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Stable rank and real rank of graph C* -algebras 

Ja A Jeong 

Abstract. 

For any row finite directed graph E there exists a universal C*
algebra C*(E) ([KPR, KPRR]) generated by projections and partial 
isometries satisfying the Cuntz-Krieger E-relations. This class of 
graph algebras includes the Cuntz-Krieger algebras and all AF alge
bras up to stable isomorphisms([D]). In this paper we give conditions 
forE under which the algebra C* (E) has stable rank one or real rank 
zero. A simple graph C* -algebra is either AF or purely infinite, hence 
it is always extremally rich. We discuss the extremal richness of some 
graph C* -algebras and present several examples of prime ones with 
finitely many closed ideals. 

§1. Introduction 

As a generalization of Cuntz-Krieger algebras, a class of C* -algebras 
generated by projections and partial isometries subject to the relations 
determined by directed graphs has been studied in [KPRR], [KPR] and 
later in [BPRS], and these algebras are called graph C* -algebras. Since 
they are basically generated by partial isometries and projections one 
may expect that most of them must have real rank zero like AF algebras 
or Cuntz algebras. In fact if the associated graph C* -algebra for a row 
finite graph E is simple then C*(E) always has real rank zero since it is 
either AF or purely infinite ([KPR]). On the other hand, the Toeplitz 
algebra can occur as a graph C* -algebra but its real rank is not zero, 
hence we want to know when the graph algebra has real rank zero. We 
will answer the question in terms of the loop structure of a graph in 
Theorem 3.2 and Theorem 3.4. 

Recall that a projection p in a C* -algebra A is said to be infinite if 
it is Murray-von Neumann equivalent to its proper subprojection. We 
call a unital C* -algebra A infinite if the unit projection is infinite, and 
finite otherwise. An infinite C* -algebra whose every nonzero hereditary 
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subalgebra contains an infinite projection is called purely infinite. If 
a unital C* -algebra A has stable rank one (sr(A) = 1, see [Rfj), that 
is, the set A - 1 of all invertible elements is dense in A, then one can 
see that A should be finite. All AF-algebras ([Rfj), irrational rotation 
algebras([Pt]) are those known to have stable rank one. We will give a 
sufficient and necessary condition for a graph E that C*(E) has stable 
rank one in Theorem 3.1. 

As an attempt to extend notions and results for finite C* -algebras to 
infinite cases Brown and Pedersen ([BP2]) considered the quasi-invertible 
elements A;;-- 1 in a unital C*-algebra A and call A extremally rich if the 
set A;;-- 1 is dense in A since it turns out in [BP2] that this condition is 
equivalent to say that the closed unit ball A1 contains enough extreme 
points so that the convex hull of its extreme points coincides with the 
whole A1; 

conv(t'(A)) =All 

where t'(A) denotes the extreme points of A1 . Since A-1 C A;;-- 1 for any 
unital C*-algebra A we see that a unital C*-algebra A with sr(A) = 1 
is always extremally rich. On the other hand it is a nontrivial fact that 
purely infinite simple C* -algebras (for example, Cuntz algebras) are also 
extremally rich (see [LO], [Pd]). Therefore a simple graph C*-algebra is 
always extremally rich. Recall that a graph C* -algebra C* (E) is simple if 
and only if E is cofinal and satisfies condition (L). We show the cofinality 
of a graph E is in fact a sufficient condition for the algebra C*(E) to 
be extremally rich and also provide an example of non-extremally rich 
prime graph C* -algebra that has only three proper ideals and has real 
rank zero. 

§2. Preliminaries 

We recall definitions and results from [KPR], [KPRR], and [BPRS] 
on directed graphs and graph C* -algebras. A directed graph E = ( E 0 , E 1, 

r, s) (or simply E = ( E 0 , E 1 )) consists of countable vertices E 0 , edges 
E 1 and the range, source maps r, s : E 1 --+ E 0 . E is row finite if each ver
tex v E E 0 emits at most finitely many edges, and a row finite graph is 
locally finite if each vertex receives only finitely many edges. If e1 , ... , en 
(n ~ 2) are edges with r(ei) = s(ei+l), 1::; i::; n-1, then one can form 
a (finite) path a= (ell ... , en) of length lo:l = n, and extend the maps 
r, s by r(a) = r(en), s(a) = s(e1). Similarly one can think of infinite 
paths. 

Let En be the set of all finite paths of length n (so vertices in E 0 

are regarded as finite paths of length zero) and let E* be the set of all 
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finite paths, and E 00 the set of infinite paths. A vertex v E E 0 with 
s-1 (v) = 0 is called a sink. 

