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Srinivasa R.S. Varadhan 

Abstract. 

We explain the large deviation behavior of the totally asymmet­
ric simple exclusion process in one dimension. 

§1. Introduction 

So far, large deviations from hydrodynamic scaling have been worked 
out only for systems under diffusive scaling. Large deviation results are 
presented here for the Totally Asymmetric Simple Exclusion Process or 
TASEP in one dimension. This work was carried out by Leif Jensen [2] 
in his PhD dissertation submitted to New York University in the year 
2000 and is available at the website 

http:/ jwww.math.columbia.edu/-jensen/thesis.html 

We will present here a detailed sketch of the derivation of the upper 
bound and a rough outline of how the lower bound is established. 

§2. Hydrodynamic limit of TASEP 

The Model. 

We have a particle system on the integers Z or (in the periodic case) 
on ZN, the integers moduo N. The configuration is TJ = { TJx : x E Z} 
or { TJx : x E ZN}. The evolution of TJ( t) = { TJx ( t)} is governed by the 
generator 

(Cf)(TJ) = ~ TJx(l- TJx+!)[J(TJx,x+l)- J(TJ)] 
X 
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where 
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{
1/z if z =F x,y 

1/~,y = 1/y ~f Z = X 

1/x ~f Z = Y 

This corresponds to the process where the particles independently wait 
for an exponential time and then jump one step to the right if the site is 
free. Otherwise they wait for another exponential time. All the particles 
are doing this simultaneously and independently. 

The Scaling. 

For each N we consider an initial configuration 1/x,N, that may or 
may not be random. We consider these models for N -+ oo. Assume 
that for some deterministic density function Po(~), 0 :S po(·) :S 1, and 
every test function J ( ·), 

The limit is taken in probability in the random case. The class of test 
functions are continuous functions with compact support in R, if we 
started with Z and the periodic unit interval S, if we started with ZN. 

Time is speeded up by a factor of N, i.e. the process is viewed at 
time Nt or equivalently the generator is multiplied by a factor of N. 
This introduces in a natural way a probability measure PN on the space 
of trajectories { 1Jx(t) : x E ZN or Z, t 2: 0}. 

Theorem 2.1. (The law of large numbers.) For any t > 0, there 
exists a deterministic density function p(t, ·), on R or S as the case may 
be, such that 

in probability for every suitable test function. The density p(t, x) ~s 

determined as the unique weak solution of 

(1) Pt(t,~) + [p(t,~)(1- p(t,~))]~ = 0 

with initial condition p(O, ·) = po(·), that satisfies the 'entropy condi­
tion'. 

Remark 2.2. The entropy condition can be stated in many equiv­
alent forms. For example if p( t, ·) is a smooth solution, then for any 
smooth function h(r) 
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or 

(2) [h(p(t, ~))]t + [g(p(t, ~))]~ = 0 

where g and h are related by 

(3) g'(r) = h'(r)(1- 2r) 

If p(t, ·) is only a weak solution, then equation (2) may not hold even 
weakly. A weak solution of equation (1) is said to satisfy the entropy 
condition if for every convex function h and the corresponding g defined 
by equation ( 3), 

(4) 

holds as a distribution on [0, T] x R or [0, T] x S as the case may be. Then 
for any initial value, the weak solution satisfying the entropy condition 
exists and is unique. The density profile of the TASEP converges to this 
unique solution. 

We will not prove it here. For the special case when the sites are Z 
and 'IJx,N(O) = 1 for x :::; 0 and 0 otherwise was carried out by Rost [4], 
who proved that in this case the solution p( t, ~) is the rarefaction wave, 

if ~:::; -t 
if - t:::; ~:::; t 
if ~ 2: t 

and the density of the TASEP converges to it. Seppiiliiinen in [5] ob­
tained a representation of the TASEP with arbitrary initial conditions 
in terms of a family of coupled processes with initial conditions of Rost 
type and was able to reduce the general case to the Rost case. 

If we look at special solutions of the form 

t - {p if ~:::; 0 
p( '~) - 1 - p if ~ 2: 0 

then this will be an entropic solution only when p :::; ~. In particular if 
p = 1, although the initial profile in the Rost case is a stationary weak 
solution it is not entropic. On the other hand if we hold the lead particle 
from jumping, then nothing can move. So with probability e-Nt, the 
Rost initial profile can remain intact up to time t. This illustrates that 
non-entropic solutions are relevant for large deviations. 
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§3. Large Deviations. Some super exponential estimates 

The validity of hydrodynamical scaling depends on some basic facts. 
We will state them in the periodic case. The needed modifications when 
we have the entire Z are obvious. The 'one block estimate' allows one 
to replace the microscopic flux by its expectations, given the densities 
over blocks of size 2k + 1. If 

1 t 
E(N, k, t) = N Jo L leN,k,x(s)lds 

0 X 

where 

1 
eN,k,x(s) = 12k + 1 L 1]y(s)(1 -T]y+l (s)) - i]~(s )(1 - i]~(s))l 

y:ly-xl:5k 

and i]~ = 2k~l L:y:ly-xl:5k T]y, then 

lim lim EPN [E(N, k, t)J = 0 
k-HJO N-HXJ 

The expectation is taken here with respect to the measure PN that 
corresponds to some initial profile on the periodic lattice ZN and evolves 
according to TASEP dynamics in the speeded up time scale. Then the 
two block estimate allows one to replace i]~ with large k by iJ/: < with a 
small E. One can exhibit this in many ways. For instance, if we define, 

t [ 1 "" -k 2 1 "" -NE 2] V(N, E, k, t) = Jo N L..,.,[17x,N(s)] - N L..,.,[1lx,N(s)] ds 
0 X X 

then, by proving 

lim lim lim EPN [v(N, E, k, t)] = 0 
E-+0 k-+oo N-+oo 

one can establish that any limit of the empirical density is a weak solu­
tion of equation (1). 

