\operatorname{ch}^{\omega}(M(0))=P_{\omega}^{*}(\operatorname{ch} \breve{M}(0))$.

As in $[23, \S 2.2]$, we deduce that the specialization " $q=1$ " of $\operatorname{ch}^{\omega}\left(U_{q}^{-}(\mathfrak{g})\right)$ is equal to $\operatorname{ch}^{\omega}(M(0))$. On the other hand, the specialization " $q=1$ " of $\operatorname{ch} U_{q}^{-}(\breve{g})$ is equal to $\operatorname{ch} \breve{M}(0)$. By combining these facts with Corollary 4.2.1, we obtain $\operatorname{ch}^{\omega}(M(0))=P_{\omega}^{*}(\operatorname{ch} \breve{M}(0))$. Thus we have proved the corollary.

References

[1] J. Fuchs, U. Ray, and C. Schweigert, Some automorphisms of generalized Kac-Moody algebras, J. Algebra 191 (1997), 518-540.
[2] J. Fuchs, B. Schellekens, and C. Schweigert, From Dynkin diagram symmetries to fixed point structures, Comm. Math. Phys. 180 (1996), 3997.
[3] A. Joseph, "Quantum Groups and Their Primitive Ideals", Ergebnisse der Mathematik und ihrer Grenzgebiete Vol. 29, Springer-Verlag, Berlin, 1995.
[4] M. Kaneda and S. Naito, A twining character formula for Demazure modules, Transform. Groups 7 (2002), 321-341.
[5] S.-J. Kang and J.-H. Kwon, Graded Lie superalgebras, supertrace formula, and orbit Lie superalgebras, Proc. London Math. Soc. 81 (2000), 675-724.
[6] M. Kashiwara, On crystal bases of the q-analogue of universal enveloping algebras, Duke Math. J. 63 (1991), 465-516.
[7] M. Kashiwara, Global crystal bases of quantum groups, Duke Math. J. 69 (1993), 455-485.
[8] M. Kashiwara, The crystal base and Littelmann's refined Demazure character formula, Duke Math. J. 71 (1993), 839-858.
[9] M. Kashiwara, On crystal bases, in "Representations of Groups" (B. N. Allison and G. H. Cliff, Eds.), CMS Conf. Proc. Vol. 16, pp. 155-197, Amer. Math. Soc., Providence, 1995.
[10] M. Kashiwara, Similarity of crystal bases, in "Lie Algebras and Their Representations" (S.-J. Kang et al., Eds.), Contemp. Math. Vol. 194, pp. 177-186, Amer. Math. Soc., Providence, 1996.
[11] V. Lakshmibai, Bases for quantum Demazure modules, in "Representations of Groups" (B. N. Allison and G. H. Cliff, Eds.), CMS Conf. Proc. Vol. 16, pp. 199-216, Amer. Math. Soc., Providence, 1995.
[12] P. Littelmann, A Littlewood-Richardson rule for symmetrizable KacMoody algebras, Invent. Math. 116 (1994), 329-346.
[13] P. Littelmann, Paths and root operators in representation theory, Ann. of Math. (2) 142 (1995), 499-525.
[14] P. Littelmann, Characters of representations and paths in $\mathfrak{b}_{\mathbb{R}}^{*}$, in "Representation Theory and Automorphic Forms" (T. N. Bailey and A. W. Knapp, Eds.), Proc. Sympos. Pure Math. Vol. 61, pp. 29-49, Amer. Math. Soc., Providence, 1997.
[15] P. Littelmann, The path model, the quantum Frobenius map and standard monomial theory, in "Algebraic Groups and Their Representations" (R. W. Carter and J. Saxl, Eds.), NATO Adv. Sci. Inst. Ser. C Vol. 517, pp. 175-212, Kluwer Acad. Publ., Dordrecht, 1998.
[16] S. Naito, Twining character formula of Kac-Wakimoto type for affine Lie algebras, Represent. Theory 6 (2002), 70-100.
[17] S. Naito, Twining characters and Kostant's homology formula, Tôhoku Math. J. (Second Series) 55 (2003), 157-173.
[18] S. Naito, Twining characters, Kostant's homology formula, and the Bernstein-Gelfand-Gelfand resolution, J. Math. Kyoto Univ. 42 (2002), 83-103.
[19] S. Naito, Twining character formula of Borel-Weil-Bott type, J. Math. Sci. Univ. Tokyo 9 (2002), 637-658.
[20] S. Naito and D. Sagaki, Lakshmibai-Seshadri paths fixed by a diagram automorphism, J. Algebra 245 (2001), 395-412.
[21] S. Naito and D. Sagaki, Standard paths and standard monomials fixed by a diagram automorphism, J. Algebra 251 (2002), 461-474.
[22] S. Naito and D. Sagaki, Three kinds of extremal weight vectors fixed by a diagram automorphism, J. Algebra 268 (2003), 343-365.
[23] D. Sagaki, Crystal bases, path models, and a twining character formula for Demazure modules, Publ. Res. Inst. Math. Sci. 38 (2002), 245-264.

Satoshi Naito
Institute of Mathematics
University of Tsukuba
Tsukuba
Ibaraki 305-8571
Japan
naito@math.tsukuba.ac.jp

Daisuke Sagaki
Institute of Mathematics
University of Tsukuba
Tsukuba
Ibaraki 305-8571
Japan
sagaki@math.tsukuba.ac.jp