For a row finite directed graph E, a Cuntz-Krieger E-family consists 
of mutually orthogonal projections {Pv I v E E 0 } and partial isometries 
{Be I e E E 1 } satisfying the Cuntz-Krieger relations 

S/Se = Pr(e)' e EEl, and Pv = 2:::: SeSe*, v E s(E1 ). 

s(e)=v 

From these relations, it can be shown that every non-zero word in Be, Pv 
and Sj reduces to a partial isometry ofthe form BaS~ for some a, (3 E E* 
with r(a) = r((3) ([KPR], Lemma 1.1). 

Theorem 2.1. ([KPR], Theorem 1.2) For a row finite directed 
graph E = (E0 ,E1 ), there exists a C*-algebra C*(E) generated by a 
Cuntz-Krieger E-family {se,Pv I v E E 0 , e E E 1 } of non-zero elements 
such that for any Cuntz-Krieger E -family {Be, Pv I v E E 0 , e E E 1 } of 
partial isometrics acting on a Hilbert space 1{, there exists a represen
tation 7f : C* (E) --+ B(H) such that 

7r(se) =Be, and 1f(Pv) = Pv 

for all e E E\v E E 0 • 

Let {se,Pv I e E El,v E E 0 } be a Cuntz-Krieger E-family gen
erating the C*-algebra C*(E). Then for each z E '][' we have an
other Cuntz-Krieger E-family {zse,Pv I e E E 1 , v E E 0 } in C*(E), 
and by the universal property of C*(E) there exists an isomorphism 
'Yz : C*(E) --+ C*(E) such that 'Yz(se) = ZSe and "(z(Pv) = Pv· In fact, 
'Y: z f---' 'Yz E Aut(C*(E)) is a strongly continuous action of'][' on C*(E) 
and called the gauge action ( [BPRS]). 

A finite path a with lal > 0 is called a loop at v if s(a) = r(a) = v. 
It turns out that the distribution of loops in a graph E is very important 
to understand the structure of a graph C*-algebra C*(E), in particular 
if E has no loops then C (E) is AF. 

A graph E is said .to satisfy condition (L) if every loop in E has an 
exit, and condition (K) if for any vertex v on a loop there exist at least 
two distinct loops based at v. Note that condition (K) is stronger than 
(L) and if E has no loops then the two conditions are trivially satisfied. 

For two vertices v, w we simply write v ~ w if there is a path a E E* 
from v to w. A subset H of E 0 is said to be hereditary if v ~ w and 
v E H imply wE H, and a hereditary setH is saturated if s-1 (v) =I= 0 
and { r( e) I s( e) = v} C H imply v E H. The saturation of a hereditary 
setH is the smallest saturated subset of E 0 containing H. 
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Let H be a saturated hereditary subset of E 0 . Then the ideal I(H) = 

span{sas~ I a,(J E E*,r(a) = r(f3) E H} is clearly gauge-invariant and 
I(H) is generated by {Pv I v E H}. 

In case E has no sinks, in [KPRR], an isomorphism of the lat
tice of saturated hereditary subsets V of E 0 into the lattice of ideals 
I(V) in C*(E) was established and it is shown that the quotient alge
bra C* (E)/ I (V) is isomorphic to a graph algebra C* (G) for a certain 
subgraph G of E. More generally, the following was proved in [BPRS]. 

Theorem 2.2. ([KPRR] [BPRS, Theorem 4.1]) Let E = (E0 , E 1 , 

r, s) be a row finite directed graph. For each subset H of E 0 , let I (H) 
be the ideal in C* (E) generated by {Pv I v E H}. 

(a) The map H f---+ I(H) is an isomorphism of the lattice of saturated 
hereditary subsets of E 0 onto the lattice of closed gauge-invariant ideals 
ofC*(E). 

(b) Suppose H is saturated and hereditary. If G0 := E 0 \ H, G1 := 

{e E E 1 I r(e) tf- H}, and G := (G0 ,G\r,s), then C*(E)/I(H) is 
canonically isomorphic to C*(G) and the ideal I(H) is strong Morita 
equivalent to C*(K), where K := (H, {e I s(e) E H}). 

Note that if a graph E satisfies condition (K) then the isomorphism 
of Theorem 2.2.(a) maps onto the lattice of all closed ideals in C*(E), 
that is, every ideal is gauge-invariant. It is known ([BPRS], [JPS]) that 
for a row-finite graph E, the graph C*-algebra C*(E) is simple if and 
only if E is a cofinal graph satisfying condition (L), here we say that E 
is cofinal if every vertex connects to every infinite path. 