Remark 3.1. Because of finite propagation speed, basically the ef­
fect of any change in a region is only felt over a finite macroscopic do­
main. This allows us to go back and forth between the periodic and 
the nonperiodic cases without much effort. If we take the domain large 
enough then the probability of any effect outside is superexponentially 
small. So even for large deviations, one can go back and forth. 
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Theorem 3.2. One has the super exponential 'one block' and 'two 
block estimates'. For any 8 > 0, 

(5) limsuplimsup_!_logP[t:(N,k,t) 2:: o] = -= 
k-+oo N-+oo N 

(6) limsuplimsuplimsup_!_logP[D(N,E,k,t) 2:: o] = -= 
<-+0 k-+oo N -+oo N 

Sketch of proof: We look at the periodic case. The Dirichlet form 

X,TJ 

can be used in conjunction with the Feynman-Kac formula to provide 
the first estimate. This is not any different from the symmetric case. 
The fact that the scaling factor is N and not N 2 does not affect the 
estimate. It only matters that it is large. 

The second estimate on the other hand is a bit tricky. In the sym­
metric case the proof uses the full strength of the factor N 2 , and does 
not work here. Instead the proof is carried out in several steps. First 
one proves that there is an exponential error bound, for large deviations 
from the hydrodynamical limit in the Rost case, by explicit computa­
tion. This is not hard and can be done by just following Rost's proof 
carefully. Then this is extended to arbitrary initial conditions by follow­
ing through SeppaHiinen's proof. One then notices that, by convexity, if 
D(N, E, k, t) does not go to zero, and the one block estimate holds, then 
the hydrodynamic limit cannot hold. Therefore the two block estimate 
holds with exponential error probability. Finally a bootstrap argument 
is used to improve the exponential error probability to a superexponen­
tial estimate. The space time region of size N x N is divided into £2 grids 
of size !:[- x !:[-. The probability of a significant violation in the two block 

estimate is e-c!f for one grid. The grids do not influence each other 
that much. Now the usual Bernoulli large deviation estimate yields a 
multiplication of the exponent by a factor £2 , that equals the number of 
grids. If we pick C large we are done. 

Corollary 3.3. Outside the set of weak solutions the probability 
measure PN decays superexponentially fast. 

It is then natural to expect that the rate function for large deviations 
will be a measure of how 'nonentropic' the weak solution is. 
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§4. Macroscopic and Microscopic Entropies. 

A microstate on the configurations on ZN is a probability distribu­
tion PN(rJ) on the configurations rJ E {0, 1}zN. Its entropy (relative to 
the uniform distribution) is defined as 

HN(PN) = N log2 + z::>N('TJ) log(pN(rJ)] 
rJ 

For a macroscopic density profile p(O, the corresponding entropy func­
tion is defined by 

H(p(·)) = log2 + fs[p(~)logp(~) + (1- p(~))log(1- p(~))]d~ 

If p N has asymptotic profile p, in the sense that 

in probability with respect to PN, then by Jensen's inequality 

liminf J:_HN(PN) ~ H(p(·)) 
N-H)O N 

We need a result of Kosygina [3] that asserts that under certain addi­
tional conditions the equality holds, i.e. 

. 1 
hm NHN(PN) = H(p(·)) 

N--+oo 

Two conditions are needed. 

• The Dirichlet form is "small" 

X,TJ 

• The two block estimate holds. 

lim lim lim EPN [v(N, E, k)] = 0 
<--+0 k--+oo N --+oo 

where 

( ) 1 ""[-k ]2 1 ""[-N< ]2 V N,E,k = N ~ "7x,N - N ~ "7x,N 
X X 
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The proof uses the fact that the control of Dirichlet form allows us to 
estimate JiHN(pN) by 

log 2 + EPN [~ L[ii; log ij; + (1- ij;) log(l- ii;)J] 
X 

and the two block estimate allows k to be replaced by N f and if the 
law of large numbers holds then we easily pass to 'H.(p(·)), providing the 
upper bound. The lower bound as we mentioned is essentially Jensen's 
inequality. 

With some additional work the following theorem due to Kosygina 
can be proved. 

Theorem 4.1. Consider the evolution according to TASEP in the 
periodic case with any initial conditions. Suppose the hydrodynamic limit 
holds with some profile p(t,e). Then for any 8 > 0 

lim sup sup I Nl HN(pN(s)) -'H.(p(s, ·))I = 0 
N-+oo 6:5;s:5;t 

Idea of proof: The discussion above will allow us to control it for most 
times s. But the entropy is monotone and cannot fluctuate wildly. 

