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Algebraic Shifting and Spectral Sequences 

Art M. Duval 

Abstract. 

There is a canonical spectral sequence associated to any filtration 
of simplicial complexes. Algebraically shifting a finite filtration of 
simplicial complexes produces a new filtration of shifted complexes. 

We prove that certain sums of the dimensions of the limit terms 
of the spectral sequence of a filtration weakly decrease by algebraically 
shifting the filtration. A key step is the combinatorial interpretation 
of the dimensions of the limit terms of the spectral sequence of a 
filtration consisting of near-cones. 

§1. Introduction 

The key step of Bjorner and Kalai's characterization [BK] of !
vectors and Betti numbers of simplicial complexes was that algebraically 
shifting a simplicial complex K produces a new complex f:l(K) whose 
homology Betti numbers are the same as those of K, i.e., 

(1) 

But the Betti numbers of ll(K) are much easier to compute, because 
f:l(K) is shifted and hence a near-cone. 

Relative homology is a little less straightforward. First note that 
if L ~ K are a pair of simplicial complexes, then f:l(L) ~ f:l(K) [Ka2, 
Theorem 2.2]. The equality (1) above becomes merely an inequality for 
relative homology, 

in other words, relative Betti numbers (weakly) increase in each dimen
sion [Du2] (see also [Ro], where a more general result, on generic initial 
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ideals and Grabner bases, was subsequently proved). As with the Betti 
numbers of a single near-cone, the relative Betti numbers of a pair of 
near-cones are easy to compute. 

We now examine what happens when a finite filtration 

(2) K: 0 = Ko <;;; K1 <;;; • · • <;;; Km = K 

of a simplicial complex K is algebraically shifted, i.e., when each sub
complex in the filtration is algebraically shifted, giving a new filtration 

~(K): 0 = ~(Ko) <;;; ~(K!) <;;; • • • <;;; ~(Km) = ~(K). 

In particular, we will be concerned with a cohomology spectral sequence 
of this filtration whose limit terms E)x,, ... , E;;:; filter the cohomology 
H*(K, k) of K over a field k. That is, dimE)x, +···+dimE;;; = 
(3*(K) = H*(K, k); we can think of E~ as providing the contribu
tion of K 8 \K8 _ 1 to the cohomology of K. Our main result (Theorem 
6.1) is that the quantity dim E)x, +···+dim E'fx, (weakly) decreases, and 
hence dimE~ 1 + · · · + dimE;;:; (weakly) increases, by applying alge
braic shifting. In some sense then, algebraic shifting moves more of the 
cohomology to later in the filtration of K. Relative homology is just the 
n = 2,p = 1 case, as E?x, = H*(K2, K!) for the filtration 0 <;;; K1 <;;; K2. 

As with Betti numbers and relative Betti numbers, the quantity 
dim E)x, + · · · + dim E'fx, is easy to compute for near-cones, and this is 
an important step of the proof. 

Section 2 reviews the necessary background for simplicial complexes, 
including the exterior face ring, in which all our subsequent calcula
tions take place. In Section 3, we first construct the spectral sequence 
corresponding to K, and then use elementary manipulations to replace 
dim E)x, + · · · + dim E'fx, by an expression not using spectral sequences. 
Then in Section 4 we interpret this expression combinatorially for near
cones; this combinatorial interpretation resembles and complements the 
combinatorial interpretations of the Betti numbers of a near-cone and 
the relative Betti numbers of a pair of near-cones. In Section 5, we 
briefly review algebraic shifting, and then modify arguments from [Du2] 
to prove the key inequality. Section 6 proves Theorem 6.1, which merely 
consists of tying together the results of the previous three sections. 

§2. Simplicial complexes 

For any subsetS of a simplicial complex K, let Sq denote the set of q
dimensional faces of S. In particular, Kq is the set of q-dimensional faces 
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of K itself; context should distinguish between Kq, for the q-dimensional 
faces of K, and K 8 , for a member of the filtration (2). 