Proposition 2.3. ([KPR], Corollary 3.11) Let E be a locally finite 
graph which has no sinks, is cofinal, and satisfies condition (L). Then 
C* (E) is simple, and 

(i) if E has no loops, then C*(E) is AF; 
(ii) if E has a loop, then C*(E) is purely infinite. 

§3. Stable rank and real rank of graph C*-algebras 

If a graph E has no loops at all then the resulting algebra C*(E) 
is AF([KPR, Theorem 2.4]), hence its stable rank is one. To see if a 
graph with loops can have stable rank one consider the simple graph E 
consisting of a single vertex v and a single loop at v. Then the graph 
algebra C* (E) is the commutative C* -algebra with the spectrum 'TI', the 
unit circle, and it also has stable rank one. But if we add an edge ranging 
at other vertex than v, the resulting graph algebra is the Toeplitz algebra 
whose stable rank is 2. The following shows precisely when the graph 
algebra has its stable rank one. Actually if a loop has an exit then there 
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are infinite projections in the graph algebra and so the stable rank is 
not one anymore. 

Theorem 3.1. ([JPS, Theorem 3.3]) Let E = (E0 , E 1 ) be a row 
finite directed graph. Then E has no loop with an exit if and only if 
sr(C*(E)) = 1. 

Recall from [BPl] that a unital C* -algebra A (or A if A is non-unital) 
has real rank zero if the set of invertible self adjoint elements is dense 
in the whole set of self adjoint elements, or equivalently every non zero 
hereditary C* -subalgebra contains a non zero projection. So the C*
algebras with real rank zero (for example, AF algebras, purely infinite 
simple C*-algebras, all von Neumann algebras) have been considered as 
the ones containing reasonably many projections in some sense. 

Theorem 3.2. [JPS, Theorem 4.3] Let E be a locally finite di
rected graph with no sinks. If RR(C*(E)) = 0 then E satisfies condition 
(K). 

Corollary 3.3. Let E be a locally finite directed graph with no 
sinks. If sr(C*(E)) = 1 and RR(C*(E)) = 0 then C*(E) is AF. 

Theorem 3.4. [JPS, Theorem 4.6] Let E be a locally finite di
rected graph with no sinks which satisfies condition (K). If C* (E) has 
only finitely many ideals then RR(C*(E)) = 0. In particular, if E is a 
finite graph then RR(C*(E)) = 0. 

Let A be a {0, 1 }-matrix with no zero row or column. Then A can be 
viewed as a vertex matrix of a finite graph E with no sinks. If A satisfies 
Cuntz-Krieger's condition (I) in [CK] then it clearly follows that E sat
isfies (L) (or, equivalently condition (I) introduced for graphs in [KPR]) 
from their definitions. By Proposition 4.1 of [KPRR], the graph algebra 
C*(E) is also generated by a Cuntz-Krieger A-family of partial isome
tries, hence the Cuntz-Krieger algebra OA is isomorphic to the graph 
algebra C*(E). On the other hand, the graph algebra C*(E) is known 
to be isomorphic to the Cuntz-Krieger algebra OB associated with the 
edge matrix B of E. Therefore those three algebras are all isomorphic. 
Furthermore by Theorem 3.2, 3.4, and Lemma 6.1 of [KPRR], we have 
the following corollary. 

Corollary 3.5. Let A be a {0, 1}-matrix with no zero row or col
umn. Suppose A satisfies Cuntz-Krieger's condition (I) and let E be 
the finite graph having A as its vertex matrix. Then the following are 
equivalent: 
(i) RR(O A)= 0, 
(ii) A satisfies Cuntz's condition (II), 
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(iii) E satisfies condition (K). 

§4. Extremal richness of graph C* -algebras 

Let A be a unital C* -algebra. Then it is well known that an ex
treme point v in A 1 is characterized as a partial isometry satisfying 
(1- vv*)A(1- v*v) = 0 ([Pd, Proposition 1.4.7]). Let A:j: 1 be the set of 
all positive invertible elements of A. We call elements x E £A:j: 1 (= 
A - 1£A - 1 ) quasi-invertible ([BP3]) and denotes the set of all quasi
invertible elements in A by A;;- 1 . If A;;- 1 is dense in A A is called 
extremally rich. For a non-unital C* -algebra A, A is said to be ex
tremally rich when its unitization A is so. Obviously a C* -algebra A 
with sr(A) = 1 is extremally rich since A - 1 C A;;- 1 . In particular, 
all AF-algebras are extremally rich. Other examples are purely infi
nite simple C*-algebras ([Pd, Theorem 10.1], [LO, Lemma 3.3]), the 
Toeplitz algebra ([Pd, Corollary 9.2]), commutative C*-algebras C(X) 
with dim(X) :::; 1 (see [BP3, section 3]), and all von Neumann algebras 
( [Pd, Theorem 4.2]). Also a simple C* -algebra A is extremally rich if 
and only if it is purely infinite or it has stable rank one ([BP2, Corollary 
10.5]). Thus from Proposition 2.3 it follows that every simple graph C*
algebra C* (E) (hence, E should be cofinal and satisfy condition (L)) is 
extremally rich. The following shows in fact that every graph C* -algebra 
C* (E) associated to a cofinal graph E is extremally rich. 