Remark 4.2. Actually the theorem Kosygina will continue to hold 
even if we modify the dynamics by changing the rates, replacing in the 
speeded up scale N by N>.x,x+1 (s,ry), provided the relative entropy of the 
modified process with respect to the unperturbed process remains bounded 
by C N. This is because the estimates on the Dirichlet form, usually 
obtained by differentiating the entropy at timet, with respect tot can still 
be derived. Because the two block estimates has superexponential error 
estimates for the unperturbed process, they will continue to hold for the 
perturbed process which has relative entropy bounded by C N. Since the 
proof of Theorem 4.1 depends only on estimates on the Dirichlet form 
and two block estimates, the Theorem will continue to hold even when 
we perturb. 

Remark 4.3. If for some PN with profile p the entropy relation 

limsupiN1 HN(PN) -'H.(p(·))l = 0 
N-+oo 

holds, then from the super additivity of the entropy function over disjoint 
blocks, one has for the marginal PN,B ofpN on any block of size N(b-a) 
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say from [N a, Nb], 

1 1b limsup 1-HN(pN,B)- h(p(~))d~l = 0 
N--->oo N a 

§5. Large Deviation. The rate function 

The basic space on which we will carry out the large deviation is 
the space n = C[[O, T], M] of continuous maps p(t, ~)of [0, T] into the 
space M of nonnegative measures on S. Although under PN, p(t, d~) 
consists of atoms with mass J;r, because of exclusion any conceivable 
limit will be supported on p(t, ~) that have densities p(t, ~)d~ that sat­
isfy 0 ::=; p(t, ~) ::=; 1 for all (t, ~) E [0, T] x S and are weakly continuous 
as mappings of [0, T] ---> M. 

The rate function I(p(·, ·)) is defined as +oo if p(·, ·) is not a weak 
solution of 

Pt + [p(1 - p)]e = o 

If it is a weak solution, then 

I(p(·, ·)) = {T-O { [[h(p(·, ·))]t + [g(p(·, ·))Jet dt~ 
Jo+o Js 

=sup {T r J(t,~)[[h(p(·,·))]t+[g(p(·,·))je)dtd~ 
JE.:J lo Js 

=- inf fT f [Jt(t, ~)h(p(·, ·)) + Je(t, ~)g(p(·, ·))]dt~ 
JE.:J Jo Js 

Here h(r) = r log r + (1 - r) log(1 - r) and g(r) as defined by equation 
(3) is 

and 

r 
g(r) == r(1- r) log-(--) - r 

1-r 

.J = {J(·, ·): 0:::; J(·, ·):::; 1, J(O, ·) =: J(T, ·) =: 0} 

It is interesting to note that the set of weak solutions of nonlinear equa­
tions is in general not weakly closed. However a result on compensated 
compactness, that can be found in Tartar [6], tells us that the set C~ of 
weak solutions for which I(p(·, ·)) :::; £is in fact compact in the strong 
topology, guaranteeing that the rate function is indeed lower semi con­
tinuous. It is easy to check uniform modulus of continuity in time in 
the weak topology. So the rate function in fact does have compact level 
sets. 
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§6. Upper Bounds 

For upper bounds we will use the formulation of Ellis and Dupuis 
[1]. Suppose 'T/x,N is a deterministic initial condition with a profile p0 ( ~). 

Theorem 6.1. Suppose PN is the measure on the configuration 
space {TJx(t)} induced by the TASEP and QN is such that QN << PN 

and the measure Q N induced by Q N on 0 converges to the degenerate 
distribution at p( ·, ·) E 0. Then 

liminf N1 H(QNfPN) ~ I(p(·, ·)) 
N--+oo 

Remark 6.2. This is easily seen to be equivalent to the standard 
upper bound LDP estimate. 

The proof is broken up into several lemmas. 

Lemma 6.3. Without loss of generality we can assume that QN 
is Markov with rates N'S.(t,x,ry). 

Proof. Consider the probability distribution qN(t, TJ) of ry(t) at time 
t under Q N. We have 

~LJ(~)TJx-> J J(~)p(t,~)d~ 
X 

in probability with respect to qN(t, ry). The process QN has some rates 
NA.N(t, x, w) of particles jumping from x to x + 1, that may depend on 
the past history upto time t. This comes from general martingale theory. 
One can write the formal generator 

(.Ct,wf)(TJ) = N L A.(t, X, W)TJx(1- 'T/x+l)[f(TJx,x+l)- f(TJ)] 
X 

and with respect to Q N, 

f(ry(t))- f(ry(O)) -lt (.Cs,wf)(ry(s))ds 

will be martingales. By Girsanov formula one can calculate on [0, T], 

where 8(>..) = >..log>..- >.. + 1. If we replace >..(t, x, w) by its conditional 
expectation 

'S.(t,x,ry) = EQN [>..(t,x,w)fry(t)] 
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we see that 

with 

X 

In other words qN(t, ry) is the solution of the forward equation cor­
responding to i.. On the other hand, since 0(>.) is a convex function of 
>., by Jensen's inequality, 

EQN [TJx(t)(1- 'Tix+l(t))O(>.(t,x,w))] 

2:: EQN [TJx(t)(1- 'Tix+l(t))e(\(t, x, w))] 

The Markov process with Lt as generator has the same marginals 
at timet as QN and will work as well. In other words for our theorem 
we can assume with out loss of generality that Q N is Markov with rates 
JV~(x,t,ry). Q.E.D. 