Let k be a field, fixed throughout the paper. The qth Betti number 
of a simplicial complex K is j3q = j3q(K) = dimk fiq(K), where fiq(K) is 
the qth reduced cohomology group of K (with respect to k). Recall that 
over a field k, dimk fiq(K; k) = dimk Hq(K; k), so that Betti numbers 
measure reduced homology as well as reduced cohomology. 

Definition. Let K be a ( d- 1 )-dimensional simplicial complex on 
vertex set [n] := {1, ... , n }. Let V = { e1, ... , en}, and let A(kV) denote 
the exterior algebra ofthe vector space kV; it has a k-vector space basis 
consisting of all the monomials es := eio 1\ · · · 1\ ei0 , where S = { i0 < 
· · · < iq} ~ [n] (and e0 = 1). Note that A(kV) = EB;~: 1Aq+l(kV) is a 
graded k-algebra, and that Aq+1(kV) has basis {es: lSI = q + 1}. Let 
(IK)q be the subspace of Aq+1 (kV) generated by the basis {es: lSI = 

q+1, S ~ K}. Then IK := EB~;;;;~ 1 (IK )q is the homogeneous graded ideal 
of A(kV) generated by {es: S ~ K}. Let M[K] := Aq+1 (kV)/(IK)q· 
Then the graded quotient algebra A[K] := EB~;;;;~ 1 Aq[K] = A(kV)/IK is 
called the exterior face ring of K (over k). 

The exterior face ring is the exterior algebra analogue to the Stanley
Reisner face ring of a simplicial complex [St ]. For x E k V, let x denote 
the image of x in A[K]. For S ~ K, let 

S = span{ep: FE S}. 

As with I = IK above, Iq will denote the q-dimensional part of any 
homogeneous graded subspace I contained in A[K]. 

It is not hard to verify (or see equation (3) below) that the usual 
coboundary operator 8: Aq[K]---> Aq+1 [K] used to compute cohomology 

may be given by 8: x f---7 J 1\x, where f = e1 +···+en. However, it will be 
necessary (see Section 5) to use a more "generic" coboundary operator, 
which will not change cohomology. Let k = k(au, a12, ... , ann) be the 
field extension over k by n 2 transcendentals, { aij h~i,j~n, algebraically 
independent over k. We will consider A[K] as being over k instead of k 
from now on. We are, in effect, simply adjoining these aij 's to our field 
of coefficients. 

For now, we will only need the first n transcendentals, au, ... , aln· 
Let fi = a 11 e1 + · · · + a 1nen. Then define the weighted coboundary 
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operator 8: A[K] -+ A[K] by 8: x ~--+ h 1\ x, so 

n 

(3) 8(es) = h 1\ es = 2:>Xljej 1\ es = L ±aljesu{j} 
j=l j<f.S 

SU{j}EK 

(hence the name weighted coboundary operator). Betti numbers may be 
computed using this 8, i.e., (3q(K) = dimk(ker 8)q/(im 8)q [BK, pp. 289-
290]. 

§3. Spectral sequences 

The filtration (2) in Section 1 naturally gives rise to a filtration of 
ideals in A[K], as follows. For 0 ::::; s ::::; m, define 

so the ideals (Js form a filtration 

(4) 

By e.g. [Sp, p. 493], there is a convergent spectral sequence Er corre
sponding to this filtration. By this we mean that there is a sequence of 
pairs {(Er,dr)}r?l, where: Er is a bigraded vector space over a field k; 
d is a differential onE of bidegree (r 1-r) (sod · Es,t -+ Es+r,t-r+1)· 

r r ' r· r r ' 

H(Er) := (kerdr/imdr) ~ Er+li E~,t ~ ifs+t(Ks\Ks-1); and B:xo is 
associated to a filtration on H*(K), in that E~l ~ ker(Hs+t(K) -+ 

Hs+t(Ks+d)/ker(Hs+t(K)-+ Hs+t(Ks)). For every E~,t expression in 
this section, the "total degree" s+t is fixed, at say q, so we will suppress 
the "complementary degree" t, and write E: to mean E~,q-s ( s is called 
the "filtered degree"). Similarly, every subspace of A[K] is understood 
to be just the q-dimensional component, and so we will write I to mean 
Iq· For further details on spectral sequences of filtrations, see, e.g., [Sp, 
Section 9.1]. 