Proposition 4.1. ( [JPS, Proposition 3. 7]) Let G be a locally finite 
directed graph. If G is co final then either sr( C* (G)) = 1 or it is purely 
infinite and simple. 

There are extremally rich graph C* -algebras that are associated to 
graphs which are not cofinal, for example the Toeplitz algebra (see Ex
ample 4.6 below) which is neither purely infinite simple nor of stable 
rank one (sr(T) = 2). These graph algebras will arise from directed 
graphs containing some loops with exits, so that they should have many 
infinite projections and hence their stable rank are not one any more. 

To this end note the following corollary of Theorem 2.2. 

Corollary 4.2. ([JPS, Theorem 3.5]) Let E = (E0 ,E\r,s) be 
a row-finite directed graph with the set V of sinks. Then there is a 
subgraph G = (E0 \ H, {e E E 1 I r(e) tJ. H}) of E with no sinks such 
that C* (E)/ I (V) is isomorphic to C* (G), where H is the saturation of 
V and I(V) = span{s,s;3* I a,p E E*, r(a) = r(p) E V }. 

We also need to review briefly the following useful results on ex
tremally rich C* -algebras. 
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Theorem 4.3. ([BP2],[BP3], [LO]) (a) Every quotient, every di
rect sum or direct product and every hereditary C* -subalgebra of an ex
tremally rich C* -algebra is again extremally rich. 
(b) If A is strong Morita equivalent (or stably isomorphic) to an ex
tremally rich C* -algebra B then A is also extremally rich. 

Let A be a unital C* -algebra and I be a closed two-sided ideal. 
(c) Suppose sr( I) = 1. Then A is extremally rich if and only if A/ I is 
extremally rich and extreme partial isometries lift. 
(d) sr(A) = 1 if and only if sr(I) = sr(A/I) = 1 and every invertible 
elements lifts, that is, (A/ n-1 =A - 1 I I. 
(e) If I and A/ I are purely infinite simple C* -algebras then A is ex
tremally rich. 

For a C* -algebra A and projections P, Q in A, the extreme points 
E ( P AQ) of the closed convex set P A 1 Q consists of elements u E P A 1 Q 
which is a partial isometry such that (P- uu*)A(Q- u*u) = {0}. 
We say that the space P AQ is extremally rich if either E(P AQ) = 0 
or E(PAQ) -=1- 0 and (PAP)- 1E(PAQ)(QAQ)- 1 is dense in PAQ. If 
E(P AQ) -=1- 0 then P AQ is extremally rich if and only if P A1 Q = 

conv(E(PAQ)) (see [BP2]). 
For any non-zero projections P, Q acting on a Hilbert space 1-l, one 

can show that E(PB(H)Q) -=1- 0 and the space PB(H)Q is extremally 
rich by Proposition 11.4 of [BP2]; if A is a C* -algebra with real rank 
zero and E(PAQ) -=1- 0 for every pair of projections P, Q in A, then every 
such a space P AQ is, in fact, extremally rich. 

Proposition 4.4. ( [BP2, Proposition 11. 7]) Let I be a closed 
ideal with real rank zero in a unital C* -algebra A, such that P IQ is 
extremally rich for any pair of projections such that P E A and Q E I. 
If A/ I is extremally rich and E (A/ I) consists only of isometries and 
co-isometries then A is extremally rich. 

Note that the C* -algebra B(H) and its closed ideal K(H) of compact 
operators are known to have real rank zero. The following generalization 
of Proposition 4.1 can be proved by applying proposition 4.4. 

Theorem 4.5. ([J]) Let E = (E0 ,E1 ) be a locally finite directed 
graph and V the set of sinks. If the subgraph G in Corollary 4.2 is co final 
then C* (E) is extremally rich. 