Consider the joint probability distribution qN,x,k ( t, TJ) at the 2k + 1 sites 
[x- k, ... , x + k] of {TJy} under qN(t, ry). We think of it as function of TJ 
that depends on the variables { 'T/y : IY - xI ~ k}. 

We let 

1 
H(lV,x,k,t) = lV L qN,x,k(t,ry)logqN,x,k(t,ry) 

7JE[O,lj2k+ 1 

and compute 

1 
Ht(lV,x,k,t) = lV L I/N,x,k(t,ry)[1 +logqN,x,k(t,ry)] 

7JE[0,1]2k+l 

:T ~ H ~ 1/N,x,k(t,ry)logqN,x,k(t,ry) 
7JE[0,1J2k+l 

1 ~ . 
= lV ~ qN(t, TJ) log qN,x,k(t, TJ) 

7JE(O,l]N 
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Using the forward equation QN(t,ry) = N(£;qN)(t,ry), we get 

Ht(N, x, k, t) 

L qN(t, ry)£t(log qN,x,k(t, TJ)] 
'7E[O,l]N 

'IE[O,l]N 
x-k-l:::=;y:=;x+k 

where ey,y+l(TJ) = 'r/y(1- 'r/y+1), We use the inequality 

A logy :::=; A log A - A + 1 + eay - 1 - aA 

with the choice of a= aN,x,y,k(TJ) to be made later, 

Ht(N, x, k, t) :::; 

L qN(t,ry)ey,y+l(TJ)[X(t,y,ry)logX(t,y,ry)- X(t,y,ry) + 1] 
'IE[O,l]N 

x-k-1Sy$x+k 

+ 
'IE[O,l]N 

x-k-lSy::Sx+k 

L qN(t, ry)ey,y+l (ry)X(t, y, ry)aN,x,y,k 
'IE[O,l]N 

x-k-l:::;y$x+k 

We rewrite this as 

L qN( t, ry)ey,y+l (TJ )[X(t, y, ry) log X(t, y, rJ) - X(t, y, rJ) + 1 J 
'IE[O,l]N 

x-k-1$y$x+k 

where 

A1(N,x,k,t) = 

ryE[O,l]N 
x-k-l::=;y:S;x+k 

2: Ht(N, x, k, t) - A1 (N, x, k, t) + A2(N, x, k, t) 

11 
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and 

A2(N,x,k,t) = 
'lE[O,l]N 

x-k-1$y$x+k 

qN ( t, 'T} )ey,y+l ( 'TJ)A( t, y, 'T} )aN,x,y,k 

We now multiply by J(t, N ), where J E .1, sum over x, integrate with 
respect to t from 0 to T and finally multiply by (2k~2)N, 

1 
NH(QNIPN) 

~ 1T (2k~ 2)N L J(t, ~)d[ L qN,x,k(t,'T})logqN,x,k(t,'T})] 
O xEZN 17E(O,lj2k+l 

- EQN [ {T [-1- L J(t, Nx )ey,y+l('TJ) x 
lo 2k + 2 x,y 

x-k-1$y$x+k 

eaN,x,y,kqN,x,k(t, 'T}y,y+l) - qN,x,k(t, 'TJ)] dt] 
qN,x,k(t, 'TJ) 

X 
J(t, N)ey,y+l('TJ) x 

A(t, y, 'TJ)aN,x,y,k] dt] 

= T1(N, J(·, ·), k)- T2(N, J(·, ·), k) + T3(N, J(·, ·), k) 

Now we have to analyse the terms on the right. Let us look at 

T1(N,J(·,·),k) = 

1T (2k~ 2)N L J(t, ~)d[ L qN,x,k(t,'T})logqN,x,k(t,'T})] 
O xEZN 17E(O,lj2k+l 

Integrating by parts, 

T1(N,J(·,·),k) = 

-1T L Jt(t, ~)[(2k~ 2)N L qN,x,k(t,'T})logqN,x,k(t,'T})]dt 
O xEZN 17E(O,lj2k+l 

We pick k = NE and let E ~ 0 at the end. 
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Lemma 6.4. If for t E [0, T], QN ( t, rJ) leads to the profile p( t, ·), 
then 

lim lim 
<-->0 N-+oo 

1T L Jt(t, ~) [ 2~2€ L QN,x,N<(t,ry)logqN,x,N<(t,ry)]dt 
O xEZN 77E[0,1]2N< 

=loT is Jt(t,(,)h(p(t,(,))dtd(, 

Proof. Let us consider the quantity 

and the measure 

1 
JLN(t, t:) = N L HN(t, x, t:)8N 

X 

We need to prove the weak convergence of 

lim lim JLN(t, t:)dt = h(p(t, f,))dtd(, 
<--+0 N-+oo 

Since we are looking at relative entropy with respect to a product mea­
sure, i.e. uniform distribution on (0, 1]ZN, it is easy to see that 

lim inf lim inf JLN(t, t:)dt ~ h(p(t, (,) )dtd(, 
<--+0 N-+oo 

in view of the remark at the end of the last section. On the other hand 
the total mass of JLN(t, t:) is dominated by the total entropy 

and we are done. Q.E.D. 