It is straightforward to verify that 

and dr = 8 form a spectral sequence corresponding to the filtration ( 4) 
as described above, where 
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(The verification is analagous to that for the homology spectral sequence 
of a filtration [Sp, pp. 469-470].) Then, letting r----> oo, 

zs-1 
Es = oo 

00 z~ + (im8 n Qs-1) 

(5) 
z:--1 + (Js 

where 

Z:'x, = {c E Q8 : 8c = 0} = Qs n ker8. 

Lemma 3.1. For the spectral sequence defined above, 

(ker8 + QP) 
dimE,;;q-1 + · · · + dimE~q-p =dim q. 

(im8 + QP)q 

Proof. Recall that the total degree s + t of every E:·t is fixed at q, 
as is the dimension of every subspace of A[K], and so we suppress the 
q's in the proof. 

By equation (5), 

(6) 

(ker8n(Js-1) +Qs 
E:'x, = (im 8 n (Js-1) + Qs 

(ker 8 + Q8 ) n (Js-1 

(im8 + Q 8 ) n Qs- 1 

The result now follows by an easy induction on p. For p = 1, by equation 
(6), 

E 1 = (ker8 + Q1) n Q0 

oo (im8 + Q1) n Q0 

ker8 + Q1 

im8 + Q1 
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If p > 1, then 

dim E 1 +···+dim EP =(1) (dim E 1 +···+dim EP-1) +dim EP OC> 00 00 00 (X) 

=(2) dim ker8 + (jp-1 
im8 + QP-1 

. (ker 8 + QP) n QP- 1 
+dim -

(im8 + QP) n QP-1 

=(3) dim (ker 8 + QP) + ~p-1 
(im8 + QP) + QP-1 

. (ker 8 + QP) n QP- 1 
+dim _ 

(im8 + QP) n QP-1 

=(4) dim ker8 + Cj_P. 
im8 + QP 

Equality =(2) above is by induction and equation (6), equality =(3) fol
lows from QP s;;; QP-1, and equality =(4) is a routine exercise in linear 
algebra (or see [Du2, Lemma 5.1]). Q.E.D. 

§4. Near-cones 

Let v be a vertex of a simplicial complex K. Let 

delK v =del v :={FE K: v U F (j_ K} 

be the deletion of v (in K), let 

lkKv=lkv:={FEK:v(j_F, vUFEK} 

be the link of v (in K), and let the star of v (in K) be 

v * lkv ={FE K: v U FE K} 

the cone over lk v. Then K may be partitioned 

K = ( v * lk v) u del v. 

The link and star of v are subcomplexes of K. 
We will say K is a near-cone with apex v if every face F in delK v 

has its entire boundary {F\w: w E F} contained in v * lkK v. In this 
case, every face of delK v is a facet (i.e., is maximal in K), since v * lk v is 
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a subcomplex. If we contract the subcomplex v * lk v to v, what remains 
is a sphere for every face in del v; therefore 

(7) f3q(K) =#{FE delK v: dimF = q} 

when K is a near-cone with apex v [BK, Theorem 4.3]. 

Lemma 4.1. If K is a near-cone with apex v, then 8(lkv) = 
{8eF: FE lkv} is a basis for im8. 

Proof. The members of 8 (lk v) are linearly independent because if 
FE lkv then 8eF has nontrivial support on evUFl but if G E lkv and 
G -/= F, then 8ea has no support on evuF· Thus for each member of 
8(lkv) there is a face on which it alone has nontrivial support; linear 
independence follows immediately. 

On the other hand, we will show that if G rj. lk v, then 8e0 is in the 
span of 8(lk v ). If G E del v, then 8ea = 0, since G is a facet. The only 
possibility remaining is that G = v U F for F E lk v. In that case 

so 

8eF = ±a1vea + L ±a1weFuw 
w,Pv 

FUwEK 

0 = 82 eF = ±a1v8ea + L ±a1w8eFuw' 
w,Pv 

FUwEK 

and so 

8ea = L ± (alw) 8(Fuw). 
w#v alv 

FUwEK 

Now, if v U ( F U w) rj. K, then F U w E del v, so F U w is a facet and so 
8eFuw = o. But ifvu(Fuw) E K, then Fuw E lkv, so 8eFuw E 8(lkv). 
Thus 8ea is in the span of 8(lkv). Q.E.D. 