Example 4.6. Consider the following graph E. 
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e 

The sink v generates an ideal I which is isomorphic to JC, the compact 
operators acting on an infinite dimensional separable Hilbert space. Set 
8 = Se + sf. Then S* S = 1 and S S* = Pw < 1 = Pw + Pv. Thus S is a 
proper isometry. LetT be the C*-subalgebra of C*(E) generated by S. 
Since 8(1- SS*) =Sf, it follows that Sf E T, hence C*(E) =Tis the 
Toeplitz algebra. Note that the subgraph Gin Corollary 4.2 consists of 
the simple loop e, and so cofinal and by Theorem 4.5 we see that T is 
extremally rich, which is known in [Pd]. More generally, if a graph E 
consists of a simple loop with n vertices and each of the vertices emits 
an edge then we can conclude that the resulting graph algebra C*(E) is 
extremally rich. 

Recall from Theorem 4.3(e) that if I is a purely infinite and simple 
closed ideal of a unital C* -algebra A such that the quotient algebra 
A/ I is also purely infinite and simple then A is extremally rich. Now 
suppose a C* -algebra B has two proper ideals I 1 C I 2 such that every 
possible simple quotient is purely infinite. Then one cannot conclude the 
extremal richness of B. In fact, it is known in [LO, Remark 4.10] that 
there exists a non-extremally rich unital C*-algebra B (non-separable) 
with two proper ideals I 1 C I 2 such that h, I 2 / h and B / I 2 are all purely 
infinite and simple. 

In the following we give a separable unital graph C* -algebra B with 
RR(B) = 0 which has exactly three proper ideals and every possible 
quotient is purely infinite and extremally rich, but B is not. 

Example 4. 7. Consider the following finite directed graph E = 
(Eo,El). 

8· G 
e > ~ E e ·8 

Since E satisfies condition (K) we see that the graph algebra C*(E) 
has real rank zero by Theorem 3.4 and C*(E) has exactly three proper 
ideals by Theorem 2.2. Let H be the smallest hereditary saturated 
vertex subset containing v. Then the ideal I(H) corresponding to His 
stably isomorphic to the graph algebra C*(G), where G is a subgraph of 



Stable rank and real rank of graph C* -algebras 105 

E with three vertices in the middle of E and four edges connecting them 
(Theorem 2.2). Since G is cofinal and satisfies (K) (hence (L)) C*(G) 
is purely infinite and simple by Proposition 2.3. Thus I(H) is purely 
infinite and simple since it is well known that being purely infinite and 
simple is a stable property under a stable isomorphism. Moreover note 
that I(H) is essential in C*(E), that is, it has nonzero intersection with 
every other nonzero closed ideal. Thus the graph algebra C* (E) is prime 
and hence its extreme point set of the unit ball consists of isometries or 
co-isometries. Now consider the quotient algebra C* (E)/ I (H), then it 
is isomorphic to the graph C*-algebra C*(F) by Theorem 2.2, where 
F = (E0 \ H, {e I r(e) ¢. H}). Since C*(F) is isomorphic to the direct 
sum 0 2 EEl 0 2 of the Cuntz algebra 0 2 the quotient algebra is extremally 
rich. Let 8 1 , 8 2 be two isometries generating the Cuntz algebra 0 2 • If 
C* (E) were extremally rich then by [BP2, Corollary 9.3] every extreme 
partial isometry of C*(E)/ I(H) should lift. But the partial isometry 
u = siEElsi (i = 1, 2) is extremal in the quotient algebra C*(E)/ I(H) and 
cannot lift to an isometry or a co-isometry. This proves the assertion. 
Note that C*(E) (and so every ideal) is purely infinite since E satisfies 
(L) and every vertex connects to a loop ([BPRS, Proposition 5.3]). 

Example 4.8. Let E = (E0 , E 1 ) be a finite graph with E 0 = 

{1,2,3} and E 1 = {eij I s(eij) = r(eij) = i, i = 1,2,3, j = 1,2} U {fi I 
s(fi) = i,r(fi) = i + 1,i = 1,2}. Then the ideal generated by the vertex 
set {3} is purely infinite {in fact, isomorphic to the Cuntz algebra 0 2 ) 

and essential in C*(E). The quotient {prime) algebra by the ideal is ex
tremally rich by Theorem 4.3 {e) and has isometrics and co-isometries 
as extreme points in its closed unit ball. Thus by [LO, Theorem 3.6] we 
conclude that C*(E) is extremally rich. More generally one can deduce 
by induction that for each n there is an extremally rich prime graph C*
algebra B with precisely n proper ideals I1 C I2 C · · · C In and every 
possible quotient is purely infinite. 
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