Now we try to control T2(N, J(·, ·), Nt:)-T2(N, J(·, ·), Nt:) which is more 
difficult. The interior terms with x- k- 1 < y < x + k are easy. We 
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choose aN,x,y,k = 0. 

EQN[_1_ """"' e ( )QN,x,Ne(t,TJY'Y+l)-qN,x,Ne(t,TJ)] 
2N L....! y,y+l 'fJ (t ) 

f x-k-l<y<x+k QN,x,Ne ''fJ 

= 
1 

L 2Nf 
17E(O,l)Z2Ne x-k-l<y<x+k 

1 
L 2Nf 

17E(O,l)Z2Ne x-k-l<y<x+k 

[qN,x,Ne(t, 'f/y,y+l) - QN,x,Ne(t, TJ)] 

[TJy+l - 'f/y]QN,x,Ne(t, TJ) 

If we carry out a summation by parts in x and integration over t, this 
leads in the limit to 

-1T fs Je(t,f.)p(t,f.)dtdf. 

We look next at the boundary terms. Note that k = [N~:]. The boundary 
terms equal B = B1 + B2 + B3 + B4 

B1 =- EQN [1T [ 2~€ L J(t, ~)'f/x-k-1{1- 'f/x-k) X 
X 

eaN,x,-,kqN,x,k(t, 'f/x-k-l,x-k)- QN,x,k(t, TJ)] dt] 

QN,x,k(t, TJ) 

eaN,x,+,kqN,x,k(t, 'f/x+k,x+k+l)- QN,x,k(t, TJ)] dt] 

QN,x,k(t, TJ) 

:X(t, x- k- 1, rJ)aN,x,-,k] dt] 



Large Deviations of TASEP 15 

>:(t, X+ k, ry)aN,x,+,k] dt] 

We would like to make the choice of aN,x,-,k = -u(t, x-~-l) and 

aN,x,+,k = u(t, xj/) for some smooth u. We can combine B3 and B4 
and write 

B3 +B4 

= EQN [1T [2~E ~)J(t, X+~+ 1)- J(t, X-; k)] X 
X 

rJx(1 - 'flx+l)>:(t, x, ry)u(t, ~)] dt] 

= EQN [1T [2~E L)J(t, X+~+ 1)- J(t, X-; k)] X 

X 

'f]x(l- 'flx+l)u(t, ~)]dt] 

+ EQN [1T [2~E ~)J(t, X+~+ 1)- J(t, X-; k)] X 

X 

[>:(t,x,ry) -1]u(t, ~)]dt] 

c:::' 2_ 1T r [J(t, ~+E)- J(t, X- E)]p(t, ~)(1- p(t, ~))u(t, ~)dtd~ 2E o ls 
+Error 

The error term is dominated by 

For any () > 0, there is a constant Co such that 

I A - 11 :S () + Co [A log A - A + 1] 

Therefore 



16 S.R.S. Varadhan 

We will get an estimate on B1. The term B2 is similar. B1 is estimated 
by 

_1_EQN [ {T L 17x-1(1-17x)le-u(t,N-) QN,x,x+2k(t, 17x-1,x) -11dt] 
2NE Jo x QN,x,x+2k(t,17) 

The quantity 

(t x-1 "') 
R _ (1 ) QN,x,x+2k '17 ' 

N - 17x-1 - 17x ( ) 
QN,x,x+2k t, 17 

has to be looked at carefully. Take x = 0. If we denote QN,x,x+2k(t, 17) 
by !N(17o, 171> · · · , 17zk) then 

R _ (1 ) !N(1, 171> · · · , 1J2k) _ (1 )PN(11171> · · · , 17zk) 
N - 171 - 170 !N(O, 171, · · · , 1J2k) - 171 - 170 PN(OI171, · · · , 17zk) 

p(O) 
~ 111 (1 - 17o) 1 _ p(O) 

Therefore it follows that 

1 1T 1 I e-u(t,e) (t t;.) I limsupB1 :::;- p(t,t;.)(1-p(t,t;.)) r i) -1dtdt;, 
N ->co 2E 0 S 1 - p t, 

and similarly 

1 1T 1 I eu(t,e) (1 (t t;.)) I limsupB2 :::;- p(t,t;.)(1- p(t,t;.)) (-) ' -1 dtdt;, 
N->oo 2E 0 S p t,t;, 

If we let u approach log 1 ~~(;;e) both B1 and B2 tend to 0 for any positive 
E. Finally we let E---+ 0. 

lim lim [B3+B4]= {T { Je(t,t;,)p(t,t;,)(1-p(t,t;,))log p(t,/)t;,)dtdt;, 
e-+ON->oo } 0 } 8 1- p t, 

This proves 

liminf N1 H(QNIPN) ~ 
N->oo 

-1T Is Jt(t,f;.)h(p(t,f;.))dtdf;. + 1T Is Je(t,f;.)p(t,f;.)dtdf;. 

-1T Is Je(t, t;,)p(t, 1;.)(1- p(t, t;.)) log 1 ~(~(;: t;.) dtdt;, 

=-for fs[Jt(t,t;.)h(p(t,t;.)) + Je(t,t;,)g(p(t,t;.))]dtdt;, 
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Since J is arbitrary, we are done. 