Lemma 4.2. If K is a near-cone with apex v, then 

ker8 = D + im8, 

where D = delK v. 

Proof. Since every face in D = delK v is a facet, jj C ker8, so 
D + im 8 ~ ker 8. 

By equation (7), 

dim(ker8)- dim(im8) = {3*(K) = ldelvl = dimD. 
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dim(i5 + im8) = dimi5 + dim(im8)- dim(i5 n im8) 

= dim(ker 8) - dim(i5 n im 8). 

So now it only remains to show that 

(8) i5 n im8 = 0. 

To this end, recall from the proof of Lemma 4.1 that each 8e F in 
8(1kv) is the unique element of 8(lkv) with nonzero support on evl.JF, 

but now no~ further that v U F fj. del v. Thus any nonzero element 
of im8 = 8(1kv) has nontrivial support outside delv, which establishes 
equation (8), and hence the lemma. Q.E.D. 

Lemma 4.3. If K = L U Q is a partition of the faces of a near
cone K into two disjoint subsets, then 

. (ker8 + Q)q . 
d1m _ =#{FELq:vfj.F, vUFfj.K}. 

(im8 + Q)q 

Proof. Again let D = delK v. Then 

Thus, 

ker8 + Q 

im8+Q 

- -D+im8+Q 

im8+Q 

D 
~ -=------;:::,.-

.5 n (im8 + Q) 
D 

DnQ 

D 
---
- ~ 0 

DnQ 

by Lemma4.2 

by equation ( 8) 

dim (ker8 + ~)q = ID 1-I(D n Q) I 
(im8 + Q)q q q 

= ldelK v n Lql 

=#{FE Lq: v fj. F, v (J F fj. K}. 

Q.E.D. 
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§5. Algebraic shifting 

Algebraic shifting transforms a simplicial complex into a shifted sim
plicial complex with many of the same algebraic properties ofthe orig
inal complex. Algebraic shifting was introduced by Kalai in [Ka1]; our 
exposition is summarized from [BK] and included for completeness. 

Definition. If R = {r0 < · · · < rq} and S ={so < · · · < sq} are 
(q + 1)-subsets of [n] = {1, ... , n }, then: 

• R '.5,p S under the standard partial order if ri :5, Si for all i; and 
• R <L S under the lexicogmphic order if there is a j such that 

rj < Sj and ri = Si fori < j . 

Lexicographic order is a total order which refines the partial order. 

Definition. A collection C of (q + 1)-subsets of [n] is shifted if 
R '.5,p SandS E C together imply that R E C. A simplicial complex D. 
is shifted if the set of q-dimensional faces of D. is shifted for every q. 

It is not hard to see that shifted simplicial complexes are near-cones 
with apex 1. 

Recall (see Section 2) that { aij h::;i,j::On are n 2 transcendentals ad
joined to our field of coefficients. 

Definition (Kalai). For 1 :5, i :5, n, let 

n 

fi = Laijej, 
j=l 

so {h, ... , fn} forms a "generic" basis of kV. (Note this is consistent 
with our definition of h in Section 2.) Define fs := fio 1\ · · · 1\ fi. for 
S = {io < · · · < iq} (and set !0 = 1). Let 

D.(K, k) := {S ~ [n]: fs ~ span{fR: R <L S}} 

be the algebmically shifted complex obtained from K; we will write D.(K) 
instead of D.(K, k) when the field is understood to be k. In other words, 
the (q+ 1)-subsets of D.(K) can be chosen by listing all the (q+ 1)-subsets 
of [n] in lexicographic order and omitting those that are in the span of 
earlier subsets on the list, modulo IK and with respect to the !-basis. 

The algebraically shifted complex D.(K) is (as its name suggests) 
shifted, and is independent of the numbering of the vertices of K [BK, 
Theorem 3.1]. 