§7. Lower Bounds 

The situation with the lower bounds is not totally satisfactory. Ide­
ally one should construct an explicit perturbation of the rates that pro­
duces a particular profile, the entropy cost of such a perturbation being 
approximately equal to the rate function for such a large deviation. This 
one is not able to do at this time. The best we can do is to prove the ex­
istence of such perturbations and construct them implicitly. Even this 
we can do only to produce a single non-entropic shock traveling at a 
constant speed. By patching together, one can possibly handle a finite 
number of shocks of varying speeds, even crossing each other forming 
caustics. However one does not see at the moment how to produce a 
'general' non-entropic weak solution, partly because one does not know 
what it is. Ideally there would be an approximation theorem allowing 
us to pass from a solution with a finite number of shocks to a general 
weak solution with a finite large deviation rate. 

We will sketch the proof for the simple case of a stationary non­
entropic shock at 0 starting from a special initial configuration. Suppose 
we are given on Z an initial configuration of particles where every site 
x _.:::: 0 is filled and every site x > 0 is empty. We wish to perturb 
the standard speeded up TASEP dynamics with new rates N>.N(t, x, ry), 
such that for the modified process Q N, for every test function J with 
compact support and every t E [0, T], we have in probability, 

where p( t, ~) is the following special weak solution. 

1 if X _$ -t 
t-x if - t _$X_$ -t(2p- 1) 2t 

(7) p(t, ~) = 
p if - t(2p- 1) _$ X _$ 0 

1-p if 0 _$X _$ t(2p- 1) 
t-x if t(2p- 1) _$ X _$ t 2t 
0 if x?_t 

Here p > ~ and there is a non-entropic shock at 0 where the density 
jumps from a higher value of p > ~ to the lower value of 1- p < ~· The 
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rate function for this profile in the interval [0, T] is proportional to T, 
i.e. equals c(p)T, where 

(8) 
p 

c(p) = 2p- 1- 2p(1- p) log--
1-p 

The problem is to find rates N>w(x, TJ) such that the process with these 
new rates has a law of large numbers with the profile p( t, ~) given by (7) 
and achieve this with an entropy cost that is roughly c(p)N. We know 
from the upper bound that we cannot do better. Since we want to slow 
down particles at or near 0, ideally cutting down the rate at 0 should do 
it. If we slow down the rate at 0 toN).. with some fixed)..< 1, holding 
all other rates at N, we will produce a profile of the type we want with 
some p = p(>..) that is hard to determine, except in the trivial case of 
).. = 0, p = 1, c(O) = 1. The cost is surely not going to be optimal. We 
can however lower the rate at several points around 0, depending on the 
current configuration of particles. The new rates N>..N(x, TJ) will do the 
trick. We will implicitly construct them. We will then have to see how 
this will work for any initial condition. After that we need to modify 
the construction for shocks moving with constant velocity. Then patch 
things together for one or more shocks with non constant jumps and non 
constant velocities that may cross each other. 

The idea for a single shock is simple enough. A non-entropic shock 
is entropic if time is reversed. Let us begin with a generator of a TASEP 
with jumps to the left rather than to the right. The generator is given 
by 

X 

We start with some initial configuration at t = 0, that produces the 
density profile of p(T, ~) specified by equation (7). The hydrodynamical 
scaling limit will be an entropic solution of 

Pt - [p(1 - p)]x = 0 

with pr(O, ~) = p(T, ~). This is seen to be the time reversal of the profile 
given in (7). 

.Pr(t, ~) = p(T- t, ~) 

for 0 :::; t :::; T and ~ E R. If we now take the process Q N corresponding 
to £ and reverse time to get trajectories TJ(T - t), the new process 
will have some generator .CN,T,t that is time inhomogeneous and nearly 
impossible to compute. However it does have the advantage that it has 
a hydrodynamical limit with a profile that is the time reversed version 
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of PT ( t, ~) which is of course p( t, ~). The entropy will match, because 
while the forward motion is losing entropy at the shock, the time reversed 
motion will put it back and this is done by the new rates for the reversed 
process. If we do not waste entropy at microscopic scale, then the book 
keeping at micro and macro levels match and will give us the lower bound 
for large deviations. However the rates for iN,T,t are too messy and one 
has to make it independent of T, N and t, and localize it, so that it is 
transportable and can be used as a module that we can use at any place 
and time to slow the flow, which is all that any non-entropic solution is 
expected to do. We start with a fairly general simple calculation. 

Let P be a time homogeneous Markov process with trajectories x(t) 
in a finite time interval [0, T], on a finite state space with generator 

(Af)(x) = L c(x, y)f(y). 
y 

Let 1r(t, x) be the marginal distributions in the time interval [0, T]. We 

denote by C(x) = -c(x, x) = L:Y#x c(x, y). Let Pr be the process that 
corresponds to the time reversed trajcetories y(t) = x(T- t). Although 
Pr is a Markov process, it is in general time inhomogeneous and will 
have a generator that depends on the marginals 1r( ·, ·). We denote its 
time dependent generator by 

(Ar,d)(x) = L cr(t, x, y)f(y) 
yofx 

and 

Cr(x) = -cr(t,x,x) = "Lcr(t,x,y) 
y 

We can also reverse the generator and define A as 

(Af)(x) = L c(x, y)f(y) 
y 

with C(x,y) = c(y,x) for x =I y and 

C(x) = -c(x,x) = "Lc(x,y) = "Lc(y,x) 
y#x y'fx· 

We denote by Qr, the process with generator A with initial distribution 
1r(T, ·). 
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Theorem 7.1. We have the following simple formula connecting 
the function 