Recall from Section 1 that if L ~ K is a pair of simplicial com
plexes, then D.(L) ~ D.(K). Thus for Q = K\L, we may define D.(Q) = 
D.(K)\D.(L). 
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Lemma 5.1. Let L <;;; K be a pair of simplicial complexes and 
Q = K\L. Then 

dim (ker 8 + Q)q ~#{FE 6.(L)q: 1 tf. F, 1 U F tf. 6.(K)}. 
(im8 + Q)q 

Proof. This is implicit in the proof of [Du2, Theorem 5.2]. As it is 
not stated there explicitly, we reproduce here some of the details. From 
[Du2, Lemma 4.4] 

dim(im8 n Q)q+l ::; #{FE 6.(K)q: 1 tf. F, 1 U FE 6.(Q)}, 

and from [Du2, Lemma 4.5] 

dim(8Q)q+l ~#{FE 6.(Q)q: 1 tf. F, 1 U FE 6.(Q)}. 

Then, since L = K\ Q, 

dim (im 8 ~ Q)q+l ::; #{FE 6.(L)q: 1 tf. F, 1 U FE 6.(Q)}. 
(8Q)q+l 

By equations (1) and (7), respectively, 

But, with the notation 8- 1Q := {x E A[K]: 8x E Q}, we also have 

{3q(L) =dim (8-lQ~ by [Du1, Lemma 3.3] 
(im8 + Q)q 

d. (8- 1Q)q d. (ker8+Q)q 
= lm + lm -

(ker 8 + Q)q (im 8 + Q)q 

d . (im8nQ)q+l d" (ker8+Q)q [ 
= 1m _ + 1m by Du1, Lemma 3.6], 

(8Q)q+l (im8 + Q)q 

and so - -
dim (ker8 + ~)q = {3q(L) _dim (im8 n Q)q+I 

(im 8 + Q)q ( 8Q)q+l 

~#{FE 6.(L)q: 1 tf. F, 1 U F tf. 6.(£)} 

-#{FE 6.(L)q: 1 tf. F, 1 U FE 6.(Q)} 

=#{FE 6.(L)q: 1 tf. F, 1 U F tf. 6.(K)}. 

Q.E.D. 



Algebraic Shifting and Spectral Sequences 63 

§6. Proof of Main Theorem 

Given a filtration K of a simplicial complex K, let E:,t refer to the 
terms of the corresponding spectral sequence given in Section 3, and let 

e8 't(K) =dim E':,:}(K). 

Theorem 6.1. For all p, q, 

el,q-1(K) + · · · + ep,q-C.p(K) 2: el,q-1(.6-(K)) + · · · + ep,q-p(.6.(K)). 

Proof. For 0 ~ s ~ m, let I: 8 = .6.(K)\.6.(K8 ), so 

A[.6.(K)] =}SO 2 }Sl 2 · · · 2 }Sm = h(K) 

is the filtration of ideals of A[.6.(K)] corresponding to the filtration .6-(K). 
By Lemmas 3.1 and 5.1, 

el,q-l(K) + ... + ep,q-p(K) =dim (ker8K + QP)q 
(im8K + QP)q 

2: #{FE .6-(Kp)q: 1 (j_ F, 1 U F (j_ .6-(K)}. 

On the other hand, because .6-(K) is shifted and hence a near-cone, 
Lemmas 3.1 and 4.3 give 

el,q-1 (.6-(K)) + ... + ep,q-p(.6.(K)) =dim (~er 8A(K) + }SP)q 
(1m8A(K) + I;P)q 

=#{FE .6-(Kp)q: 1 (j_ F, 1 U F (j_ .6-(K)}. 

Q.E.D. 

Note that el,q-l(K) + · · · + em,q-m(K) = (3q(K), which, by equation 
(1) is unchanged under algebraic shifting. Thus, Theorem 6.1 says that 
algebraic shifting puts less of the fixed sum of the es,q-s's into the ear
lier part of the filtration, and hence puts more into the later part. In 
particular, 

eP+l,q-p-l(K) + ... + em,q-m(K) 

~ eP+l,q-p-1(.6-(K)) + · · · + em,q-m(.6.(K)). 
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