H(t) = L7r(t,x)log7r(t,x) 
X 

and the relative entropy H(PT,iJT)· 

Proof The probabilities 7r(t, x) satisfy the forward equation 

d7r(t, y) "" dt = ~ c(x, y)7r(t, x)- C(y)7r(t, y) 
x,Py 

The time reversed process PT defined by y(t) = x(T- t) will have 
marginals 7r(T- t, y) and some generator 

(AT,d)(x) = LcT(t,x,y)f(y) 
y 

Of course 

d7r(T- t, y) "" 
dt =- ~c(x,y)7r(T- t,x) + C(y)7r(t,y) 

x,Py 

= L cT(t, x, y)7r(T- t, x)- CT(t, y)7r(T- t, y) 
x,Py 

Actually it is not hard to see that for x =f. y 

7r(T- t, x)cT(t, x, y) = C(x, y)7r(T- t, y) 

and 
~ 1 "" CT(t,x) = 7r(T _ t,x) ~C(x,y)7r(T- t,y) 

y,Px 

Our goal is to compute the relative entropy 

~ ~ {T"" "" CT(t X y) 
H(PTIQT) = Jo ~7r(T-t,x) ~ [cT(t,x,y)log 2(~ ') 

0 x y:y,Px 'Y 

- CT(t, x, y) + C(x, y)]dt 



Large Deviations of TASEP 21 

H(PTIQT) 

= {T[L7r(T-t,x)[[ L c(y,x)7r(T-t,y)log7r(T-t,y)] 
Jo --.L 1r(T-t,x) 1r(t-t,x) 

x y:yr-x 

- CT(t, x) + C(x)]] dt 

1T ""' [ 1r(T - t, y) 
= ~c(y,x) 1r(T-t,y)log ( ) 

0 --.L 7r T- t, X 
XrY 

- 7r(T - t, y) + 7r(T - t, X)] dt 

{T""' [ 7r(t, y) ] = Jo ~c(y,x) 1r(t,y)log1r(t,x) -1r(t,y)+1r(t,x) dt 
x=,fy 

We begin by differentiating H(t) = Ly 1r(t, y) log1r(t, y). 

H'(t) =! L 1r(t, y) log1r(t, y) = L 1r(t, y)(Alog1r(t, ·))(y) 
y y 

= L7r(t,y)[[Lc(y,x)log7r(t,x)]-C(y)log7r(t,y)] 
y x=,fy 

= L c(y, x) [1r(t, y) log 1r( t, x) - 1r( t, y) log 1r(t, y)] 
x=,fy 

""' 7r( t, y) 
=-~ c(y, x)1r(t, y) log-(-) 

7r t, X 
x#y 

This proves ( 9). Q.E.D. 

Let us start the backward TASEP .C, with an initial distribution J..lN 
concentrated on the finite set 

nN,L = { 'T/: 'T/x = 1 for X< -NL and 'T/x = 0 for X?: NL} 

for some L ?: T. Our initial distribution J..lN will be a Bernoulli with 
J..LN[TJx = 1] = p(T, f.t) given in equation (7). Assume L?: T. Then the 
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TASEP will have profile p(T- t, ~) and at timet= Tend up at p(O, ~). 
The time reversed process will now be a perturbation of the TASEP 
going in the right direction with the profile we need. (7.1). We note 
that 

X X 

X 

Moreover H(T) = 0 and 

1 1 JT NTH(O) ~ T -T[p(T,~)logp(T,~) + (1- p(T,~))log(1- p(T,~))]d~ 

= 2(2p- 1)[plog p + (1- p) log(1- p)] 

11 1 - ~ 1 - ~ 1 + ~ 1 + ~ + 2 [--log-- + --log --]d~ 
2p-1 2 2 2 2 

= 2p- 2- 2p(1- p)log _P_ 
1-p 

The relative entropy can now be computed using formula (9) and is seen 
to be asymptotic to CT N with 

C = c(p) = 2p- 2- 2p(1- p) log _P_ + 1 
1-p 

p 
= 2p- 1- 2p(1- p) log--

1-p 

agreeing with (8). 

This perturbation is neither stationary in time nor local in nature. 
We need to modify it. 

The special initial configuration of particles at every site x ::::; 0 and 
no particles at any site x > 0 will be denoted by fj. Let N(T) be the 
number of transitions from 0 to 1 during [0, T] for the TASEP. Let P 
be the unpertubed TASEP from this special configurartion. Our initial 
goal is to construct, for each given p a perturbed measure Q P such that 
Qp << P, with 

and 
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with c(p) given by (8). We wish to do this with a local, time independent 
perturbation at least approximately. We can work out the algebra and 
restate it as trying to make for a < ~, 

with an entropy cost not exceeding 

(10) 
~ 1+v1-4a 

I( a)= v .1- '±a- 2alog JI=4a 
1- 1-4a 

We consider for u > 0, 

where 7J is the initial configurartion. First we note that by a simple 
coupling argument 

U( u, t, fj) :::; U( u, t, rJ) :::; U( u, t, ij)ecrg(ry) 

with 

x:s;o x>O 

for all configurations 7J with only a finite number of ocupied sites x with 
x > 0 and finite number of empty sites x with x :::; 0. By Markov 
property, if 

A(u,t) = infU(u,t,rJ) = U(u,t,fj) 
'f/ 

then A(u, t + s) ~ A(u, t)A(u, s) and -logA(t) is subadditive and 

(11) lim logA(u,t) =sup logA(u,t) = ->.(u) 
t--->oo t t t 

exists. Moreover 

e-t-\(cr)-O(t) :::; U(u, t, fi) :::; U(u, t, rJ):::; e-t>.(cr)+crg(ry) 

where B(t) = o(t) as t ---+ oo. We can write down a differential equation 
satisfied by U ( u, t, 7J) 

8U(u, t, rJ) _ (£ U)( t ) at - cr u, '7] 

with 
U(u,O,rJ) = 1 
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The genertaor Cu is obtained by a combination of Girsanov formula and 
Feynman-Kac formula. It takes the form 

X 

where C:z:,:z:+l = 1 for x # 0 and co,l = e-u. 

Theorem 7.2. Let u > 0 be given. For each E > 0, there exists a 
positive local function V = Vu,e(17) that satisfies 

(Cu V)(17) + (.X(u) + E)V(17) ~ 0 

for all17. 

Proof As a first step we produce a function that is continuous, i.e. 
depends weakly on far away sites and then approximate it to get a local 
function. Our first choice is 

1 1to E W(17) = - exp[(.X(u) +- )t]U(u, t, 17)dt 
to 0 2 

Because of the lower bound on U we can assume that to is large enough 
so that for all17, 

e[>.(u)+Wou(u, t0 , 17) ~ 1 

Let us compute CuW. 

1 1to E (CuW)(17) =- exp[(>.(u) + -)t](CuU)(u,t,17)dt 
to 0 2 

1 1to E 
= - exp[(>.(u) + -2 )t]Ut(u, t, 17)dt 

to o 

= t~ [e[>.(u)+Wou(u, to, 17)- 1]- (.X(u) + ~)W(17) 
E 

~ -(>.(u) + "2)W(17) 

Since t0 is finite, W depends weakly on far away sites, and can be nicely 
approximated by a V that is local. Q.E.D. 

The next step is to use V = Vu,e to construct our perturbations. 
These perturbations cost entropy but will limit the flow between 0 and 
1. There is a trade off and u is the parameter that will control this 
trade off. Opitmality in the trade off is reached as E -+ 0. We begin by 
defining the rates 
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Note that Cx,x+l (a) = 1 for x =I- 0 and c0 ,1 = e-a. The corresponding 
perturbed evolution 

X 

is local. Let us speed up by N, and do the hydrodynamic scaling for this 
perturbation. Let Q N be the perturbed process and PN be the original 
process both rescaled and with the special initial configuration fj. 

Theorem 7.3. For every N, we have on the interval [0, T], 

H(QNIPN) :S; EQN [log V(ry(T)) -log V(ry(O))- aN(T)] +NT[.X(a) +E] 

Proof. 

where 

We use our definition of Cx,x+1 (a,E,rJ) and an easy calculation to get 

The proof is completed by integrating with respect to t and taking ex­
pectations, noting 

NEQN [1T (La,< logV)(ry(t))dt] 

= EQN [1T[logV(ry(T)) -logV(ry(O))J] 

Q.E.D. 

Now the rest of the argument is relatively straight forward. First, we 
need a lemma. 

Lemma 7.4. The limit .X(a) defined in (11) satisfies 

.X( a)= inf [ap(l- p) + c(p)] = inf [aa +I( a)] 
P2~ a~~ 

where I(a) is as in (10}. 
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Proof Upper bound: If F(p(·, ·))is the flow through the origin dur­
ing [0, T] for a weak solution p(·, ·),then from the upper bound already 
established 

T .X( a) 2:: - inf [a F(p(-, ·)) + I(p(·, ·))] 
p(·,·) 

If one fixes F(p(-, ·))=aT= p(l-p)T, the infimum of I(p(·, ·))is shown 
by a variational argument to equal Tc(p) = TI(a). 

Lower bound: By a simple calculation using Jensen's inequality 

logEPN [e-uN(T)] = logEQN [e-uN(T) :~:] 

= logEQN [e-uN(T)+log[:~~]] 

= logEQN [e-uN(T)-log[~~:l] 

2:: -EQN [aN(T) +log[~~;]] 
= -EQN [aN(T)]- H(QNIPN) 

We can take any QN and we pick it as the time reversal of the 
backward TASEP. Our earlier calculations establish the lower bound of 
Tc(p) for the relative entropy and Tp(l- p) for the flow. One checks 
that I( a) is a strictly convex function of a. Q.E.D. 

This proves that if we perturb by Cu,e and take the limit as E-+ 0, 
the profiles we get will satisfy the entropy condition, will have flow at 0 
limited by Ta and the realtive entropy will be bounded by TI(a), where 
a is dual to a. 

The final step in the proof is to prove that the only profile, that sat­
isfies the entropy condition away from 0, has the rate function bounded 
by TI(a) and the flow through the origin bounded by Ta, is given by 
(7) with p > ~ chosen so that a= p(l- p). 
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